1
|
Hou Y, Li S, Ren L, Zhang L, Zhang N, Miao R, Huang Q, Li Z, Hu C, Xi Z, Tong M, Gong P, Zhao Y, Liu Y, Liu J. Discovery of novel dihydropteridone derivatives as orally bioavailable PLK1 inhibitors with reduced hERG inhibitory activity for acute myeloid leukemia treatment. Eur J Med Chem 2025; 289:117480. [PMID: 40068407 DOI: 10.1016/j.ejmech.2025.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/23/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Polo like kinase 1 (PLK1) is a serine/threonine kinase that plays an important role in multiple phases of the cell cycle, inhibiting its activity has been considered an effective treatment for acute myeloid leukemia (AML). Here, we reported a series of highly potent PLK1 inhibitors. Among them, compound WD6 was identified as the most promising PLK1 inhibitor, with an IC50 value of 0.27 nM and greatly reduced hERG affinity, with 12.78 % inhibition at 10 μM. Compound WD6 displayed significant anti-proliferative activities against MV4-11 (IC50 = 23.3 nM), excellent pharmacokinetic properties (t1/2 = 7.59 h, AUC0-t = 29300 ng h mL-1 and F = 35.1 %), good PPB and low risk of drug-drug interactions. In vivo, oral administration of compound WD6 at a dose of 20 mg/kg effectively suppressed the tumor growth in the MV4-11 xenograft mouse model. Further research indicated that WD6 exhibited excellent kinase selectivity, arresting MV4-11 cells at G2 phase, inducing apoptosis in a dose-dependent manner and down-regulating the transcription of the proliferation-related oncogene c-MYC. These results showed that compound WD6 has the potential to be a promising drug candidate for treating AML.
Collapse
MESH Headings
- Polo-Like Kinase 1
- Humans
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Animals
- Cell Proliferation/drug effects
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Structure-Activity Relationship
- Administration, Oral
- Mice
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Molecular Structure
- Drug Discovery
- Pteridines/pharmacology
- Pteridines/chemistry
- Pteridines/chemical synthesis
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Apoptosis/drug effects
- ERG1 Potassium Channel/antagonists & inhibitors
- ERG1 Potassium Channel/metabolism
- Cell Line, Tumor
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/metabolism
- Mice, Nude
- Male
- Biological Availability
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| | - Shuang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Le Ren
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Long Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Na Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Ruifeng Miao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Qi Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Zhiwei Li
- School of Medicine and Health, Yancheng polytechnic college, 285 Jiefang South Road, Yancheng, Jiangsu, 224005, China
| | - Changliang Hu
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Zhiguo Xi
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Minghui Tong
- 3D BioOptima, 1338 Wuzhong Avenue, Suzhou, 215104, China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China
| | - Yajing Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, Liaoning, 110016, China.
| | - Jiuyu Liu
- Department of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technolgy, Benxi, 117004, China.
| |
Collapse
|
2
|
Tsuji K, Tamamura H, Burke TR. Fine-tuning probes for fluorescence polarization binding assays of bivalent ligands against polo-like kinase 1 using full-length protein. Bioorg Med Chem 2025; 119:118055. [PMID: 39764864 DOI: 10.1016/j.bmc.2024.118055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 02/16/2025]
Abstract
Polo-like kinase 1 (Plk1) is an important cell cycle regulator that is a recognized target for development of anti-cancer therapeutics. Plk1 is composed of a catalytic kinase domain (KD), a flexible interdomain linker and a polo-box domain (PBD). Intramolecular protein-protein interactions (PPIs) between the PBD and KD result in "auto-inhibition" that is an essential component of proper Plk1 function. Recently, we developed high-affinity PBD-binding inhibitors using a bivalent approach. These ligands contain the low-nanomolar affinity Plk1 KD-binding inhibitors BI2536 or Wortmannin tethered to the PBD-binding peptide, PLH*SpT (H* represents a -(CH2)8Ph group on the histidine side chain π-nitrogen). Due to the extremely high affinity of these bivalent inhibitors, to avoid bottoming out in competitive binding assays, it was necessary to use PLH*SpT in the affinity probe. As reported herein, we have developed fluorescence polarization assays using a new fluorescent probe based on the Plk1 PBD-binding peptide, FDPPLHSpTA. We applied the assay to evaluate the affinities of bivalent inhibitors that possess a variety of PBD-binding peptides having much lower PBD-affinities than PLH*SpT. Tethering BI2536 in these bivalent inhibitors resulted in significant affinity enhancements as compared to the parent monovalent peptides.
Collapse
Affiliation(s)
- Kohei Tsuji
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan; Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA.
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA
| |
Collapse
|
3
|
Nie J, Sun X, He Y, Zhu M, Zhang X, Wang Q, Liu Z, Xie Z, Li Z, Liao C. Structure-Based Discovery of a Highly Selective, Oral Polo-Like Kinase 1 Inhibitor with Potent Antileukemic Activity. J Med Chem 2025; 68:4477-4497. [PMID: 39965158 DOI: 10.1021/acs.jmedchem.4c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Polo-like kinase 1 (PLK1) plays pivotal roles in cell division and cancer pathogenesis, making it a highly coveted therapeutic target for anticancer strategies. This article reports a series of PLK1 inhibitors developed using a structure-based strategy, culminating in the discovery of compound B31, a novel isoform-specific PLK1 inhibitor with excellent kinome selectivity. In vitro, this compound exhibited superior anticancer potency across a broad spectrum of cell lines, particularly against K562, achieving a remarkable IC50 value of 0.08 nM. In a mouse model harboring subcutaneous K562 tumors, oral administration of B31 at dosages of 10 or 20 mg/kg twice weekly exhibited remarkable antileukemic activity. B31 had minimal impact on HEK293T cells and very weak inhibitory activity against the hERG channel. Furthermore, in the acute toxicity test, this compound demonstrated an extraordinary safety profile even at a dosage of 500 mg/kg, highlighting its potential as a novel antileukemic agent.
Collapse
Affiliation(s)
- Jianyu Nie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaojiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan He
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mingxin Zhu
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinglong Zhang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Bian S, Zhang R, Nie J, Zhu M, Xie Z, Liao C, Wang Q. Progress with polo-like kinase (PLK) inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2024; 34:789-806. [PMID: 38994687 DOI: 10.1080/13543776.2024.2379924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Polo-like kinases (PLKs) have five isoforms, all of which play crucial roles in cell cycle and cell proliferation, offering opportunities for drug design and treatment of cancers and other related diseases. Notably, PLK1 and PLK4 have been extensively investigated as cancer drug targets. One distinctive feature of PLKs is the presence of a unique polo-box domain (PBD), which regulates kinase activity and subcellular localization. This provides possibilities for specifically targeting PLKs. AREA COVERED This article provides an overview of the roles of PLKs in various cancers and related diseases, as well as the drug development involving PLKs, with a particular focus on PLK1 and PLK4. It summarizes the PLK1 and PLK4 inhibitors that have been disclosed in patents or literature (from 2018 - present), which were sourced from SciFinder and WIPO database. EXPERT OPINION After two decades of drug development on PLKs, several drugs progressed into clinical trials for the treatment of many cancers; however, none of them has been approved yet. Further elucidating the mechanisms of PLKs and identifying and developing highly selective ATP-competitive inhibitors, highly potent drug-like PBD inhibitors, degraders, etc. may provide new opportunities for cancer therapy and the treatment for several nononcologic diseases. PLKs inhibition-based combination therapies can be another helpful strategy.
Collapse
Affiliation(s)
- Shirong Bian
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Ru Zhang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jianyu Nie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Mingxing Zhu
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Tsuji K, Tamamura H, Burke TR. Application of a Fluorescence Recovery-Based Polo-Like Kinase 1 Binding Assay to Polo-Like Kinase 2 and Polo-Like Kinase 3. Biol Pharm Bull 2024; 47:1282-1287. [PMID: 38987177 DOI: 10.1248/bpb.b24-00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
6
|
Design, synthesis, and biological evaluation of novel dihydropteridone derivatives possessing oxadiazoles moiety as potent inhibitors of PLK1. Eur J Med Chem 2023; 251:115242. [PMID: 36889251 DOI: 10.1016/j.ejmech.2023.115242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Polo like kinase 1 (PLK1) is a serine/threonine kinase that is widely distributed in eukaryotic cells and plays an important role in multiple phases of the cell cycle. Its importance in tumorigenesis has been increasingly recognized in recent years. Herein, we describe the optimization of a series of novel dihydropteridone derivatives (13a-13v and 21g-21l) possessing oxadiazoles moiety as potent inhibitors of PLK1. Compound 21g exhibited improved PLK1 inhibitory capability with an IC50 value of 0.45 nM and significant anti-proliferative activities against four tumor-derived cell lines (MCF-7 IC50 = 8.64 nM, HCT-116 IC50 = 26.0 nM, MDA-MB-231 IC50 = 14.8 nM and MV4-11 IC50 = 47.4 nM) with better pharmacokinetic characteristics than BI2536 in mice (AUC0-t = 11 227 ng h mL-1vs 556 ng h mL-1). Moreover, 21g exhibited moderate liver microsomal stability and excellent pharmacokinetic profile (AUC0-t = 11227 ng h mL-1, oral bioavailability of 77.4%) in Balb/c mice, acceptable PPB, improved PLK1 inhibitory selectivity, and no apparent toxicity was observed in the acute toxicity assay (20 mg/kg). Further investigation showed that 21 g could arrest HCT-116 cells in G2 phase and induce apoptosis in a dose-dependent manner. These results indicate that 21g is a promising PLK1 inhibitor.
Collapse
|
7
|
Sharma S, Sindhu J, Kumar P. QSAR study of tetrahydropteridin derivatives as polo-like kinase 1(PLK1) Inhibitors with molecular docking and dynamics study. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:91-116. [PMID: 36744430 DOI: 10.1080/1062936x.2023.2167860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
PLK1 is the key target for dealing with different cancer because it plays an important role in cell proliferation. According to the regulation of OECD, a QSAR model was developed from a dataset of 68 tetrahydropteridin derivatives. Three descriptors (maxHaaCH, ATSC7i, AATS7m) were considered for the development of the QSAR model. The reliability and predictability of the developed QSAR model were evaluated by various statistical parameters (r2 = 0.8213, r2ext = 0.8771 and CCCext = 0.9364). The maxHaaCH descriptor is positively correlated to pIC50 whereas, the ATSC7i and AATS7m are negatively correlated with pIC50. The QSAR model explains all the structural features and shows a good correlation with the activity. Based on molecular modelling techniques, five compounds (D1-D5) were designed. Molecular docking and dynamics studies of the most active compound were performed with PDB ID: 2RKU. The results of the present investigation may be employed to identify and develop effective inhibitors for the treatment of PLK1-related pathophysiological disorders.
Collapse
Affiliation(s)
- S Sharma
- Department of Chemistry, School of Applied Sciences, Om Sterling Global University, Hisar, India
| | - J Sindhu
- Department of Chemistry, COBS&H, CCS HAU, Hisar, India
| | - P Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
8
|
Zhang J, Zhang L, Wang J, Ouyang L, Wang Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J Med Chem 2022; 65:10133-10160. [PMID: 35878418 DOI: 10.1021/acs.jmedchem.2c00614] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polo-like kinase 1 (PLK1) plays an important role in a variety of cellular functions, including the regulation of mitosis, DNA replication, autophagy, and the epithelial-mesenchymal transition (EMT). PLK1 overexpression is often associated with cell proliferation and poor prognosis in cancer patients, making it a promising antitumor target. To date, at least 10 PLK1 inhibitors (PLK1i) have been entered into clinical trials, among which the typical kinase domain (KD) inhibitor BI 6727 (volasertib) was granted "breakthrough therapy designation" by the FDA in 2013. Unfortunately, many other KD inhibitors showed poor specificity, resulting in dose-limiting toxicity, which has greatly impeded their development. Researchers recently discovered many PLK1i with higher selectivity, stronger potency, and better absorption, distribution, metabolism, and elimination (ADME) characteristics. In this review, we emphasize the structure-activity relationships (SARs) of PLK1i, providing insights into new drugs targeting PLK1 for antitumor clinical practice.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
9
|
Tong JB, Luo D, Bian S, Zhang X. Structural investigation of tetrahydropteridin analogues as selective PLK1 inhibitors for treating cancer through combined QSAR techniques, molecular docking, and molecular dynamics simulations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Zhang Z, Xing X, Guan P, Song S, You G, Xia C, Liu T. Recent progress in agents targeting polo-like kinases: Promising therapeutic strategies. Eur J Med Chem 2021; 217:113314. [PMID: 33765606 DOI: 10.1016/j.ejmech.2021.113314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Polo-like kinases (PLKs) play important roles in regulating multiple aspects of cell cycle and cell proliferation. In many cancer types, PLK family members are often dysregulated, which can lead to uncontrolled cell proliferation and aberrant cell division and has been shown to associate with poor prognosis of cancers. The key roles of PLK kinases in cancers lead to an enhanced interest in them as promising targets for anticancer drug development. In consideration of PLK inhibitors and some other anticancer agents, such as BRD4, EEF2K and Aurora inhibitors, exert synergy effects in cancer cells, dual-targeting of PLK and other cancer-related targets is regarded as an rational and potent strategy to enhance the effectiveness of single-targeting therapy for cancer treatment. This review introduces the PLK family members at first and then focuses on the recent advances of single-target PLK inhibitors and summarizes the corresponding SARs of them. Moreover, we discuss the synergisms between PLK and other anti-tumor targets, and sum up the current dual-target agents based on them.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Xiaolan Xing
- Yangtze River Pharmaceutical Group Shanghai Haini Pharmaceutical Co., Ltd. Pudong, Shanghai, 201100, PR China
| | - Peng Guan
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Shubin Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Guirong You
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Chengcai Xia
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China.
| |
Collapse
|
11
|
Xie Z, Yang X, Duan Y, Han J, Liao C. Small-Molecule Kinase Inhibitors for the Treatment of Nononcologic Diseases. J Med Chem 2021; 64:1283-1345. [PMID: 33481605 DOI: 10.1021/acs.jmedchem.0c01511] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Great successes have been achieved in developing small-molecule kinase inhibitors as anticancer therapeutic agents. However, kinase deregulation plays essential roles not only in cancer but also in almost all major disease areas. Accumulating evidence has revealed that kinases are promising drug targets for different diseases, including cancer, autoimmune diseases, inflammatory diseases, cardiovascular diseases, central nervous system disorders, viral infections, and malaria. Indeed, the first small-molecule kinase inhibitor for treatment of a nononcologic disease was approved in 2011 by the U.S. FDA. To date, 10 such inhibitors have been approved, and more are in clinical trials for applications other than cancer. This Perspective discusses a number of kinases and their small-molecule inhibitors for the treatment of diseases in nononcologic therapeutic fields. The opportunities and challenges in developing such inhibitors are also highlighted.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
12
|
Liu T, Song S, Wang X, Hao J. Small-molecule inhibitors of breast cancer-related targets: Potential therapeutic agents for breast cancer. Eur J Med Chem 2021; 210:112954. [PMID: 33158576 DOI: 10.1016/j.ejmech.2020.112954] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Despite dramatic advances in cancer research and therapy, breast cancer remains a tricky health problem and represents a top biomedical research priority. Nowadays, breast cancer is still the leading cause of malignancy-related deaths in women, and incidence and mortality rates of it are expected to increase significantly the next years. Currently more and more researchers are interested in the study of breast cancer by its arising in young women. The common treatment options of breast cancer are chemotherapy, immunotherapy, hormone therapy, surgery, and radiotherapy. Most of them require chemical agents, such as PARP inhibitors, CDK4/6 inhibitors, and HER2 inhibitors. Recent studies suggest that some targets or pathways, including BRD4, PLK1, PD-L1, HDAC, and PI3K/AKT/mTOR, are tightly related to the occurrence and development of breast cancer. This article reviews the interplay between these targets and breast cancer and summarizes the progress of current research on small molecule inhibitors of these anti-breast cancer targets. The review aims to provide structural and theoretical basis for designing novel anti-breast cancer agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China.
| | - Shubin Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Xu Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jifu Hao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| |
Collapse
|
13
|
Li Q, Jian XE, Ma YF, Chen L, Huo XS, Wang Y, He RX, You WW, Zhao PL. Synthesis and antiproliferative evaluation of novel 8-cyclopentyl-7,8-dihydropteridin-6(5H)-one derivatives as potential anticancer agents. Bioorg Med Chem Lett 2021; 31:127684. [DOI: 10.1016/j.bmcl.2020.127684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 01/26/2023]
|
14
|
Affiliation(s)
- Xufeng Huang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhouling Xie
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chenzhong Liao
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
15
|
Tong J, Wang T, Feng Y. Drug design and molecular docking simulations of Polo-like kinase 1 inhibitors based on QSAR study. NEW J CHEM 2020. [DOI: 10.1039/d0nj04367b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Computationally exploring novel potential Polo-like kinase 1 inhibitors using a systematic modeling study.
Collapse
Affiliation(s)
- Jianbo Tong
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Key Laboratory of Chemical Additives for China National Light Industry
| | - Tianhao Wang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Key Laboratory of Chemical Additives for China National Light Industry
| | - Yi Feng
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Key Laboratory of Chemical Additives for China National Light Industry
| |
Collapse
|
16
|
Qi Y, Xu L, Li Z, Gong P, Hu T, Yin B, Qin M, Liu Y, Zhao Y, Hou Y. Design, synthesis and biological evaluation of novel pteridinone derivatives as potent dual inhibitors of PLK1 and BRD4. NEW J CHEM 2020. [DOI: 10.1039/d0nj03477k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To develop novel simultaneous inhibition of PLK1 and BRD4 bromodomain by a single molecule, three series of novel pteridinone derivatives were designed, synthesized and evaluated for their biological activity.
Collapse
Affiliation(s)
- Yinliang Qi
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Le Xu
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Zhiwei Li
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Ping Gong
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Tao Hu
- Yangtze River Pharmaceutical Group Co., Ltd
- Taizhou 225321
- P. R. China
| | - Bixi Yin
- Yangtze River Pharmaceutical Group Co., Ltd
- Taizhou 225321
- P. R. China
| | - Mingze Qin
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yajing Liu
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- China
| | - Yunlei Hou
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang
- China
- Yangtze River Pharmaceutical Group Co., Ltd
| |
Collapse
|