1
|
Lazar T, Connor A, DeLisle CF, Burger V, Tompa P. Targeting protein disorder: the next hurdle in drug discovery. Nat Rev Drug Discov 2025:10.1038/s41573-025-01220-6. [PMID: 40490488 DOI: 10.1038/s41573-025-01220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2025] [Indexed: 06/11/2025]
Abstract
Intrinsically disordered proteins have key signalling and regulatory roles in cells and are frequently dysregulated in diseases such as cancer, neurodegeneration, inflammation and autoimmune disorders. Preventing the pathological functions mediated by structural disorder is crucial to successfully target proteins that drive transcription, biomolecular condensation and protein aggregation. However, owing to their heterogeneous, highly dynamic structural states, with ensembles of rapidly interconverting conformations, disordered proteins have been considered largely 'undruggable' by traditional approaches. Here, we review key developments of the field and suggest that the synergy of advanced experimental and computational approaches needs to be pursued to conquer this barrier in drug discovery.
Collapse
Affiliation(s)
- Tamas Lazar
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | | | - Virginia Burger
- New Equilibrium Biosciences, Boston, MA, USA.
- Blackbird Laboratories, Baltimore, MD, USA.
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
- New Equilibrium Biosciences, Boston, MA, USA.
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences (RCNS), Budapest, Hungary.
- HUN-REN Office for Supported Research Groups (TKI), Cell Cycle Laboratory, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
2
|
De Silva MI, Gan HK, Bardy C. Repurposing trifluoperazine for glioblastoma treatment. Trends Pharmacol Sci 2025; 46:392-406. [PMID: 40300936 DOI: 10.1016/j.tips.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 05/01/2025]
Abstract
Glioblastoma (GBM) remains a therapeutic challenge due to its heterogeneity and plasticity, which drive treatment resistance, especially when compounded by interactions with the brain microenvironment. Recent preclinical evidence indicates that trifluoperazine (TFP) inhibits treatment-induced malignant reprogramming of tumour cells, potentially helping to reduce tumour plasticity. TFP targets calmodulin, dopamine receptors, and stress-responsive proteins (nuclear protein 1, NUPR1). Through these mechanisms, TFP has been shown to reduce tumour growth, sensitise tumours to chemoradiotherapy, and prolong survival in xenograft animal models. The clinical safety profile of TFP is well known from its use as an antipsychotic, and recent preclinical evidence further indicates that TFP has low toxicity to healthy neurons and glia despite transient functional effects on dopamine receptors. This Opinion explores TFP mechanisms of action and clinical activity to assess its suitability as a repurposed therapeutic option for GBM.
Collapse
Affiliation(s)
- Manam Inushi De Silva
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Hui K Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Heidelberg, Melbourne, VIC, Australia; La Trobe University School of Cancer Medicine, and Department of Medicine, University of Melbourne, Heidelberg, Melbourne, VIC, Australia
| | - Cedric Bardy
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Kumar A, Kumar D. The versatility of phenothiazines as an anticancer drug scaffold. Future Med Chem 2025; 17:259-261. [PMID: 39829157 PMCID: PMC11792786 DOI: 10.1080/17568919.2025.2453417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
4
|
Prema V, Meena A, Ramalakshmi N. A Computational Study of Phenothiazine Derivatives as Acetylcholinesterase Inhibitors Targeting Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2025; 25:68-82. [PMID: 38757327 DOI: 10.2174/0118715249300784240430110628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disorder that affects learning, memory and behavioral turbulence in elderly patients. Acetylcholinesterase (AChE) inhibitors act as anti-Alzheimer's agents. Phenothiazine derivatives are considered momentous anti-Alzheimer's agents because of their AChE inhibitory activity. The elevated levels and increased expression of this protein have been associated with Alzheimer's disease. Coumarin-fused phenothiazines have emerged as significant anti-Alzheimer's agents due to their notable receptor inhibitory activity. OBJECTIVE Some unique phenothiazine analogs were designed, and computational studies were conducted to explore their inhibitory activity against the AChE enzyme (PDB id: 4EY7) by using the Schrodinger suite-2019-4. METHODS Docking studies were conducted by using the Glide module; binding free energies were calculated by means of the Prime MM-GBSA module, and Molecular dynamics (MD) simulation was performed by using the Desmond module of the Schrodinger suite. Glide scores were used to find out the binding affinity of the ligands with the target 4EY7. RESULTS The compounds exhibited enhanced hydrophobic interactions and formed hydrogen bonds, effectively impeding Acetylcholinesterase. The Glide scores for the compounds ranged from -13.4237 to -8.43439, surpassing the standard (Donepezil) with a score of -16.9898. Interestingly, a positive value was obtained for the MM-GBSA binding of the potent inhibitor. To gain insights into the dynamic behavior of the protein A8, molecular dynamics (MD) simulations were employed. CONCLUSION Based on the results, the study concludes that phenothiazine derivatives show promise as acetylcholinesterase inhibitors. Compounds with notable Glide scores are poised to exhibit significant anti-Alzheimer's activity, suggesting their potential therapeutic efficacy. Further in vitro and in vivo investigations are warranted to validate and explore the therapeutic potentials of these compounds.
Collapse
Affiliation(s)
- V Prema
- Department of Pharmaceutical Chemistry, K. K. College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| | - A Meena
- Department of Pharmaceutical Chemistry, K. K. College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| | - N Ramalakshmi
- Department of Pharmaceutical Chemistry, C. L. Baid Metha College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Vediappan P, Arumugam M, Natarajan R. In-silico Design, ADMET Screening, Prime MM-GBSA Binding Free Energy Calculation and MD Simulation of Some Novel Phenothiazines as 5HT 6R Antagonists Targeting Alzheimer's Disease. Curr Comput Aided Drug Des 2025; 21:487-502. [PMID: 38204222 DOI: 10.2174/0115734099282836231212064925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Alzheimer's disease is a type of dementia that affects neuronal function, leading to a decline in cognitive functions. Serotonin-6 (5HT6) receptors are implicated in the etiology of neurological diseases. 5HT6 receptor antagonists act as anti-dementia agents. PDB ID 7YS6 represents a membrane protein, and amplification and overexpression of this protein are associated with Alzheimer's disease. Coumarin-fused phenothiazines are significant anti-Alzheimer's agents due to their inhibitory activity on the Serotonin- 6 receptor. OBJECTIVES Numerous previously unreported Coumarin-substituted Phenothiazines [A2 to A50] were designed using In-silico methods to evaluate their 5HT6 receptor antagonistic activity. Molecular modeling techniques were employed to study the ligands [A2 to A50] in interaction with the Serotonin-6 receptor (PDB ID: 7YS6) using Schrödinger Suite 2019-4. METHODS Molecular modeling studies of the designed ligands [A2 to A50] were conducted using the Glide module. In-silico ADMET screening was performed using the QikProp module, and binding free energy calculations were carried out using the Prime MM-GBSA module within the Schrödinger Suite. The binding affinity of the designed ligands [A2 to A50] towards 5HT6 receptors was determined based on Glide scores. Subsequently, ligand A31 underwent a 100 ns molecular dynamics simulation using the Desmond module of Schrödinger Suite 2020-1, which is based in New York, NY. RESULTS The majority of the designed ligands exhibited strong hydrogen bonding interactions and hydrophobic associations with the serotonin-6 receptor, which hinder its activity. These ligands achieved remarkable Glide scores within the range of -4.2859 to -7.7128, in comparison to reference standards such as Idalopirdine (-7.78149), Intepirdine (-5.20103), Latrepirdine (-5.54853), and the co-crystallized ligand (-7.02889). In-silico ADMET properties for these ligands fell within the recommended values for drug-likeness. It is worth noting that the MMGBSA binding free energy of the most potent inhibitor was positive, indicating a strong binding interaction. Additionally, the dynamic behavior of the protein (7YS6)-ligand (A31) complex was studied by subjecting ligand A31 to a 100 ns molecular dynamics simulation. CONCLUSION The results of this study reveal strong evidence supporting the potential of coumarin- substituted phenothiazine derivatives as effective Serotonin-6 receptor antagonists. Ligands [A2 to A50], which exhibited noteworthy Glide scores, hold promise for significant anti- Alzheimer activity. Further in-vitro and in-vivo investigations are warranted to explore and confirm their therapeutic potential.
Collapse
Affiliation(s)
- Prema Vediappan
- Department of Pharmaceutical Chemistry, K. K. College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| | - Meena Arumugam
- Department of Pharmaceutical Chemistry, K. K. College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| | - Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C. L. Baid Metha College of Pharmacy, The Tamil Nadu Dr. MGR Medical University, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Tan B, Kartal Y, Yesilyurt F, Akdoğan N, Doyduk D, Dişli A. Synthesis of new phenothiazine derivatives: Molecular docking, assessment of cytotoxic activity and oxidant-antioxidant properties on PCS-201-012, HT-29, and SH-SY5Y cell lines. Arch Pharm (Weinheim) 2024; 357:e2400281. [PMID: 39058899 DOI: 10.1002/ardp.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Phenothiazine (PTZ) derivatives have been acknowledged as versatile compounds with significant implications across various areas of medicine, particularly, in cancer research. The cytotoxic effects of synthesized compounds on both normal and cancerous cells, along with their oxidant-antioxidant properties, are pivotal factors in cancer treatment strategies. In the current study, eight new PTZ derivatives were synthesized and the compounds' cytotoxic activities were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay while the oxidant-antioxidant properties were evaluated by oxidative stress index (OSI) calculation in SH-SY5Y (a human neuroblastoma cell line), HT-29 (a human colorectal adenocarcinoma cell line), and PCS-201-012 (a human primary dermal fibroblast cell line) cells. Consequently, the half-maximal inhibitory concentration (IC50) values of compound 3a were determined to be 218.72, 202.85, and 227.86 μM while the IC50 values of compound 3b were defined to be 227.42, 199.27, and 250.11 μM in PCS-201-012, HT-29, and SH-SY5Y cells, respectively. Additionally, it was determined that the synthesized compounds demonstrated the lowest OSI in PCS-201-012 cells as compared to the other cell lines.
Collapse
Affiliation(s)
- Bensu Tan
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Yasemin Kartal
- Department of Physiology, Faculty of Medicine, Kırklareli University, Kırklareli, Türkiye
| | - Fatma Yesilyurt
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Türkiye
| | - Nurdan Akdoğan
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Doğukan Doyduk
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Ali Dişli
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| |
Collapse
|
7
|
Yu Q, Cai Q, Liang W, Zhong K, Liu J, Li H, Chen Y, Li H, Fang S, Zhong R, Liu S, Lin S. Design of phenothiazine-based cationic amphiphilic derivatives incorporating arginine residues: Potential membrane-active broad-spectrum antimicrobials combating pathogenic bacteria in vitro and in vivo. Eur J Med Chem 2023; 260:115733. [PMID: 37643545 DOI: 10.1016/j.ejmech.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Multidrug-resistant bacteria infections pose an increasingly serious threat to human health, and the development of antimicrobials is far from meeting the clinical demand. It is urgent to discover and develop novel antibiotics to combat bacterial resistance. Currently, the development of membrane active antimicrobial agents is an attractive strategy to cope with antimicrobial resistance issues. In this study, the synthesis and biological evaluation of cationic amphiphilic phenothiazine-based derivatives were reported. Among them, the most promising compound 30 bearing a n-heptyl group and two arginine residues displayed potent bactericidal activity against both Gram-positive (MICs = 1.56 μg/mL) and Gram-negative bacteria (MICs = 3.125-6.25 μg/mL). Compound 30 showed low hemolysis activity (HC50 = 281.4 ± 1.6 μg/mL) and low cytotoxicity (CC50 > 50 μg/mL) toward mammalian cells, as well as excellent salt resistance. Compound 30 rapidly killed bacteria by acting on the bacterial cell membrane and appeared less prone to resistance. Importantly, compound 30 showed potent in vivo efficacy in a murine model of bacterial keratitis. Hence, the results suggested compound 30 has a promising prospect as a broad-spectrum antibacterial agent for the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Qian Yu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiongna Cai
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wanxin Liang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Kewen Zhong
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiayong Liu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haizhou Li
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongzhi Chen
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hongxia Li
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanfang Fang
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rongcui Zhong
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shouping Liu
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Shuimu Lin
- The Fifth Affiliated Hospital & Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
8
|
Kumar A, Vigato C, Boschi D, Lolli ML, Kumar D. Phenothiazines as anti-cancer agents: SAR overview and synthetic strategies. Eur J Med Chem 2023; 254:115337. [PMID: 37060756 DOI: 10.1016/j.ejmech.2023.115337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
Cancer is a leading cause of death worldwide and there are still limited options for cure. Chemotherapy is the most significant treatment for cancer which increased survival rates, despite this, it is associated with numerous side effects, as well as cancer relapsing due to drug resistance insurgence; consequently, it is still a challenging task to develop new potent and less toxic anti-cancer agents for patients' care. Phenothiazine moiety, which leads a class of well-known antipsychotic drugs, possesses a wide range of biological activities and has been also introduced in cancer chemotherapy. This review aims in disclosing the use of phenothiazines during the last five years for the development of different anti-cancer drug candidates. The design and the synthetic strategies adopted, the SAR investigations and the role of reviewed phenothiazine derivatives as anti-cancer agents and multi-drug resistance (MDR) reversals are here fully described and discussed.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Chiara Vigato
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy
| | - Marco Lucio Lolli
- Department of Science and Drug Technology, University of Torino, via Pietro Giuria 9, 10125, Torino, Italy.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
9
|
Cibotaru S, Sandu AI, Nicolescu A, Marin L. Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure–Activity Relationship. Int J Mol Sci 2023; 24:ijms24065449. [PMID: 36982524 PMCID: PMC10049495 DOI: 10.3390/ijms24065449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The paper aims to investigate the antitumor activity of a series of phenothiazine derivatives in order to establish a structure–antitumor activity relationship. To this end, PEGylated and TEGylated phenothiazine have been functionalized with formyl units and further with sulfonamide units via dynamic imine bonds. Their antitumor activity was monitored in vitro against seven human tumors cell lines and a mouse one compared to a human normal cell line by MTS assay. In order to find the potential influence of different building blocks on antitumor activity, the antioxidant activity, the ability to inhibit farnesyltransferase and the capacity to bind amino acids relevant for tumor cell growth were investigated as well. It was established that different building blocks conferred different functionalities, inducing specific antitumor activity against the tumor cells.
Collapse
|
10
|
Chen S, Li Z, Hu K, Feng W, Mao G, Xiao F, Deng GJ. Three-component selective synthesis of phenothiazines and bis-phenothiazines under metal-free conditions. Org Biomol Chem 2023; 21:1920-1926. [PMID: 36752306 DOI: 10.1039/d3ob00055a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An iodine-containing reagent promoted three-component method for the selective synthesis of phenothiazines and bis-phenothiazines has been developed. The present protocol starts from simple and easily available cyclohexanones, elemental sulfur, and inorganic ammonium salts, selectively producing phenothiazines and bis-phenothiazines in satisfactory yields under aerobic conditions. This method has the advantages of simple and readily available starting materials and metal-free conditions, affording a facile and practical approach for the preparation of phenothiazines and bis-phenothiazines.
Collapse
Affiliation(s)
- Shanping Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Zhuoqin Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Kai Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Wei Feng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, 453007, P. R. China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.
| |
Collapse
|
11
|
Shi H, Xiong L, Zhu C, Wang J, Li Y, Luo Y, Wang T, Zhang C. Design, synthesis, and biological evaluation of novel NO-releasing 4-chromanone derivatives as potential vasodilator agents. Chem Biol Drug Des 2023; 101:408-421. [PMID: 36054155 DOI: 10.1111/cbdd.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
The nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signaling pathway is an effective mechanism involved in the treatment of hypertension. In our search for potential antihypertensive agents, a series of novel NO-donor derivatives of the 4-chromanone skeleton were designed and synthesized by coupling furoxans or nitrooxy NO-donor moieties. All derivatives showed enhanced nitric oxide releasing capacity and vasodilator activity with EC50 values ranging from 0.0215 μM to 1.46 μM, obviously superior to those of precursor 3. These biological evaluations indicated that all compounds displayed an important vasorelaxant effect, and several compounds (9c, 14b, 14c, 14d) presented good vasodilator activity, with 14c being the best. Furthermore, molecular modeling studies revealed that compound 14c occupied the pocket well with the phosphodiesterase 5 domain in a favorable conformation. In conclusion, we observed that these novel compounds can act as structural templates for the design and subsequent development of new vasodilators and antihypertensive drugs.
Collapse
Affiliation(s)
- Hao Shi
- Department of Chemistry, College of Science, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, China
| | - Chenchen Zhu
- School of Medicine, Shanghai University, Shanghai, China
| | - Jing Wang
- Department of Pharmacy, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Yunchun Luo
- School of Medicine, Shanghai University, Shanghai, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, China
| | - Chuan Zhang
- Department of Chemistry, College of Science, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
12
|
Dodds AC, Puddu S, Sutherland A. Thioarylation of anilines using dual catalysis: two-step synthesis of phenothiazines. Org Biomol Chem 2022; 20:5602-5614. [PMID: 35796590 DOI: 10.1039/d2ob01082h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step synthesis of phenothiazines has been developed using a dual-catalytic ortho-thioarylation reaction of anilines as the key step. Activation of N-(2-bromophenylthio)succinimide was achieved using the super Lewis acid, iron(III) triflimide and the Lewis base, diphenyl selenide, resulting in an accelerated and efficient ortho-thioarylation reaction of various protected aniline derivatives and less reactive, unprotected analogues. The thioarylated adducts were then cyclised to the desired phenothiazines using either an Ullmann-Goldberg or Buchwald-Hartwig coupling reaction. The dual catalytic thioarylation and copper(I)-catalysed cyclisation approach was used for the four-step synthesis of methopromazine, a neuroleptic agent with antipsychotic activity.
Collapse
Affiliation(s)
- Amy C Dodds
- School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Sabrina Puddu
- School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Andrew Sutherland
- School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
13
|
Towards Asymmetrical Methylene Blue Analogues: Synthesis and Reactivity of 3-N′-Arylaminophenothiazines. Molecules 2022; 27:molecules27093024. [PMID: 35566375 PMCID: PMC9103869 DOI: 10.3390/molecules27093024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The search for new ways to obtain analogues of the well-known Methylene Blue dye is an important synthetic task. Herein, we proposed and developed an approach to the synthesis of 3-N′-arylaminophenothiazines and asymmetrical 3,7-di(N′-arylamino)phenothiazines. This approach included the optimization of synthetic strategy by quantification analysis of the positive charge distribution in the cation of 3-N′-arylaminophenothiazine derivative. The obtained experimental data are confirmed by DFT studies. Two synthetic routes for asymmetrical phenothiazine diarylamino derivatives were suggested and verified. The developed convenient and versatile synthetic approach makes it easy to obtain aromatic Methylene Blue isostructural analogues with various substituents. As a result, a series of novel 3-N′-arylaminophenothiazines and asymmetrical 3,7-di(N′-arylamino)phenothiazines containing ester, tert-butoxycarbonyl, sulfonic acid, hydroxyl and amine groups were obtained in high yields.
Collapse
|
14
|
Lin WZ, Liu YC, Lee MC, Tang CT, Wu GJ, Chang YT, Chu CM, Shiau CY. From GWAS to drug screening: repurposing antipsychotics for glioblastoma. J Transl Med 2022; 20:70. [PMID: 35120529 PMCID: PMC8815269 DOI: 10.1186/s12967-021-03209-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma is currently an incurable cancer. Genome-wide association studies have demonstrated that 41 genetic variants are associated with glioblastoma and may provide an option for drug development. METHODS We investigated FDA-approved antipsychotics for their potential treatment of glioblastoma based on genome-wide association studies data using a 'pathway/gene-set analysis' approach. RESULTS The in-silico screening led to the discovery of 12 candidate drugs. DepMap portal revealed that 42 glioma cell lines show higher sensitivities to 12 candidate drugs than to Temozolomide, the current standard treatment for glioblastoma. CONCLUSION In particular, cell lines showed significantly higher sensitivities to Norcyclobenzaprine and Protriptyline which were predicted to bind targets to disrupt a certain molecular function such as DNA repair, response to hormones, or DNA-templated transcription, and may lead to an effect on survival-related pathways including cell cycle arrest, response to ER stress, glucose transport, and regulation of autophagy. However, it is recommended that their mechanism of action and efficacy are further determined.
Collapse
Affiliation(s)
- Wei-Zhi Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Yen-Chun Liu
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Meng-Chang Lee
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chi-Tun Tang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11490 Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, No. 325, Sec. 2, Chenggong Rd., Neihu District, Taipei, 11490 Taiwan
| | - Yu-Tien Chang
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chi-Ming Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
- School of Public Health, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| | - Chia-Yang Shiau
- Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
- Fidelity Regulation Therapeutics Inc., 161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490 Taiwan
| |
Collapse
|
15
|
Sharma P, Singh N, Sharma S. ATP binding cassette transporters and cancer: revisiting their controversial role. Pharmacogenomics 2021; 22:1211-1235. [PMID: 34783261 DOI: 10.2217/pgs-2021-0116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The expression of ATP-binding cassette transporter (ABC transporters) has been reported in various tissues such as the lung, liver, kidney, brain and intestine. These proteins account for the efflux of different compounds and metabolites across the membrane, thus decreasing the concentration of the toxic compounds. ABC transporter genes play a vital role in the development of multidrug resistance, which is the main obstacle that hinders the success of chemotherapy. Preclinical and clinical trials have investigated the probability of overcoming drug-associated resistance and substantial toxicities. The focus has been put on several strategies to overcome multidrug resistance. These strategies include the development of modulators that can modulate ABC transporters. This knowledge can be translated for clinical oncology treatment in the future.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary medicine, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
16
|
Wang Y, Lv Z, Chen F, Wang X, Gou S. Conjugates Derived from Lapatinib Derivatives with Cancer Cell Stemness Inhibitors Effectively Reversed Drug Resistance in Triple-Negative Breast Cancer. J Med Chem 2021; 64:12877-12892. [PMID: 34435487 DOI: 10.1021/acs.jmedchem.1c01013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increasing evidence indicates that the cancer stem cell (CSC) subpopulation contributes to the therapeutic resistance and metastasis of tumors, leading to patient recurrence and death. Herein, we designed and synthesized several compounds by conjugating lapatinib derivatives with different CSC inhibitors to treat with lapatinib-induced MDA-MB-231 drug-resistant cells. In vitro biological studies indicated that 3a showed strong cytotoxicity and EGFR enzyme inhibitory activity and effectively reversed lapatinib-mediated resistance of MDA-MB-231 cells via inhibiting triple-negative breast cancer (TNBC) cell stemness and the AKT/ERK signaling pathway. In addition, 3a was capable of strongly suppressing the invasion and migration of TNBC cells by inhibiting the Wnt/β-catenin signaling pathway and MMP-2 and MMP-9 protein expression. In vivo tumorigenicity tests showed that 3a could inhibit the occurrence of TNBC by inhibiting BCSCs, proving 3a is a potential EGFR and CSC dual inhibitor for TNBC treatment.
Collapse
Affiliation(s)
- Yuanjiang Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhaodan Lv
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Feihong Chen
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Xing Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, People's Republic of China.,Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
17
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
18
|
Rui X, Wang C, Si D, Hui X, Li K, Wen H, Li W, Liu J. One-Pot Tandem Access to Phenothiazine Derivatives from Acetanilide and 2-Bromothiophenol via Rhodium-Catalyzed C-H Thiolation and Copper-Catalyzed C-N Amination. J Org Chem 2021; 86:6622-6632. [PMID: 33881319 DOI: 10.1021/acs.joc.1c00403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot and step economic reaction involving Rh(III)-catalyzed C-H thiolation and relay Cu(II)-catalyzed C-N amination of acetanilide and 2-bromothiophenol is reported here, with several valuable phenothiazine products obtained. This synthesis protocol proceeds from easily starting materials, demonstrating high atom economy, broad substrate scope, and good yield. Furthermore, the directing group can be easily eliminated, and chlorpromazine is provided in a large scale; thus this synthesis protocol could be utilized to construct phenothiazine scaffolds.
Collapse
Affiliation(s)
- Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuechao Hui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Keting Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
19
|
Hu X, Gao X, Gao G, Wang Y, Cao H, Li D, Hua H. Discovery of β-carboline-(phenylsulfonyl)furoxan hybrids as potential anti-breast cancer agents. Bioorg Med Chem Lett 2021; 40:127952. [DOI: 10.1016/j.bmcl.2021.127952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022]
|
20
|
Morak-Młodawska B, Jeleń M, Pluta K. Phenothiazines Modified with the Pyridine Ring as Promising Anticancer Agents. Life (Basel) 2021; 11:206. [PMID: 33807874 PMCID: PMC8001302 DOI: 10.3390/life11030206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022] Open
Abstract
Azaphenothiazines are the largest and most perspective group of modified phenothiazines, and they exhibit variety of biological activities. The review sums up the current knowledge on the anticancer activity of isomeric pyridobenzothiazines and dipyridothiazines, which are modified azaphenothiazines with one and two pyridine rings, respectively, against 10 types of cancer cell lines. Some 10-substituted dipyridothiazines and even 10-unsubstituted parent compounds, such as 10H-1,9-diazaphenothiazine and 10H-3,6-diazaphenothiazine, exhibited very potent action with the IC50 values less than 1 µg/mL and 1 µM against selected cancer cell lines. The strength of the anticancer action depends both on the tricyclic ring scaffolds and the substituents at the thiazine nitrogen atom. The review discusses the kind of the substituents, nature of tricyclic ring scaffolds with the location of the azine nitrogen atoms, the types of the cancer cell lines, and the mechanism of action.
Collapse
Affiliation(s)
- Beata Morak-Młodawska
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences, The Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.J.); (K.P.)
| | | | | |
Collapse
|
21
|
Zhang Y, Yang J, Meng T, Qin Y, Li T, Fu J, Yin J. Nitric oxide-donating and reactive oxygen species-responsive prochelators based on 8-hydroxyquinoline as anticancer agents. Eur J Med Chem 2021; 212:113153. [PMID: 33453603 DOI: 10.1016/j.ejmech.2021.113153] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/13/2022]
Abstract
Metal ion chelators based on 8-hydroxyquinoline (8-HQ) have been widely explored for the treatment of many diseases. When aimed at being developed into potent anticancer agent, a largely unmet issue is how to avoid nonspecific chelation of metal ions by 8-HQ in normal cells or tissues. In the current work, a two-step strategy was employed to both enhance the anticancer activity of 8-HQ and improve its cancer cell specificity. Considering the well-known anticancer activity of nitric oxide (NO), NO donor furoxan was first connected to 8-HQ to construct HQ-NO conjugates. These conjugates were screened for their cytotoxicity, metal-binding ability, and NO-releasing efficiency. Selected conjugates were further modified with a ROS-responsive moiety to afford prochelators. Among all the target compounds, prodrug HQ-NO-11 was found to potently inhibit the proliferation of many cancer cells but not normal cells. The abilities of metal chelation and NO generation by HQ-NO-11 were confirmed by various methods and were demonstrated to be essential for the anticancer activity of HQ-NO-11. In vivo studies revealed that HQ-NO-11 inhibited the growth of SW1990 xenograft to a larger extent than 8-HQ. Our results showcase a general method for designing novel 8-HQ derivatives and shed light on obtaining more controllable metal chelators.
Collapse
Affiliation(s)
- Yuxia Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Jiaxin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Tingting Meng
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
22
|
Lai JI, Tseng YJ, Chen MH, Huang CYF, Chang PMH. Clinical Perspective of FDA Approved Drugs With P-Glycoprotein Inhibition Activities for Potential Cancer Therapeutics. Front Oncol 2020; 10:561936. [PMID: 33312947 PMCID: PMC7704056 DOI: 10.3389/fonc.2020.561936] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/01/2020] [Indexed: 01/16/2023] Open
Abstract
P-glycoprotein (also known as multidrug resistance protein 1 (MDR1) or ATP-binding cassette sub-family B member 1 (ABCB1) plays a crucial role in determining response against medications, including cancer therapeutics. It is now well established that p-glycoprotein acts as an ATP dependent pump that pumps out small molecules from cells. Ample evidence exist that show p-glycoprotein expression levels correlate with drug efficacy, which suggests the rationale for developing p-glycoprotein inhibitors for treatment against cancer. Preclinical and clinical studies have investigated this possibility, but mostly were limited by substantial toxicities. Repurposing FDA-approved drugs that have p-glycoprotein inhibition activities is therefore a potential alternative approach. In this review, we searched the Drugbank Database (https://www.drugbank.ca/drugs) and identified 98 FDA-approved small molecules that possess p-glycoprotein inhibition properties. Focusing on the small molecules approved with indications against non-cancer diseases, we query the scientific literature for studies that specifically investigate these therapeutics as cancer treatment. In light of this analysis, potential development opportunities will then be thoroughly investigated for future efforts in repositioning of non-cancer p-glycoprotein inhibitors in single use or in combination therapy for clinical oncology treatment.
Collapse
Affiliation(s)
- Jiun-I Lai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Jhen Tseng
- Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Al Zahrani NA, El-Shishtawy RM, Elaasser MM, Asiri AM. Synthesis of Novel Chalcone-Based Phenothiazine Derivatives as Antioxidant and Anticancer Agents. Molecules 2020; 25:molecules25194566. [PMID: 33036301 PMCID: PMC7583060 DOI: 10.3390/molecules25194566] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Based on reported results for the potential medicinal impact of phenothiazine core, as well as the chalcone skeleton that is widely present in many natural products, together with their reported bioactivities, the present work was aimed at combining both moieties in one molecular skeleton and to synthesize and characterize a novel series of chalone-based phenothiazine derivatives. For this purpose, 2-acetylphenothiazine was N-alkylated, followed by the Claisen-Schmidt reaction to produce the chalcones with good yield. Antioxidant activity, as evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, was assessed to determine if their antioxidant potential was comparable with ascorbic acid, and attributable to the phenothiazine core. Screening anticancer activities of the synthesized chalone-based phenothiazine derivatives against human breast cancer cell line MCF-7 cells, and human hepatocellular carcinoma HepG-2 cells, compared with standard drugs cisplatin and doxorubicin, was evaluated. The results revealed that compounds 4a, 4b, 4d, 4h, 4j, 4k, 4m, 4o, and 4p were good against human hepatocellular carcinoma HepG-2 cells, and among these compounds 4b and 4k were the most effective compounds, with IC50 values of 7.14 μg/mL and 7.6 1 μg/mL, respectively. On the other hand, compounds 4a, 4b, 4k, and 4m were good against human breast cancer cell line MCF-7 cells and, among these compounds, 4k and 4b were the most effective compounds, with IC50 values of 12 μg/mL and 13. 8 μg/mL, respectively. The overall results suggest that these compounds could, potentially, be further modified for the formation of more potent antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Nourah A. Al Zahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Dyeing, Printing and Textile Auxiliaries Department, Textile Research Division, National Research Centre, Dokki, Cairo 12611, Egypt
- Correspondence:
| | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11759, Egypt;
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.Z.); (A.M.A.)
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Zhang B, Zhu WY, Tian H, Zhang HR. Alpinumisoflavone triggers GSDME-dependent pyroptosis in esophageal squamous cell carcinomas. Anat Rec (Hoboken) 2020; 304:323-332. [PMID: 32396690 DOI: 10.1002/ar.24414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/19/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) presents a common human malignancy in the digestive system. We aimed to explore the critical effects of alpinumisoflavone (AIF) on ESCC in vitro and in vivo. The cell counting kit-8 assay was used to determine cell viability. Colony formation assay was employed to examine the effect of AIF on the long-term growth of ESCC cells. Cell apoptosis was determined by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Cell morphologies were observed by light microscopy. The enzyme-linked immunosorbent assay was performed to examine the lactate dehydrogenase release from AIF-treated cells. Immunofluorescent labeling was utilized to examine AIF-induced GSDME expression. Western blot was employed to determine the expression levels of the associated proteins. Immunohistochemistry was performed to determine the localization and expression of the associated proteins in mice tumor tissues. AIF inhibited ESCC cell viability and suppressed cell growth in a dose- and time-dependent fashion. Results showed that AIF promoted apoptosis in ESCC cells. Meanwhile, our results also showed that AIF triggered pyroptotic cell death in ESCC, which was mediated by gasdermin E (GSDME) cleavage. In addition, our experiments provided experimental evidence that AIF-induced GSDME cleavage was dependent on caspase-3 activation. Moreover, the inhibition of GSDSE by knockdown was able to switch the form of cell death from pyroptosis to apoptosis. Furthermore, the results from the xenograft animal model also supported our findings in vitro that AIF was able to promote GSDME-mediated pyroptotic cell death in ESCC. AIF inhibited ESCC growth in vitro and in vivo by triggering GSDME-mediated pyroptotic cell death, which is dependent on caspase-3 activation.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wen-Yong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China.,Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huan-Rong Zhang
- Department of Thoracic Surgery, Meizhou People's Hospital, Meizhou, China
| |
Collapse
|