1
|
Dario PP, Yamashita LHD, Salome KS, Kosinski GL, Justen GA, da S Rampon D, Lazarin-Bidoia D, Nakamura CV, Rosa FA, Montes D'Oca MG. Synthesis and in vitro antiprotozoal evaluation of novel Knoevenagel hydroxychloroquine derivatives. RSC Med Chem 2025:d4md00884g. [PMID: 40162204 PMCID: PMC11951163 DOI: 10.1039/d4md00884g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Leishmaniasis and Chagas diseases affect millions of people, particularly in developing countries, with conventional treatments proving unsatisfactory due to increasing drug resistance and high toxicity. Therefore, there is an urgent need for new drugs to combat neglected tropical diseases (NTDs). In this study, we synthesized 15 new Knoevenagel adducts derived from hydroxychloroquine and evaluated their antiprotozoal activity against Leishmania infantum, L. amazonensis, and Trypanosoma cruzi. The new adducts exhibited low toxicity in epithelial LLC-MK2 cells and J774A.1 macrophages. The Knoevenagel adducts derived from meta- and para-chloro benzaldehyde demonstrated antiprotozoal activity against T. cruzi epimastigotes, though with a lower selective index (SI) compared to the standard drug benznidazole. However, the adducts derived from isovaleraldehyde and ortho-, meta-, and para-chloro benzaldehyde showed SI values ranging from 10.97 to 8.11 against L. amazonensis, similar to amphotericin B (AmpB, SI = 9.37), with no statistically significant difference (p > 0.05). These same compounds inhibited L. infantum promastigotes, but with less activity compared to AmpB. These results suggest that Knoevenagel adducts derived from hydroxychloroquine may serve as selective antileishmanial agents.
Collapse
Affiliation(s)
- Priscila P Dario
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Luis H D Yamashita
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Kahlil S Salome
- Chemistry Department, NMR Laboratory, Federal University of Paraná - UFPR Curitiba PR Brazil
| | - Gabriel L Kosinski
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Guilherme A Justen
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Daniel da S Rampon
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Danielle Lazarin-Bidoia
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Celso V Nakamura
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Fernanda A Rosa
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Marcelo G Montes D'Oca
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| |
Collapse
|
2
|
Pavić K, Poje G, Pessanha de Carvalho L, Tandarić T, Marinović M, Fontinha D, Held J, Prudêncio M, Piantanida I, Vianello R, Krošl Knežević I, Perković I, Rajić Z. Discovery of harmiprims, harmine-primaquine hybrids, as potent and selective anticancer and antimalarial compounds. Bioorg Med Chem 2024; 105:117734. [PMID: 38677112 DOI: 10.1016/j.bmc.2024.117734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the β-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.
Collapse
Affiliation(s)
- Kristina Pavić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Goran Poje
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | | | - Tana Tandarić
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden; Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Marina Marinović
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ivo Piantanida
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Robert Vianello
- Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | - Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
She P, Yang Y, Li L, Li Y, Liu S, Li Z, Zhou L, Wu Y. Repurposing of the antimalarial agent tafenoquine to combat MRSA. mSystems 2023; 8:e0102623. [PMID: 38047647 PMCID: PMC10734505 DOI: 10.1128/msystems.01026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE This study represents the first investigation into the antimicrobial effect of TAF against S. aureus and its potential mechanisms. Our data highlighted the effects of TAF against MRSA planktonic cells, biofilms, and persister cells, which is conducive to broadening the application of TAF. Through mechanistic studies, we revealed that TAF targets bacterial cell membranes. In addition, the in vivo experiments in mice demonstrated the safety and antimicrobial efficacy of TAF, suggesting that TAF could be a potential antibacterial drug candidate for the treatment of infections caused by multiple drug-resistant S. aureus.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| |
Collapse
|
4
|
Gehlot P, Vyas VK. Recent advances on patents of Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitors as antimalarial agents. Expert Opin Ther Pat 2023; 33:579-596. [PMID: 37942637 DOI: 10.1080/13543776.2023.2280596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
5
|
Markus MB. Putative Contribution of 8-Aminoquinolines to Preventing Recrudescence of Malaria. Trop Med Infect Dis 2023; 8:278. [PMID: 37235326 PMCID: PMC10223033 DOI: 10.3390/tropicalmed8050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Enhanced therapeutic efficacy achieved in treating Plasmodium vivax malaria with an 8-aminoquinoline (8-AQ) drug such as primaquine (PQ) together with a partner drug such as chloroquine (CQ) is usually explained as CQ inhibiting asexual parasites in the bloodstream and PQ acting against liver stages. However, PQ's contribution, if any, to inactivating non-circulating, extra-hepatic asexual forms, which make up the bulk of the parasite biomass in chronic P. vivax infections, remains unclear. In this opinion article, I suggest that, considering its newly described mode of action, PQ might be doing something of which we are currently unaware.
Collapse
Affiliation(s)
- Miles B. Markus
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa;
- School of Animal, Plant and Environmental Sciences, Faculty of Science, University of Witwatersrand, Johannesburg 2001, South Africa
| |
Collapse
|
6
|
Louisa M, Hawa P, Purwantyastuti P, Mardliyati E, Freisleben HJ. Primaquine-chitosan Nanoparticle Improves Drug Delivery to Liver Tissue in Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Introduction:
Primaquine is one of the essential medicines used to treat malaria due to Plasmodium vivax. Primaquine acts by eradicating hypnozoites in the liver, and its effect is dependent on the drug concentrations in the target tissue. The present study aimed to prepare primaquine in nanoparticle formulation using chitosan as carriers and improve on-target primaquine delivery to the liver.
Methods: Primaquine-loaded chitosan nanoparticles were prepared using the ionic gelation method variations. Then, the resulting primaquine-chitosan nanoparticles were administered to the rats and compared with conventional primaquine. Afterward, plasma and liver concentrations of primaquine were quantified.
Results: The primaquine-chitosan nanoparticles obtained were at 47.9 nm. The area under the curve for primaquine-chitosan nanoparticles resulted lower in the area under the curve (AUC) and Cmax, 0.46 and 0.42 times of conventional primaquine, respectively. However, no differences were found in time to reach Cmax (Tmax). Primaquine liver concentrations obtained with primaquine-chitosan nanoprimaquine resulted in 3 times higher than primaquine concentration.
Conclusion: Enhanced drug delivery to rat liver tissue by primaquine-chitosan nanoparticles may improve on-target drug delivery to the liver, enhance primaquine ant hypnozoites effects, and reduce unwanted side effects in the circulation.
Collapse
|
7
|
Beus M, Persoons L, Daelemans D, Schols D, Savijoki K, Varmanen P, Yli-Kauhaluoma J, Pavić K, Zorc B. Anthranilamides with quinoline and β-carboline scaffolds: design, synthesis, and biological activity. Mol Divers 2022; 26:2595-2612. [PMID: 34997441 PMCID: PMC8741576 DOI: 10.1007/s11030-021-10347-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022]
Abstract
In the present study, we report the design and synthesis of novel amide-type hybrid molecules based on anthranilic acid and quinoline or β-carboline heterocyclic scaffolds. Three types of biological screenings were performed: (i) in vitro antiproliferative screening against a panel of solid tumor and leukemia cell lines, (ii) antiviral screening against several RNA viruses, and (iii) anti-quorum sensing screening using gram-negative Chromobacterium violaceum as the reporter strain. Antiproliferative screening revealed a high activity of several compounds. Anthranilamides 12 and 13 with chloroquine core and halogenated anthranilic acid were the most active agents toward diverse cancer cell lines such as glioblastoma, pancreatic adenocarcinoma, colorectal carcinoma, lung carcinoma, acute lymphoblastic, acute myeloid, chronic myeloid leukemia, and non-Hodgkin lymphoma, but also against noncancerous cell lines. Boc-protected analogs 2 and 3 showed moderate activities against the tested cancer cells without toxic effects against noncancerous cells. A nonhalogenated quinoline derivative 10 with N-benzylanthranilic acid residue was equally active as 12 and 13 and selective toward tumor cells. Chloroquine and quinoline anthranilamides 10-13 exerted pronounced antiviral effect against human coronaviruses 229E and OC43, whereas 12 and 13 against coronavirus OC43 (EC50 values in low micromolar range; selectivity indices from 4.6 to > 10.4). Anthranilamides 14 and 16 with PQ core inhibited HIV-1 with EC50 values of 9.3 and 14.1 µM, respectively. Compound 13 displayed significant anti-quorum/biofilm effect against the quorum sensing reporter strain (IC50 of 3.7 μM) with no apparent bactericidal effect.
Collapse
Affiliation(s)
- Maja Beus
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000, Leuven, Belgium
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, 00014, Helsinki, Finland.,Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Pekka Varmanen
- Department of Food and Nutrition, University of Helsinki, 00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014, Helsinki, Finland
| | - Kristina Pavić
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Branka Zorc
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia.
| |
Collapse
|
8
|
Facchetti G, Christodoulou MS, Mendoza LB, Cusinato F, Dalla Via L, Rimoldi I. Biological Properties of New Chiral 2-Methyl-5,6,7,8-tetrahydroquinolin-8-amine-based Compounds. Molecules 2020; 25:molecules25235561. [PMID: 33260896 PMCID: PMC7729733 DOI: 10.3390/molecules25235561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
The synthesis of a small library of 8-substituted 2-methyl-5,6,7,8-tetrahydroquinoline derivatives is presented. All the compounds were tested for their antiproliferative activity in non-cancer human dermal microvascular endothelial cells (HMEC-1) and cancer cells: human T-lymphocyte cells (CEM), human cervix carcinoma cells (HeLa), human dermal microvascular endothelial cells (HMEC-1), colorectal adenocarcinoma (HT-29), ovarian carcinoma (A2780), and biphasic mesothelioma (MSTO-211H). Compounds 3a, 5a, and 2b, showing significant IC50 values against the whole panel of the selected cells, were further synthesized and tested as pure enantiomers in order to shed light on how their stereochemistry might impact on the related biological effect. The most active compound (R)-5a was able to affect cell cycle phases and to induce mitochondrial membrane depolarization and cellular ROS production in A2780 cells.
Collapse
Affiliation(s)
- Giorgio Facchetti
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
- Correspondence: (G.F.); (L.D.V.)
| | - Michael S. Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
| | - Lina Barragán Mendoza
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
- Facultad de Ciencias Químicas, Universidad de Colima, Carr. Colima-Coquimatlán km 9, Coquimatlán 28400, Colima, Mexico
| | - Federico Cusinato
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
- Correspondence: (G.F.); (L.D.V.)
| | - Isabella Rimoldi
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
| |
Collapse
|
9
|
Chloroquine fumardiamides as novel quorum sensing inhibitors. Bioorg Med Chem Lett 2020; 30:127336. [PMID: 32631537 DOI: 10.1016/j.bmcl.2020.127336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023]
Abstract
Quorum sensing inhibitors (QSIs) that specifically interfere with bacterial cell-to-cell communication are considered as an alternative approach to conventional antibacterial therapy. In our study, a set of twenty-six fumardiamides with a quinoline head-group were evaluated as potential QSIs. Two strains of Gram-negative Chromobacterium violaceum (violacein-producing strain ATCC31532 and violacein-negative, mini-Tn5 mutant derivative CV026) were used as QS reporters for testing anti-QS and bactericidal activity of various quinoline fumardiamides. The initial screening of eighteen fumardiamides with primaquine, mefloquine and chloroquine scaffolds identified chloroquine derivatives as the most promising QSIs. Tail-group optimization of chloroquine fumardiamides led to the most active compounds 27, 29 and 30 bearing aminoethyl or piperidine moieties. At 400 µM concentration, these compounds inhibited the QS of C. violaceum strains in a manner similar to quercetin (the model QSI), while at the 40 µM concentration their inhibitory effect was twice less than that of quercetin. As none of the compounds displayed a bactericidal effect and that the QS inhibition was specific to the CV026 strain, our findings indicate that the structurally optimized chloroquine derivatives could function as quorum quenching (QQ) agents with a potential to block the signaling without entering the cell. In conclusion, our finding provides an important step toward the further design of agents targeting cell-to-cell communication.
Collapse
|
10
|
Abstract
There is a pressing need for compounds with broad-spectrum activity against malaria parasites at various life cycle stages to achieve malaria elimination. However, this goal cannot be accomplished without targeting the tenacious dormant liver-stage hypnozoite that causes multiple relapses after the first episode of illness. In the search for the magic bullet to radically cure Plasmodium vivax malaria, tafenoquine outperformed other candidate drugs and was approved by the U.S. Food and Drug Administration in 2018. Tafenoquine is an 8-aminoquinoline that inhibits multiple life stages of various Plasmodium species. Additionally, its much longer half-life allows for single-dose treatment, which will improve the compliance rate. Despite its approval and the long-time use of other 8-aminoquinolines, the mechanisms behind tafenoquine's activity and adverse effects are still largely unknown. In this Perspective, we discuss the plausible underlying mechanisms of tafenoquine's antiparasitic activity and highlight its role as a cellular stressor. We also discuss potential drug combinations and the development of next-generation 8-aminoquinolines to further improve the therapeutic index of tafenoquine for malaria treatment and prevention.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|