1
|
Maiga A, Teng LH, Jie ZH, Qing ZX, Min FZ, Wei LZ, Wu C. Design, synthesis and activity evaluation of dithiocarbamate-based L-homoserine lactone derivatives as Gram-negative bacteria quorum sensing inhibitors. Eur J Med Chem 2025; 293:117756. [PMID: 40373634 DOI: 10.1016/j.ejmech.2025.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important Gram-negative opportunistic pathogen that uses quorum sensing to regulate its virulence and biofilm development, which contributes to its pathogenicity and drug resistance. As a result, focusing on the virulence and pathogenicity of P. aeruginosa through quorum sensing (QS) is considered a possible target for anti-infective therapy. In this work, we discovered new quorum-sensing inhibitors derived from the structural modification of the dithiocarbamate-based l-homoserine lactone derivatives library and the target compound (10p) demonstrated significant inhibitory activity against PAO1 biofilm (inhibition rate: 86.76 %), pyocyanin (68.05 %), rhamnolipid (34.56 %), LasA protease (61.01 %) and a low inhibitory on elastase production (6.59 %) at 60 μM. Moreover, compound 10p effectively attenuated P. aeruginosa motility, such as swimming (42.85 %) and swarming (72 %), and demonstrated no toxicity in vitro. The result indicates that compound 10p may serve as a promising new antibacterial synergist option for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Aichata Maiga
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li Hong Teng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhen Hao Jie
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhang Xue Qing
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Fan Zheng Min
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lin Zi Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co., LTD, PR China.
| |
Collapse
|
2
|
Maiga A, Ampomah-Wireko M, Li H, Fan Z, Lin Z, Zhen H, Kpekura S, Wu C. Multidrug-resistant bacteria quorum-sensing inhibitors: A particular focus on Pseudomonasaeruginosa. Eur J Med Chem 2025; 281:117008. [PMID: 39500066 DOI: 10.1016/j.ejmech.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 12/02/2024]
Abstract
Many widely used conventional antibiotics have failed to show clinical efficacy against Pseudomonas aeruginosa (P. aeruginosa) due to the strain's rising resistance to most clinically relevant antimicrobials. P. aeruginosa uses quorum sensing to regulate its virulence and biofilm development, which contributes to its pathogenicity and drug resistance. This mechanism is responsible for the resurgence and persistence of infections. Therefore, targeting the virulence and pathogenicity of P. aeruginosa through quorum sensing (QS) is regarded as a potential target for anti-infective therapy. However, a number of natural and synthetic compounds have been demonstrated to interfere with quorum sensing, resulting in potential antibacterial agents. In this review, we discuss the mechanisms of P. aeruginosa QS and recent advances in the development of quorum sensing inhibitors (both synthetic and natural) that have the potential to become effective antibiotics.
Collapse
Affiliation(s)
- Aichata Maiga
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongteng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhengmin Fan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ziwei Lin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haojie Zhen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Stephen Kpekura
- School of Nursing and Health, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co. LTD, PR China.
| |
Collapse
|
3
|
Miao ZY, Zhang XY, Long HZ, Lin J, Chen WM. Hybrids of 3-Hydroxypyridin-4(1 H)-ones and Long-Chain 4-Aminoquinolines as Potent Biofilm Inhibitors of Pseudomonas aeruginosa Potentiate Tobramycin and Polymyxin B Activity. J Med Chem 2024; 67:16835-16857. [PMID: 39287005 DOI: 10.1021/acs.jmedchem.4c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biofilm formation of Pseudomonas aeruginosa involves multiple complex regulatory pathways; thus, blocking a single pathway is unlikely to achieve the desired antibiofilm efficacy. Herein, a series of hybrids of 3-hydroxypyridin-4(1H)-ones and long-chain 4-aminoquinolines were synthesized as biofilm inhibitors against P. aeruginosa based on a multipathway antibiofilm strategy. Comprehensive structure-activity relationship studies identified compound 30b as the most valuable antagonist, which significantly inhibited P. aeruginosa biofilm formation (IC50 = 5.8 μM) and various virulence phenotypes. Mechanistic studies revealed that 30b not only targets the three quorum sensing systems but also strongly induces iron deficiency signals in P. aeruginosa. Furthermore, 30b demonstrated a favorable in vitro and in vivo safety profile. Moreover, 30b specifically enhanced the antibacterial activity of tobramycin and polymyxin B in in vitro and in vivo combination therapy. Overall, these results highlight the potential of 30b as a novel anti-infective candidate for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Zhi-Ying Miao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Yi Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Hao-Zhong Long
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| |
Collapse
|
4
|
Jiang C, Zheng L, Yan YJ, Wang M, Liu XJ, Dai JY. A Supramolecular Antibiotic Targeting Drug-Resistant Pseudomonas aeruginosa through the Inhibition of Virulence Factors and Activation of Acquired Immunity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41828-41842. [PMID: 39088848 PMCID: PMC11331443 DOI: 10.1021/acsami.4c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
The bacterium Pseudomonas aeruginosa is an exceptionally resilient opportunistic pathogen, presenting formidable challenges for treatment due to its proclivity for developing drug resistance. To address this predicament, we have devised a self-assembled supramolecular antibiotic known as dHTSN1@pHPplus, which can circumvent the drug resistance mechanism of Pseudomonas aeruginosa and effectively combat Pseudomonas aeruginosa infection by impeding the secretion of key virulence factors through the inhibition of the type III secretion system while simultaneously mobilizing immune cells to eradicate Pseudomonas aeruginosa. Furthermore, dHTSN1@pHPplus was ingeniously engineered with infection-targeting capabilities, enabling it to selectively concentrate precisely at the site of infection. As anticipated, the administration of dHTSN1@pHPplus exhibited a remarkable therapeutic efficacy in combating dual resistance to Meropenem and imipenem in a mouse model of P. aeruginosa lung infection. The results obtained from metagenomic detection further confirmed these findings, demonstrating a significant reduction in the proportion of Pseudomonas aeruginosa compared to untreated mice with Pseudomonas aeruginosa-infected lungs. Additionally, no notable acute toxicity was observed in the acute toxicity experiments. The present study concludes that the remarkable efficacy of dHTSN1@pHPplus in treating drug-resistant P. aeruginosa infection confirms its immense potential as a groundbreaking antibiotic agent for combating drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Cheng Jiang
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Graduate
School of China Medical University, Shenyang 110000, China
| | - Lei Zheng
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Graduate
School of China Medical University, Shenyang 110000, China
| | - Yu-jie Yan
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710072, China
| | - Miao Wang
- Key
Laboratory for Space Biosciences and Biotechnology, School of Life
Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Xiao-Jing Liu
- Department
of Infectious Disease, The First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an 710061, PR China
| | - Jing-Yao Dai
- Department
of Hepatobiliary Surgery, Air Force Medical Center, Fourth Military Medical University, Beijing 100142, PR China
- Fourth Military
Medical University, Xi’an, Shaanxi 710072, PR China
| |
Collapse
|
5
|
Liu J, Zhao SY, Hu JY, Chen QX, Jiao SM, Xiao HC, Zhang Q, Xu J, Zhao JF, Zhou HB, Zheng JX, Sun PH. Novel Coumarin Derivatives Inhibit the Quorum Sensing System and Iron Homeostasis as Antibacterial Synergists against Pseudomonas aeruginosa. J Med Chem 2023; 66:14735-14754. [PMID: 37874867 DOI: 10.1021/acs.jmedchem.3c01268] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is well-known to cause biofilm-associated drug resistance and infections that often lead to treatment failure. Herein, we reported a dual-acting antibiofilm strategy by inhibiting both the bacterial quorum sensing system and the iron uptake system. A series of coumarin derivatives were synthesized and evaluated, and compound 4t was identified as the most effective biofilm inhibitor (IC50 = 3.6 μM). Further mechanistic studies have confirmed that 4t not only inhibits the QS systems but also competes strongly with pyoverdine as an iron chelator, causing an iron deficiency in P. aeruginosa. Additionally, 4t significantly improved the synergistic antibacterial effects of ciprofloxacin and tobramycin by more than 200-1000-fold compared to the single-dose antibiotic treatments. Therefore, our study has shown that 4t is a potentially novel antibacterial synergist candidate to treat bacterial infections.
Collapse
Affiliation(s)
- Jun Liu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Si-Yu Zhao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jia-Yi Hu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Qiu-Xian Chen
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Shu-Meng Jiao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hai-Chuan Xiao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Qiang Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hai-Bo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jun-Xia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Ping-Hua Sun
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P. R. China
- College of Pharmacy, Shihezi University, Shihezi, Xinjiang 832099, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
6
|
Liu J, Meng Y, Yang MH, Zhang XY, Zhao JF, Sun PH, Chen WM. Design, synthesis and biological evaluation of novel 3-hydroxypyridin-4(1H)-ones based hybrids as Pseudomonas aeruginosa biofilm inhibitors. Eur J Med Chem 2023; 259:115665. [PMID: 37506546 DOI: 10.1016/j.ejmech.2023.115665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative pathogenic bacterium, often causative drug-resistance related human infections, given its great capacity to form bioflm. It uses three major quorum sensing (QS) systems, las, rhl, and pqs, to regulate the expression of genes related to virulence and biofilm formation. Consequently, strategies for inhibiting QS have garnered considerable attention as antimicrobial therapies. In this study, we designed and synthesized several 3-hydroxypyridin-4(1H)-one hybrids and assessed their potential as the inhibitors of P. aeruginosa biofilm formation. The most active compound identified was 12h; it exhibited satisfactory biofilm inhibitory activity (IC50: 10.59 ± 1.17 μM). Mechanistic studies revealed that 12h significantly inhibited the fluorescence of the PAO1-lasB-gfp and PAO1-pqsA-gfp fluorescent reporter strains and the production of Las-regulated (elastase) and Pqs-regulated (pyocyanin) virulence factors. These findings indicate that 12h inhibited biofilm formation by suppressing the expression of lasB and pqsA, thereby inactivating the las and pqs pathways. Furthermore, 12h improved the antibiotic susceptibility of P. aeruginosa and reduced the acute virulence of this bacterium in the African green monkey kidney cell line Vero. In conclusion, 3-hydroxypyridin-4(1H)-one hybrids, such as 12h, represent a promising class of antibacterial agents against P. aeruginosa.
Collapse
Affiliation(s)
- Jun Liu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ying Meng
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ming-Han Yang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiao-Yi Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China.
| | - Ping-Hua Sun
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
7
|
Hernández-Moreno LV, Pabón-Baquero LC, Prieto-Rodriguez JA, Patiño-Ladino OJ. Bioactive Compounds from P. pertomentellum That Regulate QS, Biofilm Formation and Virulence Factor Production of P. aeruginosa. Molecules 2023; 28:6181. [PMID: 37687010 PMCID: PMC10488431 DOI: 10.3390/molecules28176181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for many nosocomial infections. This bacterium uses Quorum Sensing (QS) to generate antimicrobial resistance (AMR) so its disruption is considered a novel approach. The current study describes the antibiofilm and QS inhibitory potential of extract and chemical components from Piper pertomentellum. The methodo- logy included the phytochemical study on the aerial part of the species, the determination of QS inhibition efficacy on Chromobacterium violaceum and the evaluation of the effect on biofilm formation and virulence factors on P. aeruginosa. The phytochemical study led to the isolation and identification of a new piperamide (ethyltembamide 1), together with four known amides (tembamide acetate 2, cepharadione B 3, benzamide 4 and tembamide 5). The results indicated that the ethanolic extract and some fractions reduced violacein production in C. violaceum, however, only the ethanolic extract caused inhibition of biofilm formation of P. aeruginosa on polystyrene microtiter plates. Finally, the investigation determined that molecules (1-5) inhibited the formation of biofilms (50% approximately), while compounds 2-4 can inhibit pyocyanin and elastase production (30-50% approximately). In this way, the study contributes to the determination of the potential of extract and chemical constituents from P pertomentellum to regulate the QS system in P. aeruginosa.
Collapse
Affiliation(s)
- Lida V. Hernández-Moreno
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia; (L.V.H.-M.); (O.J.P.-L.)
| | - Ludy C. Pabón-Baquero
- Escuela de Ciencias Básicas y Aplicadas, Universidad de La Salle, Bogotá 111711, Colombia;
| | - Juliet A. Prieto-Rodriguez
- Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Oscar J. Patiño-Ladino
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia; (L.V.H.-M.); (O.J.P.-L.)
| |
Collapse
|
8
|
Dua T, Mangal S, Akshita G, Harshdeep, Atri AK, Sharma P, Harjai K, Singh V. Novel Vanillin-based hybrids inhibit quorum sensing and silences phenotypical expressions in Pseudomonas aeruginosa. Drug Dev Res 2023; 84:45-61. [PMID: 36419404 DOI: 10.1002/ddr.22011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022]
Abstract
In this study, we report the chemical synthesis, computational analysis, and anti-virulent studies of five Vanillin-based hybrids employing phytochemicals. Vanillin (V) is known to have substantial anti-quorum sensing activity against the gram-negative pathogen Pseudomonas aeruginosa. Therefore, with the aim to further enhance the potency of Vanillin, it was chemically conjugated via a triazole (T) linker with five phytochemicals- Zingerone (Z), Eugenol (E), Guaiacol (G), Cinnamaldehyde (C), and Ferulic acid (F) to form the hybrids named as VTZ (1), VTE (2), VTG (3), VTC (4), and VTF (5), respectively. Molecular docking studies revealed the strong binding affinity of the designed hybrids with quorum-sensing receptors (LasR, Rh1R, and PqsR). The synthesized hybrids were also evaluated for anti-quorum sensing activities to examine the efficacy against P. aeruginosa bacterial strains PAO1. The hybrids VTE (2), VTG (3), and VTC (4) displayed improved anti-quorum activity relative to Vanillin. Furthermore, the attenuation of virulence factors of P. aeruginosa (Las-A protease, Las-B elastase, pyocyanin pigmentation, and motility) in the presence of VTE (2), VTG (3), and VTC (4) further authenticated the anti-virulent activity of the hybrids. The new design strategy of the phytochemical-phytochemical scaffolds and their biological evaluation provides a proof of concept for the simultaneous perturbation of well-established anti-virulent targets. This appears to be highly promising and effective strategy to ameliorate the enigma of antimicrobial resistance.
Collapse
Affiliation(s)
- Tamanna Dua
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | - Surabhi Mangal
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Goel Akshita
- Department of Chemistry, Panjab University, Chandigarh, India
| | - Harshdeep
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Ankit K Atri
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| | | | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Vasundhara Singh
- Department of Applied Sciences, Punjab Engineering College (Deemed to be University), Chandigarh, India
| |
Collapse
|
9
|
Unravelling the Distinctive Virulence Traits and Clonal Relationship among the Pseudomonas aeruginosa Isolates from Diabetic Patients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections with P. aeruginosa are three times more common in people with diabetes than in non-diabetic individuals. Investigations disclosing the distinguishing traits of P. aeruginosa strains to cause respiratory and wound infection in diabetics is limited. Wound swab and sputum from infected diabetic patients were used for the isolation of P. aeruginosa. The confirmed isolates were evaluated for their virulence factor production, antibiotic susceptibility, and clonal relationship. The study confirmed the increased virulence of sputum isolates characterized by their multidrug resistant nature, strong biofilm formation at 72h [(p<0.05) =0.003)] and 96h [(p<0.05) =0.002)] and elaboration of proteolytic enzymes (40.0%). Albeit the fact that wound isolates were less virulent than the sputum isolates, there was an increased siderophore production (77.0%). Nearly 90.0% of the isolates including sputum and wound were resistant to colistin. Random Amplified Polymorphic DNA analysis showed no distinct lineages of wound and sputum isolates. The study disclosed the higher prevalence of virulent P. aeruginosa in causing infection in the diabetics. No distinct lineages of the wound and sputum isolates indicated their ability to adapt to different host environments. To the best of our knowledge, this is the first study to show the difference in virulence traits among the P. aeruginosa strains isolated from sputum and wound of diabetic patients. Our study distinctly reveals the significance of periodic examination of antibiotic resistance and virulence factors of P. aeruginosa in order to recognize the possible co-regulatory mechanism involved in their expression.
Collapse
|
10
|
Phuengmaung P, Mekjaroen J, Saisorn W, Chatsuwan T, Somparn P, Leelahavanichkul A. Rapid Synergistic Biofilm Production of Pseudomonas and Candida on the Pulmonary Cell Surface and in Mice, a Possible Cause of Chronic Mixed Organismal Lung Lesions. Int J Mol Sci 2022; 23:ijms23169202. [PMID: 36012475 PMCID: PMC9409386 DOI: 10.3390/ijms23169202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the possible co-presence of Pseudomonas aeruginosa and Candida albicans (the most common nosocomial pathogens) in lungs, rapid interkingdom biofilm production is possible. As such, PA+CA produced more dominant biofilms on the pulmonary epithelial surface (NCI-H292) (confocal fluorescent extracellular matrix staining) with dominant psl upregulation, as demonstrated by polymerase chain reaction (PCR), after 8 h of experiments than PA alone. With a proteomic analysis, rhamnosyltransferase RhlB protein (Psl-associated quorum-sensing protein) was found to be among the high-abundance proteins in PA+CA than in PA biofilms, supporting psl-mediated biofilms in PA+CA on the cell surface. Additionally, PA+CA increased supernatant cytokines (IL-8 and IL-13, but not TNF-α, IL-6, and IL-10) with a similar upregulation of TLR-4, TLR-5, and TLR-9 (by PCR) compared with PA-stimulated cells. The intratracheal administration of PA+CA induced a greater severity of sepsis (serum creatinine, alanine transaminase, serum cytokines, and histology score) and prominent biofilms (fluorescent staining) with psl upregulation (PCR). In comparison with PA+CA biofilms on glass slides, PA+CA biofilms on biotic surfaces were more prominent (fluorescent staining). In conclusion, PA+CA induced Psl-predominant biofilms on the pulmonary cell surface and in mice with acute pneumonia, and these biofilms were more prominent than those induced by PA alone, highlighting the impact of Candida on rapid interkingdom biofilm production.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Mekjaroen
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.S.); (A.L.); Tel.: +66-2-256-4251 (P.S. & A.L.); Fax: +66-2-252-6920 (P.S. & A.L.)
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (P.S.); (A.L.); Tel.: +66-2-256-4251 (P.S. & A.L.); Fax: +66-2-252-6920 (P.S. & A.L.)
| |
Collapse
|
11
|
Corti MB, Campagno LP, Romero VL, Gutierrez S, Alovero FL. Cationic polymer contributes to broaden the spectrum of vancomycin activity achieving eradication of Pseudomonas aeruginosa. Arch Microbiol 2022; 204:507. [PMID: 35859215 DOI: 10.1007/s00203-022-03117-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
Vancomycin (VAN) is unable to penetrate the outer membrane of Gram-negative bacteria and reach the target site. One approach to overcome this limitation is to associate it with compounds with permeabilizing or antimicrobial properties. Eudragit E100® (Eu) is a cationic polymer insufficiently characterized for its potential antimicrobial action. Eu-VAN combinations were characterized, the antimicrobial efficacy against Pseudomonas aeruginosa was evaluated and previous studies on the effects of Eu on bacterial envelopes were extended. Time-kill assays showed eradication of P. aeruginosa within 3-6 h exposure to Eu-VAN, whilst VAN was ineffective. Eu showed regrowth in 24 h and delayed colony pigmentation. Although permeabilization of bacterial envelopes or morphological alterations observed by TEM and flow cytometry after exposure to Eu were insufficient to cause bacterial death, they allowed access of VAN to the target site, since Eu-VAN/Van-FL-treated cultures showed fluorescent staining in all bacterial cells, indicating Van-FL internalization. Consequently, Eu potentiated the activity of an otherwise inactive antibiotic against P. aeruginosa. Moreover, Eu-VAN combinations exhibited improved physicochemical properties and could be used in the development of therapeutic alternatives in the treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Melisa B Corti
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Medina Allende y Haya de la Torre, Edificio Ciencias II, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
| | - Luciana P Campagno
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Medina Allende y Haya de la Torre, Edificio Ciencias II, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
| | - Verónica L Romero
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Medina Allende y Haya de la Torre, Edificio Ciencias II, X5000HUA, Ciudad Universitaria, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba (IFEC), CONICET and Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Gutierrez
- Centro de Microscopia Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabiana L Alovero
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba and Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Medina Allende y Haya de la Torre, Edificio Ciencias II, X5000HUA, Ciudad Universitaria, Córdoba, Argentina.
| |
Collapse
|
12
|
Vieira TF, Magalhães RP, Simões M, Sousa SF. Drug Repurposing Targeting Pseudomonas aeruginosa MvfR Using Docking, Virtual Screening, Molecular Dynamics, and Free-Energy Calculations. Antibiotics (Basel) 2022; 11:185. [PMID: 35203788 PMCID: PMC8868191 DOI: 10.3390/antibiotics11020185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for acute and chronic infections in planktonic state or in biofilms. The sessile structures are known to confer physical stability, increase virulence, and work as a protective armor against antimicrobial compounds. P. aeruginosa can control the expression of genes, population density, and biofilm formation through a process called quorum sensing (QS), a rather complex and hierarchical system of communication. A recent strategy to try and overcome bacterial resistance is to target QS proteins. In this study, a combined multi-level computational approach was applied to find possible inhibitors against P. aeruginosa QS regulator protein MvfR, also known as PqsR, using a database of approved FDA drugs, as a repurposing strategy. Fifteen compounds were identified as highly promising putative MvfR inhibitors. On those 15 MvfR ligand complexes, molecular dynamic simulations and MM/GBSA free-energy calculations were performed to confirm the docking predictions and elucidate on the mode of interaction. Ultimately, the five compounds that presented better binding free energies of association than the reference molecules (a known antagonist, M64 and a natural inducer, 2-nonyl-4-hydroxyquinoline) were highlighted as very promising MvfR inhibitors.
Collapse
Affiliation(s)
- Tatiana F. Vieira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Rita P. Magalhães
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Moreira TA, Antolínez IV, Valença WO, Roy S, Ramirez I, Barbosa LCA, Ren D. Cadiolide analogues and their precursors as new inhibitors of bacterial quorum sensing and biofilm formation. Bioorg Med Chem Lett 2021; 57:128498. [PMID: 34896477 DOI: 10.1016/j.bmcl.2021.128498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022]
Abstract
Bacterial quorum sensing (QS) and biofilm formation are promising targets for developing new therapies to treat chronic infections. Herein, we report the stereoselective synthesis of 18 new analogs of natural cadiolides. Among the new compounds, substances 8b, 8f, 8i, 9a, 9b and 9e completely inhibited the biofilm formation of Escherichia coli RP347 in vitro. In addition, compound 8b interfered acyl-homoserine lactone (AHL) mediated QS, while 9e interrupted the QS via autoinducer-2 (AI-2). Biological assays also revealed that synthetic intermediates alkynones are potent inhibitors of AI-2 and AHL-mediated QS. These results indicate that cadiolides and alkynones are good candidates for further structural modification for a new generation of more potent antimicrobial agents.
Collapse
Affiliation(s)
- Thais A Moreira
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Isabel V Antolínez
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Wagner O Valença
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Sweta Roy
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Isabela Ramirez
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Civil and Environmental Engineering, and Biology, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
14
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
15
|
Abd El-Aleam RH, George RF, Georgey HH, Abdel-Rahman HM. Bacterial virulence factors: a target for heterocyclic compounds to combat bacterial resistance. RSC Adv 2021; 11:36459-36482. [PMID: 35494393 PMCID: PMC9043591 DOI: 10.1039/d1ra06238g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance is one of the most important challenges of the 21st century. However, the growing understanding of bacterial pathogenesis and cell-to-cell communication has revealed many potential strategies for the discovery of drugs that can be used for the treatment of bacterial infections. Interfering with bacterial virulence and/or quorum sensing could be a particularly interesting approach, because it is believed to exert less selective pressure on the bacterial resistance than with traditional strategies, geared toward killing bacteria or preventing their growth. Here, we discuss the mechanism of bacterial virulence, presenting promising strategies and recently synthesized heterocyclic compounds to combat future bacterial infections.
Collapse
Affiliation(s)
- Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI Cairo 11571 Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University Cairo 11786 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University Beni Suef Egypt
| |
Collapse
|
16
|
Baloyi IT, Adeosun IJ, Yusuf AA, Cosa S. In Silico and In Vitro Screening of Antipathogenic Properties of Melianthus comosus (Vahl) against Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10060679. [PMID: 34198845 PMCID: PMC8230066 DOI: 10.3390/antibiotics10060679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial quorum sensing (QS) system regulates pathogenesis, virulence, and biofilm formation, and together they contribute to nosocomial infections. Opportunistic pathogens, such as Pseudomonas aeruginosa, rely on QS for regulating virulence factors. Therefore, blocking the QS system may aid management of various infectious diseases caused by human pathogens. Plant secondary metabolites can thwart bacterial colonization and virulence. As such, this study was undertaken to evaluate three extracts from the medicinal plant, Melianthus comosus, from which phytochemical compounds were identified with potential to inhibit QS-dependent virulence factors in P. aeruginosa. Chemical profiling of the three extracts identified 1,2-benzene dicarboxylic acid, diethyl ester, neophytadiene and hexadecanoic acid as the common compounds. Validation of antibacterial activity confirmed the same MIC values of 0.78 mg/mL for aqueous, methanol and dichloromethane extracts while selected guanosine showed MIC 0.031 mg/mL. Molecular docking analysis showed anti-quorum sensing (AQS) potential of guanosine binding to CviR’ and 2UV0 proteins with varying docking scores of −5.969 and −8.376 kcal/mol, respectively. Guanosine inhibited biofilm cell attachment and biofilm development at 78.88% and 34.85%, respectively. Significant swimming and swarming motility restriction of P. aeruginosa were observed at the highest concentration of plant extracts and guanosine. Overall, guanosine revealed the best swarming motility restrictions. M. comosus extracts and guanosine have shown clear antibacterial effects and subsequent reduction of QS-dependent virulence activities against P.aeruginosa. Therefore, they could be ideal candidates in the search for antipathogenic drugs to combat P.aeruginosa infections.
Collapse
Affiliation(s)
- Itumeleng T. Baloyi
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa; (I.T.B.); (I.J.A.)
| | - Idowu J. Adeosun
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa; (I.T.B.); (I.J.A.)
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield Pretoria 0028, South Africa;
| | - Sekelwa Cosa
- Division of Microbiology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield Pretoria 0028, South Africa; (I.T.B.); (I.J.A.)
- Correspondence:
| |
Collapse
|
17
|
New Insight into Vitamins E and K 1 as Anti-Quorum-Sensing Agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:AAC.01342-20. [PMID: 33820770 DOI: 10.1128/aac.01342-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Today, antivirulence compounds that attenuate bacterial pathogenicity and have no interference with bacterial viability or growth are introduced as the next generation of antibacterial agents. However, the development of such compounds that can be used by humans is restricted by various factors, including the need for extensive economic investments, the inability of many molecules to penetrate the membrane of Gram-negative bacteria, and unfavorable pharmacological properties and cytotoxicity. Here, we take a new and different look into two frequent supplements, vitamin E and K1, as anti-quorum-sensing agents against Pseudomonas aeruginosa, a pathogen that is hazardous to human life and responsible for several diseases. Both vitamins showed significant anti-biofilm activity (62% and 40.3% reduction by vitamin E and K1, respectively), and the expression of virulence factors, including pyocyanin, pyoverdine, and protease, was significantly inhibited, especially in the presence of vitamin E. Cotreatment of constructed biofilms with these vitamins plus tobramycin significantly reduced the number of bacterial cells sheltered inside the impermeable matrix (71.6% and 69% by a combination of tobramycin and vitamin E or K1, respectively). The in silico studies, besides the similarities of chemical structures, reinforce the possibility that both vitamins act through inhibition of the PqsR protein. This is the first report of the antivirulence and antipathogenic activity of vitamin E and K1 against P. aeruginosa and confirms their potential for further research against other multidrug-resistant bacteria.
Collapse
|
18
|
Grossman S, Soukarieh F, Richardson W, Liu R, Mashabi A, Emsley J, Williams P, Cámara M, Stocks MJ. Novel quinazolinone inhibitors of the Pseudomonas aeruginosa quorum sensing transcriptional regulator PqsR. Eur J Med Chem 2020; 208:112778. [PMID: 32927392 PMCID: PMC7684530 DOI: 10.1016/j.ejmech.2020.112778] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/14/2023]
Abstract
Rising numbers of cases of multidrug- and extensively drug-resistant Pseudomonas aeruginosa over recent years have created an urgent need for novel therapeutic approaches to cure potentially fatal infections. One such approach is virulence attenuation where anti-virulence compounds, designed to reduce pathogenicity without affording bactericidal effects, are employed to treat infections. P. aeruginosa uses the pqs quorum sensing (QS) system, to coordinate the expression of a large number of virulence determinants as well as bacterial-host interactions and hence represents an excellent anti-virulence target. We report the synthesis and identification of a new series of thiazole-containing quinazolinones capable of inhibiting PqsR, the transcriptional regulator of the pqs QS system. The compounds demonstrated high potency (IC50 < 300 nM) in a whole-cell assay, using a mCTX:PpqsA-lux-based bioreporter for the P. aeruginosa PAO1-L and PA14 strains. Structural evaluation defined the binding modes of four analogues in the ligand-binding domain of PqsR through X-ray crystallography. Further work showed the ability of 6-chloro-3((2-pentylthiazol-4-yl)methyl)quinazolin-4(3H)-one (18) and 6-chloro-3((2-hexylthiazol-4-yl)methyl)quinazolin-4(3H)-one (19) to attenuate production of the PqsR-regulated virulence factor pyocyanin. Compounds 18 and 19 showed a low cytotoxic profile in the A549 human epithelial lung cell line making them suitable candidates for further pre-clinical evaluation.
Collapse
Affiliation(s)
- Scott Grossman
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Fadi Soukarieh
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK; National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - William Richardson
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Ruiling Liu
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Alaa Mashabi
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Jonas Emsley
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK; National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Paul Williams
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK; National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Miguel Cámara
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK; National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK; National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University Park, Nottingham, Nottinghamshire, NG7 2RD, UK.
| |
Collapse
|
19
|
Phuengmaung P, Somparn P, Panpetch W, Singkham-In U, Wannigama DL, Chatsuwan T, Leelahavanichkul A. Coexistence of Pseudomonas aeruginosa With Candida albicans Enhances Biofilm Thickness Through Alginate-Related Extracellular Matrix but Is Attenuated by N-acetyl-l-cysteine. Front Cell Infect Microbiol 2020; 10:594336. [PMID: 33330136 PMCID: PMC7732535 DOI: 10.3389/fcimb.2020.594336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 01/25/2023] Open
Abstract
Bacteria and Candidaalbicans are prominent gut microbiota, and the translocation of these organisms into blood circulation might induce mixed-organism biofilms, which warrants the exploration of mixed- versus single-organism biofilms in vitro and in vivo. In single-organism biofilms, Acinetobacter baumannii and Pseudomonas aeruginosa (PA) produced the least and the most prominent biofilms, respectively. C. albicans with P. aeruginosa (PA+CA) induced the highest biofilms among mixed-organism groups as determined by crystal violet straining. The sessile form of PA+CA induced higher macrophage responses than sessile PA, which supports enhanced immune activation toward mixed-organism biofilms. In addition, Candida incubated in pre-formed Pseudomonas biofilms (PA>CA) produced even higher biofilms than PA+CA (simultaneous incubation of both organisms) as determined by fluorescent staining on biofilm matrix (AF647 color). Despite the initially lower bacteria during preparation, bacterial burdens by culture in mixed-organism biofilms (PA+CA and PA>CA) were not different from biofilms of PA alone, supporting Candida-enhanced Pseudomonas growth. Moreover, proteomic analysis in PA>CA biofilms demonstrated high AlgU and mucA with low mucB when compared with PA alone or PA+CA, implying an alginate-related mucoid phenotype in PA>CA biofilms. Furthermore, mice with PA>CA biofilms demonstrated higher bacteremia with more severe sepsis compared with mice with PA+CA biofilms. This is possibly due to the different structures. Interestingly, l-cysteine, a biofilm matrix inhibitor, attenuated mixed-organism biofilms both in vitro and in mice. In conclusion, Candida enhanced Pseudomonas alginate–related biofilm production, and Candida presentation in pre-formed Pseudomonas biofilms might alter biofilm structures that affect clinical manifestations but was attenuated by l-cysteine.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Uthaibhorn Singkham-In
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|