1
|
Lolak N, Akocak S, Topal M, Koçyiğit ÜM, Işık M, Türkeş C, Topal F, Durgun M, Beydemir Ş. Sulfonamide-Bearing Pyrazolone Derivatives as Multitarget Therapeutic Agents: Design, Synthesis, Characterization, Biological Evaluation, In Silico ADME/T Profiling and Molecular Docking Study. Pharmacol Res Perspect 2025; 13:e70088. [PMID: 40129107 PMCID: PMC11932959 DOI: 10.1002/prp2.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/12/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
The research and design of new inhibitors for the treatment of diseases such as Alzheimer's disease and glaucoma through inhibition of cholinesterases (ChEs; acetylcholinesterase, AChE and butyrylcholinesterase, BChE) and carbonic anhydrase enzymes are among the important targets. Here, a series of novel sulfonamide-bearing pyrazolone derivatives (1a-f and 2a-f) were successfully synthesized and characterized by using spectroscopic and analytical methods. The inhibitory activities of these newly synthesized compounds were evaluated both in vitro and in silico for their effect on carbonic anhydrases (hCA I and hCA II isoenzymes) and ChEs. The in vitro studies showed that these novel compounds demonstrated potential inhibitory activity, with KI values covering the following ranges: 18.03 ± 2.86-75.54 ± 4.91 nM for hCA I, 24.84 ± 1.57-85.42 ± 6.60 nM for hCA II, 7.45 ± 0.98-16.04 ± 1.60 nM for AChE, and 34.78 ± 5.88-135.70 ± 17.39 nM for BChE. Additionally, many of these compounds showed promising inhibitory activity, and some showed higher potency than reference compounds. While the in silico studies have also identified the potential binding positions of these compounds, using the crystal structures of hCA I, II, AChE and BChE receptors. The varying affinities demonstrated by these designed compounds for ChEs and hCA isoenzymes show that these compounds could hold promise as potential alternative agents for selectively inhibiting ChEs and hCAs in the treatment of diseases such as Alzheimer's disease and glaucoma.
Collapse
Affiliation(s)
- Nebih Lolak
- Department of Pharmaceutical ChemistryFaculty of Pharmacy, Adıyaman UniversityAdıyamanTurkey
| | - Suleyman Akocak
- Department of Pharmaceutical ChemistryFaculty of Pharmacy, Adıyaman UniversityAdıyamanTurkey
| | - Meryem Topal
- Vocational School of Health ServicesGümüşhane UniversityGümüşhaneTurkey
| | | | - Mesut Işık
- Department of BioengineeringFaculty of Engineering, Bilecik Şeyh Edebali UniversityBilecikTurkey
| | - Cüneyt Türkeş
- Department of BiochemistryFaculty of Pharmacy, Erzincan Binali Yıldırım UniversityErzincanTurkey
| | - Fevzi Topal
- Department of Food EngineeringFaculty of Engineering and Natural Sciences, Gümüşhane UniversityGümüşhaneTurkey
- Department of Chemical and Chemical Processing Technologies, Laboratory Technology ProgramGümüşhane UniversityGümüşhaneTurkey
| | - Mustafa Durgun
- Department of ChemistryFaculty of Arts and Sciences, Harran UniversityŞanlıurfaTurkey
| | - Şükrü Beydemir
- Department of BiochemistryFaculty of Pharmacy, Anadolu UniversityEskişehirTurkey
| |
Collapse
|
2
|
Milyutin CV, Komogortsev AN, Lichitsky BV. Study of the interaction of 2 H-furo[3,2- b]pyran-2-ones with nitrogen-containing nucleophiles. Beilstein J Org Chem 2025; 21:556-563. [PMID: 40099302 PMCID: PMC11912642 DOI: 10.3762/bjoc.21.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
For the first time, the reaction of substituted 2H-furo[3,2-b]pyran-2-ones with diverse N-nucleophiles was investigated. It was shown that the direction of the process depends on the type of employed nitrogen-containing reagent. For example, condensation with aliphatic amines leads to 2H-furo[3,2-b]pyran-2,7(3H)-diones bearing an exocyclic enamine moiety. At the same time, interaction with dinucleophiles results in recyclization accompanied by opening of the furan ring. Relied on the aforementioned process a general method for the synthesis of substituted pyrazol-3-ones with allomaltol fragment was designed. Structures of representatives of all obtained products were unambiguously confirmed by X-ray diffraction.
Collapse
Affiliation(s)
- Constantine V Milyutin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow, 119991, Russian Federation
| | - Andrey N Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow, 119991, Russian Federation
| | - Boris V Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr., 47, Moscow, 119991, Russian Federation
| |
Collapse
|
3
|
Yu S, Cheng Y, Pan C, Yu JT. Access to 1-aryl-pyrazolin-5-ones via photoinduced chemoselective cyclization of N-methacrylo aldehyde hydrazones. Chem Commun (Camb) 2025; 61:1196-1199. [PMID: 39698818 DOI: 10.1039/d4cc05976j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
A photocatalytic sulfamoylation/5-endo-trig cyclization of (E)-N'-arylidene-N-phenylmethacrylohydrazides with sulfamoyl chlorides was developed. The chemoselective intramolecular addition of the carbon-centered radical intermediate to the CN bond in the hydrazone motif gave the sulfamoylated pyrazolin-5-one. Besides, sulfonyl chlorides are also suitable reaction partners to access sulfonylated pyrazolin-5-ones. This approach is characterized by mild reaction conditions, broad substrates scope, excellent selectivity and the late-stage modification of drug molecules.
Collapse
Affiliation(s)
- Sheng Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Yangjian Cheng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
4
|
Tandi M, Sharma V, Gopal B, Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: a recent update and chemical space analysis of the scaffolds. RSC Adv 2025; 15:1447-1489. [PMID: 39822567 PMCID: PMC11736855 DOI: 10.1039/d4ra06681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
In this review we have compiled multicomponent reactions (MCRs) that produce cyclic structures. We have covered articles reported since 2019 to showcase the recent advances in this area. In contrast to other available reviews on this topic, we focus specifically on MCRs with strong prospects in medicinal chemistry. Consequently, the reactions operating in a single-pot and yielding novel rings or new substitution patterns under mild conditions are highlighted. Moreover, MCRs that do not require special reagents or catalysts and yield diverse products from commercially available building blocks are reviewed. The synthetic schemes, substrate scope, and other key aspects such as regio- and stereoselectivity are discussed for each MCR. Using cheminformatic tools, we have also attempted to characterize the chemical space of the scaffolds obtained from these MCRs. We show that the MCR scaffolds are novel, more complex, and globular in shape compared to the approved drugs and clinical candidates. Thus, our review represents a step towards identifying and characterizing the novel ring space that can be accessed efficiently through MCRs in a short timeframe.
Collapse
Affiliation(s)
- Mukesh Tandi
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | - Vaibhav Sharma
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| | | | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Rajasthan 333031 India
| |
Collapse
|
5
|
Wang H, Wu Y, Liu A, Li S, Zhu P, Zuo J, Kuang Y, Li J, Jiang X. Design, synthesis and biological evaluation of novel pyrazolinone derivatives as multifunctional ligands for the treatment of Alzheimer's disease. Bioorg Chem 2025; 154:108052. [PMID: 39675097 DOI: 10.1016/j.bioorg.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/05/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the depletion of cholinergic neurons and the accumulation of amyloid β (Aβ) plaques. The complexity and multifaceted nature of AD necessitate further exploration of multi-target drugs for its treatment. In this study, a series of novel pyrazolinone-based compounds were designed, synthesized, and evaluated as acetylcholinesterase (AChE) inhibitors and antioxidants. The lead compounds ET11 and ET21 showed strong inhibitory activity against human AChE, with IC50 values of 6.34 and 1.81 nM, respectively. In vitro DPPH and ORACFL assays confirmed the compounds' strong antioxidant capabilities. ET11 exhibited excellent neuroprotective activity in the tBHP-induced SH-SY5Y cell damage model. Benefiting from the pyridopyrazolone moiety, ET11 showed significant Cu2+ chelating ability and effectively inhibited Cu2+-induced Aβ aggregation. In vivo behavioral studies and histopathology analysis preliminarily confirmed the compound's cognitive improvement and neuroprotective effects. Overall, these findings suggested that compound ET11 is expected to play a synergistic role in the treatment of AD, potentially slowing disease progression.
Collapse
Affiliation(s)
- Huabo Wang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yulu Wu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anran Liu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Siyi Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jianguo Zuo
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ying Kuang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jiaming Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China.
| | - Xueyang Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
6
|
Sun S, Zhang Y, Banwell MG, White LV, Zhou L. Iridium-Catalyzed, Highly Selective Allylation of Pyrazolones for the Convenient Construction of Adjacent Stereocenters. Org Lett 2024; 26:10229-10234. [PMID: 39576759 DOI: 10.1021/acs.orglett.4c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
This paper describes an iridium-catalyzed allylation of ring-fused pyrazolones that proceeds with excellent regio-, diastereo- and enantio-selectivities. The approach exploits unactivated, racemic allylic alcohols as a source of allyl building blocks. Asymmetric syntheses of a series of biologically relevant, chiral pyrazolones highlight the utility of the methodology. The use of Cu(OTf)2 as a co-catalyst greatly enhances the regioselectivity of the reaction and permits selective syntheses of branched allylation products.
Collapse
Affiliation(s)
- Shixiang Sun
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuqi Zhang
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| | - Leijie Zhou
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
7
|
Patel AK, Samanta S. Robust Organocatalytic Three-Component Approach to 1,3-Diarylallylidene Pyrazolones via Consecutive Double Condensation Reactions. J Org Chem 2024; 89:17528-17543. [PMID: 39548984 DOI: 10.1021/acs.joc.4c02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
A robust pyrrolidine-BzOH salt-catalyzed one-pot three-component reaction involving 4-unsubstituted pyrazolones, aryl/heteroarylaldehydes, and aryl methyl ketones is reported for the first time. This catalytic process fortifies an efficient method, allowing for the practical synthesis of a wide array of synthetically useful 1,3-diarylallylidene pyrazolones in good to high yields exclusively in their single geometrical isomer forms. Furthermore, this catalyst facilitates a sequential double condensation reaction under thermal conditions, thereby enabling two consecutive C═C bonds through displacement of aryl groups. Moreover, this organocatalytic technique achieves a 100% carbon atom economy, marking a significant step forward toward efficient and sustainable synthesis.
Collapse
Affiliation(s)
- Ashvani K Patel
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
8
|
Westwood MT, Omar Farah A, Wise HB, Sinfield M, Robichon C, Prindl MI, Cordes DB, Ha-Yeong Cheong P, Smith AD. Isothiourea-Catalysed Acylative Kinetic Resolution of Tertiary Pyrazolone Alcohols. Angew Chem Int Ed Engl 2024; 63:e202407983. [PMID: 39177177 DOI: 10.1002/anie.202407983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
The development of methods for the selective acylative kinetic resolution (KR) of tertiary alcohols is a recognised synthetic challenge with relatively few successful substrate classes reported to date. In this manuscript, a highly enantioselective isothiourea-catalysed acylative KR of tertiary pyrazolone alcohols is reported. The scope and limitations of this methodology have been developed, with high selectivity observed across a broad range of substrate derivatives incorporating varying substitution at N(2)-, C(4)- and C(5)-, as well as bicyclic constraints within the pyrazolone scaffold (30 examples, selectivity factors (s) typically >100) at generally low catalyst loadings (1 mol %). The application of this KR method to tertiary alcohols derived directly from a natural product (geraniol), alongside pharmaceutically relevant drug compounds (indomethacin, gemfibrozil and probenecid), with high efficiency (s >100) is also described. The KR process is readily amenable to scale up using bench grade solvents and reagents, with effective resolution on a 50 g (0.22 mol) scale demonstrated. The key structural motif leading to excellent selectivity in this KR process has been probed through computation, with an NC=O⋅⋅⋅isothiouronium interaction from substrate to acylated catalyst observed within the favoured transition state. Similarly, the effect of C(5)-aryl substitution that leads to reduced experimental selectivity is probed, with a competitive π-isothiouronium interaction identified as leading to reduced selectivity.
Collapse
Affiliation(s)
- Matthew T Westwood
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Abdikani Omar Farah
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Henry B Wise
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Mike Sinfield
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Camille Robichon
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Martha I Prindl
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Paul Ha-Yeong Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331, USA
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
9
|
Thombare KR, Parida SK, Meher P, Murarka S. Photoredox-catalyzed arylative and aryl sulfonylative radical cascades involving diaryliodonium reagents: synthesis of functionalized pyrazolones. Chem Commun (Camb) 2024; 60:13907-13910. [PMID: 39503167 DOI: 10.1039/d4cc05086j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
We disclose a photoredox-catalyzed arylative radical cascade between N'-arylidene-N-acryloylhydrazides and diaryliodonium reagents to obtain the corresponding benzylated pyrazolones in good yields. The protocol was extended to three-component coupling involving the 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) (DABSO) adduct as a sulfur dioxide surrogate for the synthesis of arylsulfonylated pyrazolones. Both reactions exhibit broad scope, scalability, and high functional group tolerance.
Collapse
Affiliation(s)
- Karan Ramdas Thombare
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
10
|
Navacchia ML, Cinti C, Marchesi E, Perrone D. Insights into SARS-CoV-2: Small-Molecule Hybrids for COVID-19 Treatment. Molecules 2024; 29:5403. [PMID: 39598790 PMCID: PMC11596935 DOI: 10.3390/molecules29225403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The advantages of a treatment modality that combines two or more therapeutic agents with different mechanisms of action encourage the study of hybrid functional compounds for pharmacological applications. Molecular hybridization, resulting from a covalent combination of two or more pharmacophore units, has emerged as a promising approach to overcome several issues and has also been explored for the design of new drugs for COVID-19 treatment. In this review, we presented an overview of small-molecule hybrids from both natural products and synthetic sources reported in the literature to date with potential antiviral anti-SARS-CoV-2 activity.
Collapse
Affiliation(s)
- Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy;
| | - Caterina Cinti
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy;
| | - Elena Marchesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Kumar B, Devi J, Dubey A, Kumar M. Exploration of newly synthesized transition metal(II) complexes for infectious diseases. Future Med Chem 2024; 16:2087-2105. [PMID: 39295510 PMCID: PMC11559369 DOI: 10.1080/17568919.2024.2389766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/02/2024] [Indexed: 09/21/2024] Open
Abstract
Aim: In the annals of human history, infectious diseases significantly influencing the collective well-being of people worldwide. Consequently, to identify effective agents for infectious ailments, the octahedral Co(II), Ni(II), Cu(II), Zn(II) complexes of 4-(3-methoxyphenyl)pyrimidin-2-amine and 2-methoxy-1-napthaldehyde based ligand were synthesized and well characterized in the current investigation.Results & methodology: The synthesized compounds were evaluated for anti-TB, anti-inflammatory, antibacterial, antifungal activities by microplate Alamar blue, bovine serum albumin, serial dilution assays. The [Zn(L1)2(H2O)2] complex (5) demonstrates robust potency with 0.0040 ± 0.0007 and 0.0038 μmol/ml MIC value in anti-tuberculosis and antimicrobial activities, correspondingly while 06.57 ± 0.03 μM IC50 value in anti-inflammatory investigation.Conclusion: Complex (5) show promising potential as targets for pathogen deformities, supported by rigorous biological and computational investigations including pharmacophore modelling, molecular docking (binding score -121.018 and -59.8662 kcal/mol for 6H53 and 1CX2 proteins, respectively), DFT (Density functional theory), MESP (Molecular Electrostatic Potential) and ADMET (absorption, distribution, metabolism, excretion and toxicity).
Collapse
Affiliation(s)
- Binesh Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai, 600077, Tamil Nadu, India
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, 201310, Uttar Pradesh, India
| | - Manish Kumar
- Department of Biochemistry, Iswar Saran Degree College, University of Allahabad, Prayagraj, 211002, India
| |
Collapse
|
12
|
Xhafa S, Di Nicola C, Tombesi A, Pettinari R, Pettinari C, Scarpelli F, Crispini A, La Deda M, Candreva A, Garufi A, D'Orazi G, Galindo A, Marchetti F. Pyrazolone-Based Zn(II) Complexes Display Antitumor Effects in Mutant p53-Carrying Cancer Cells. J Med Chem 2024; 67:15676-15690. [PMID: 39221914 DOI: 10.1021/acs.jmedchem.4c01298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The synthesis and characterization of nine Schiff bases of pyrazolone ligands HLn (n = 1-9) and the corresponding zinc(II) complexes 1-9 of composition [Zn(Ln)2] (n = 1-9) are reported. The molecular structures of complexes 2, 3, 4, 8, and 9 were determined by single-crystal X-ray diffraction analysis, highlighting in all cases a distorted tetrahedral geometry around the Zn(II) ion. Density functional theory studies are performed on both the HLn ligands and the derived complexes. A mechanism of dissociation and hydrolyzation of the coordinated Schiff base ligands is suggested, confirmed experimentally by powder X-ray diffraction study and photophysical studies. Complexes 1-9 were investigated in vitro as anticancer agents, along with mutant p53 (mutp53) protein levels in human cancer cell lines carrying R175H and R273H mutp53 proteins. Only those complexes with the highest Zn(II) ion release via dissociation have shown a significant cytotoxic activity with reduction of mutp53 protein levels.
Collapse
Affiliation(s)
- Sonila Xhafa
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Corrado Di Nicola
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Alessia Tombesi
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Riccardo Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Claudio Pettinari
- ChIP Research Center, School of Pharmacy, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| | - Francesca Scarpelli
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessandra Crispini
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Massimo La Deda
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Angela Candreva
- MAT-InLAB, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
| | - Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena, National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
| | - Gabriella D'Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena, National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University G. D'Annunzio, via dei Vestini 31, 66013 Chieti, Italy
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Fabio Marchetti
- ChIP Research Center, School of Science and Technology, University of Camerino, via Madonna delle Carceri Camerino, 62032 Macerata, Italy
| |
Collapse
|
13
|
Balasubramani A, Sudarshana KA, Kushwaha R, Chakravarty S, Pabbaraja S, Mehta G. One flask cascade approach to a complex pyrano[2,3- c]pyrazole-pyrazolone hybrid heterocyclic system and its initiatory neurobiological profiling. Chem Commun (Camb) 2024; 60:8443-8446. [PMID: 39037025 DOI: 10.1039/d4cc02813a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A one-pot multicomponent approach towards a hybrid heterocyclic pyrano[2,3-c]pyrazole-pyrazolone framework involving tandem Knoevenagel condensation, sequential intermolecular 1,6-Michael addition, and 6-endo dig cyclization between diynones and pyrazolones, mediated by DBU, has been discovered. This process embodies several green and sustainable chemistry features. Preliminary bioactivity profiling of the new chemical entities indicates neuroprotective and AChE inhibitory activities.
Collapse
Affiliation(s)
- Alagesan Balasubramani
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
| | - K A Sudarshana
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Roli Kushwaha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
14
|
Wang Y, Wang Y, Guo W, Zhang Y, Du X, Song Y, Wang W, Liu Z, Duan Y, Zhang T. Enantioselective α-Trifluoromethylthiolation of Carbonyl Compounds with AgSCF 3 and Trichloroisocyanuric Acid. J Org Chem 2024. [PMID: 38806442 DOI: 10.1021/acs.joc.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We successfully developed an enantioselective trifluoromethylthiolation of structurally diverse carbonyl compounds. Trichloroisocyanuric acid and AgSCF3 were employed to generate active electrophilic trifluoromethylthio species in situ for asymmetric C-SCF3 bond formation. A broad variety of chiral SCF3-carbon nucleophiles (pyrazolones, β-keto esters, and β-keto amides) were obtained in excellent yields with high enantioselectivities (up to 92% ee) by Cinchona alkaloid derived squaramide catalysts. The reaction exhibits high efficiency, good enantioselectivity, and high functional group tolerance, which provided a novel and efficient way for asymmetric synthesis of trifluoromethylthiolated carbonyl compounds.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yingying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wenwen Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yizhe Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaoyu Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yan Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wenhui Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhiang Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
15
|
Kumari A, Patanvadiya DJ, Jain A, Patra R, Paranjothy M, Rana NK. Pyridinium Ylide-Mediated Diastereoselective Synthesis of Spirocyclopropanyl-pyrazolones via Cascade Michael/Substitution Reaction. J Org Chem 2024. [PMID: 38742411 DOI: 10.1021/acs.joc.3c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We have devised a highly diastereoselective formal [2 + 1] annulation reaction of arylidene/alkylidine-pyrazolones with in situ-generated supported as well as standard pyridinium ylides to construct spirocyclopropanyl-pyrazolones. The cascade approach exhibits a wide range of functional group tolerance, gram-scale capability, and substrate versatility. A diverse range of spirocyclic cyclopropanes was synthesized extensively with both mediators, and the supported pyridine was reused in subsequent cycles. Density functional theory calculations confirmed the formation of spirocyclopropane as the lower energy pathway.
Collapse
Affiliation(s)
- Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | | | - Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
16
|
Panda SP, Dash R, Hota SK, Murarka S. Photodecarboxylative Radical Cascade Involving N-(Acyloxy)phthalimides for the Synthesis of Pyrazolones. Org Lett 2024; 26:3667-3672. [PMID: 38656123 DOI: 10.1021/acs.orglett.4c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We disclose N'-arylidene-N-acryloyltosylhydrazides as novel skeletons for the synthesis of biologically relevant alkylated pyrazolones through a photoinduced radical cascade with N-(acyloxy)pthalimides as readily available alkyl surrogates. The reaction proceeds through the formation of a photoactivated electron donor-acceptor (EDA) complex between alkyl N-(acyloxy)phthalimide (NHPI) esters and LiI/PPh3 as a commercially available donor system. The reaction exhibits a broad scope and scalability, thereby enabling synthesis of a broad spectrum of functionally orchestrated alkylated pyrazolones under mild and transition-metal-free conditions.
Collapse
Affiliation(s)
- Satya Prakash Panda
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Rupashri Dash
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, 342037 Rajasthan, India
| |
Collapse
|
17
|
Gao S, Sun X, Peng S, Zha Z, Sun Q, Wang Z. A copper-catalyzed asymmetric Friedel-Crafts hydroxyalkylation of pyrazole-4,5-diones with 5-aminoisoxazoles. Org Biomol Chem 2024; 22:3391-3395. [PMID: 38619100 DOI: 10.1039/d4ob00322e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
An asymmetric Friedel-Crafts hydroxyalkylation reaction of 5-aminoisoxazoles with pyrazole-4,5-diones was developed under the catalysis of 5% chiral copper complexes. This reaction exhibits functional group tolerance and excellent enantioselectivity. Moreover, the reaction can be scaled up and its mechanism was studied.
Collapse
Affiliation(s)
- Siyu Gao
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Xiang Sun
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Sijie Peng
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Zhenggen Zha
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Qi Sun
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Zhiyong Wang
- Hefei National Research Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
18
|
Sadeghi M. The untold story of starch as a catalyst for organic reactions. RSC Adv 2024; 14:12676-12702. [PMID: 38645516 PMCID: PMC11027044 DOI: 10.1039/d4ra00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Starch is one of the members of the polysaccharide family. This biopolymer has shown many potential applications in different fields such as catalytic reactions, water treatment, packaging, and food industries. In recent years, using starch as a catalyst has attracted much attention. From a catalytic point of view, starch can be used in organic chemistry reactions as a catalyst or catalyst support. Reports show that as a catalyst, simple starch can promote many heterocyclic compound reactions. On the other hand, functionalized starch is not only capable of advancing the synthesis of heterocycles but also is a good candidate catalyst for other reactions including oxidation and coupling reactions. This review tries to provide a fair survey of published organic reactions which include using starch as a catalyst or a part of the main catalyst. Therefore, the other types of starch applications are not the subject of this review.
Collapse
Affiliation(s)
- Masoud Sadeghi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan P.O. Box: 87317-51167 Kashan Iran
| |
Collapse
|
19
|
Trofimova A, White B, Diaz DB, Širvinskas MJ, Lough A, Dudding T, Yudin AK. A Boron Scan of Ethyl Acetoacetate Leads to Versatile Building Blocks. Angew Chem Int Ed Engl 2024; 63:e202319842. [PMID: 38277239 DOI: 10.1002/anie.202319842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/28/2024]
Abstract
Discovered in the 19th century, ethyl acetoacetate has been central to the development of organic chemistry, including its pedagogy and applications. In this study, we present borylated derivatives of this venerable molecule. A boron handle has been installed at either α ${{\rm \alpha }}$ - or β ${\beta }$ -position of acetoacetate by homologation of acyl-MIDA (N-methyliminodiacetic acid) boronates with diazoacetates. Either alkyl or boryl groups were found to migrate with regiochemistry being a function of the steric bulk of the diazo species. Boryl β ${{\rm \beta }}$ -ketoesters can be further modified into borylated pyrazolones and oximes, thereby expanding the synthetic toolkit and offering opportunities for additional modifications.
Collapse
Affiliation(s)
- Alina Trofimova
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Brandon White
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Diego B Diaz
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Martynas J Širvinskas
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Alan Lough
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
20
|
Feng Y, Ren Y, Tang D, Wang KH, Wang J, Huang D, Lv X, Hu Y. Synthesis of difluoromethylated spiropyrazolones via [3 + 2] cycloaddition of difluoroacetohydrazonoyl bromides with alkylidene pyrazolones. Org Biomol Chem 2024; 22:2797-2812. [PMID: 38506310 DOI: 10.1039/d4ob00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
An effective [3 + 2] cycloaddition reaction of difluoromethyl or trifluoromethyl hydrazonoyl bromides with alkylidene pyrazolones was disclosed. This method provides an efficient approach for accessing a variety of highly functionalized fluoroalkyl spiropyrazolones in good yields. This protocol also features some advantages such as easily available and stable substrates, simple operation procedures, and atom and step economy. The formation of (cis)- and (trans)-products was discussed.
Collapse
Affiliation(s)
- Yang Feng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.
| | - Yuanyuan Ren
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.
| | - Duoduo Tang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.
| | - Xiaobo Lv
- Shanghai Sinofluoro Chemicals Co., Ltd., Shanghai 201321, P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
21
|
Wang Y, Liu J, Wang Y, Du X, Song H, Fang L, Wu L, Zhang T. Visible-Light-Promoted Aerobic α-Thiocyanation of Carbonyl Compounds with Ammonium Thiocyanate. J Org Chem 2024; 89:3453-3470. [PMID: 38335461 DOI: 10.1021/acs.joc.3c02896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
In the present study, we successfully developed an efficient thiocyanation of carbonyl compounds by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source under visible light in air (O2) at room temperature. This unified strategy is very facile for thiocyanation of various carbonyl compound derivatives (β-keto esters, β-keto amides, pyrazo-5-ones, isoxazol-5-ones, etc.). More importantly, the reaction proceeded smoothly without the addition of a photocatalyst and strong oxidant, ultimately minimizing the production of chemical waste. Furthermore, this green and sustainable synthetic chemistry can be used in the late-stage functionalization (LSF) of biorelevant compounds, which offers unique opportunities to achieve smooth and clean thiocyanation of drugs under mild reaction conditions.
Collapse
Affiliation(s)
- Yakun Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jie Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yingying Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xiaoyu Du
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Haojie Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Tao Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
22
|
Salehzadeh J, Nasiri F. A facile one-pot synthesis of new functionalized pyrazolone-1,4-dithiafulvene hybrids. Mol Divers 2024; 28:19-28. [PMID: 35761142 DOI: 10.1007/s11030-022-10473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
In this study, a one-pot reaction between β-keto esters or dialkyl acetylenedicarboxylates with hydrazines, carbon disulfide, and dialkyl acetylenedicarboxylates in the presence of triethylamine is reported. This reaction proceeded at room temperature and was completed within 6 h to produce functionalized pyrazolone-1,4-dithiafulvene hybrids in good yields.
Collapse
Affiliation(s)
- Jaber Salehzadeh
- Department of Applied Chemistry, University of Mohaghegh Ardabili, P.O. Box 56199, Ardabil, 11367, Iran
| | - Farough Nasiri
- Department of Applied Chemistry, University of Mohaghegh Ardabili, P.O. Box 56199, Ardabil, 11367, Iran.
| |
Collapse
|
23
|
Sudarshana KA, Sarma MJ, Radhakrishnan M, Chakravarty S, Srihari P, Mehta G. A protocol for directly accessing geminal C-4 diarylated pyrazol-5(4 H)-ones via tandem C-H aryne insertion and their inceptive neurobiological evaluation. Org Biomol Chem 2024; 22:714-719. [PMID: 38165701 DOI: 10.1039/d3ob01932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Geminal C-4 diarylation of substituted pyrazol-5(4H)-ones with in situ generated arynes as the aryl source has been achieved in a one-flask operation. All the newly accessed C4-gem-diarylated pyrazolone entities were found to be non-cytotoxic with varying AChE enzyme inhibitory activities and BBB permeability attributes that augur well for further advancement towards CNS therapeutics for untreatable disorders.
Collapse
Affiliation(s)
- K A Sudarshana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manas Jyoti Sarma
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| | - Mydhili Radhakrishnan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Pabbaraja Srihari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
24
|
Sánchez-Molpeceres R, Martín L, Esteban N, Miguel JA, Maestro A, Andrés JM. Enantioselective Amination of 4-Substituted Pyrazolones Catalyzed by Oxindole-Containing Thioureas and by a Recyclable Linear-Polymer-Supported Analogue in a Continuous Flow Process. J Org Chem 2024; 89:330-344. [PMID: 38096132 PMCID: PMC10777414 DOI: 10.1021/acs.joc.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
A highly efficient organocatalytic amination of 4-substituted pyrazolones with azodicarboxylates mediated by a novel quinine-derived thiourea with a 3,3-diaryl-oxindole scaffold is reported. This synthetic method furnished 4-amino-5-pyrazolones in high yields and with excellent enantioselectivities (up to 97:3 er) at room temperature in short reaction times. Moreover, a linear-polymer-supported bifunctional thiourea, synthesized by reacting a bifunctional aromatic monomer (biphenyl) with isatin in superacidic media and further derivatization, was proven to be also an efficient heterogeneous organocatalyst for this α-amination reaction. The practical value of this process was demonstrated by the use of the immobilized catalyst in recycling experiments, maintaining the activity without additional reactivation, and in flow processes, allowing the synthesis of 4-amino-pyrazolone derivatives in a gram scale with high yield and enantioselectivity.
Collapse
Affiliation(s)
- Rodrigo Sánchez-Molpeceres
- SintACat,
IU CINQUIMA y Departamento de Química Orgánica, Facultad
de Ciencias, Universidad de Valladolid, Paseo Belén 7, Valladolid 47011, Spain
| | - Laura Martín
- SintACat,
IU CINQUIMA y Departamento de Química Orgánica, Facultad
de Ciencias, Universidad de Valladolid, Paseo Belén 7, Valladolid 47011, Spain
| | - Noelia Esteban
- CLiNuMat,
IU CINQUIMA y Departamento de Química Física y Química
Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, Valladolid 47011, Spain
| | - Jesús A. Miguel
- CLiNuMat,
IU CINQUIMA y Departamento de Química Física y Química
Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, Valladolid 47011, Spain
| | - Alicia Maestro
- SintACat,
IU CINQUIMA y Departamento de Química Orgánica, Facultad
de Ciencias, Universidad de Valladolid, Paseo Belén 7, Valladolid 47011, Spain
| | - José M. Andrés
- SintACat,
IU CINQUIMA y Departamento de Química Orgánica, Facultad
de Ciencias, Universidad de Valladolid, Paseo Belén 7, Valladolid 47011, Spain
| |
Collapse
|
25
|
Chiu WJ, Chu TY, Barve IJ, Sun CM. Parallel Synthesis of Pyrazolone-Fused Cinnolines by the Palladium-Catalyzed [4 + 2] Annulation of Pyrazol-3-ones with Substituted Allenoates. J Org Chem 2024; 89:395-401. [PMID: 38133555 DOI: 10.1021/acs.joc.3c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The synthesis of pyrazolone-fused cinnolines from pyrazol-3-ones and α,γ-substituted allenoates via a palladium-catalyzed C-H activation/annulation cascade was developed. Mechanistic studies revealed the course of the reaction. Initially, N-acyl-valine ligand-assisted ortho-C-H activation gives ortho-alkenylated intermediate. Subsequent cyclopalladation and migratory insertion of allenoate give a seven-membered palladacycle. Reductive elimination finally furnishes pyrazolone-fused cinnolines.
Collapse
Affiliation(s)
- Wei-Jung Chiu
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, 1001, Ta-Hseuh Road, Hsinchu 300-10, Taiwan
| | - Ting-Yen Chu
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, 1001, Ta-Hseuh Road, Hsinchu 300-10, Taiwan
| | - Indrajeet J Barve
- Department of Chemistry, MES Abasaheb Garware College, Pune 411004, Maharashtra, India
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Yang-Ming Chiao-Tung University, 1001, Ta-Hseuh Road, Hsinchu 300-10, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan First Road, Kaohsiung 807-08, Taiwan
| |
Collapse
|
26
|
Abdou MM, Gizawy MA, Shamsel-Din HA. Green synthesis, radioiodination and in vivo biodistribution of 5-(2-hydroxyphenyl)-2,4-dihydro-3H-pyrazol-3-one derivatives as potential candidates for lung imaging. Appl Radiat Isot 2024; 203:111096. [PMID: 37949012 DOI: 10.1016/j.apradiso.2023.111096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Lung targeting was developed by synthesising pyrazolone derivatives 6a-f under solvent-free and thermal conditions by reacting azo coumarins 4a-c with hydrazines 5a and b using maltose as a biodegradable catalyst. Different spectral data characterized the synthesized agents as proton-NMR, FT-IR, and mass spectra. Direct radioiodination with iodine-131 was performed and optimized to reach the highest radiochemical purities (92 ± 0.47 to 98 ± 0.21%) using chloramine-T, a moderate oxidizing agent. The 131I-pyrazolone derivatives were confirmed based on HRMS. Furthermore, radioiodinated nitro-derivatives accumulated well in the lung of normal mice during in vivo evaluation, and the better uptake was for nitrophenyl-derivative 7f, about 30.06 ± 0.04% at 30 min after injection. Consequently, synthesized radioiodinated derivatives may be employed as prospective tracers for lung perfusion scans.
Collapse
Affiliation(s)
- Moaz M Abdou
- Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Mohamed A Gizawy
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759, Cairo, Egypt
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759, Cairo, Egypt.
| |
Collapse
|
27
|
Kurmanjiang T, Wang X, Li J, Mamat N, Nurmamat M, Xu G. A novel pyrazolone complex P-FAH-Cu-bpy induces death of Escherichia coli and Staphylococcus aureus by disrupting cell structure and blocking energy. Arch Microbiol 2023; 205:376. [PMID: 37940792 DOI: 10.1007/s00203-023-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
A novel pyrazolone-based copper complex [Cu(L)(bpy)]∙CH3OH (P-FAH-Cu-bpy) was synthesized and previously characterized to have antitumor properties. This study aimed to investigate its antibacterial properties and action modes against Escherichia coli and Staphylococcus aureus. By agar diffusion assay, P-FAH-Cu-bpy showed strong antibacterial activity against E. coli and S. aureus with the diameter of inhibition zone of 10.17-12.50 mm and 11.83-14 mm, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the complex were 1.5 and 3 μM, respectively. Destroyed bacteria cells and debris were clearly observed by SEM. At 2 MIC and 4 MIC of P-FAH-Cu-bpy, 1.1683 and 1.9083 pg copper per cell was taken by E. coli, and 4.5670 and 8.5250 pg per cell by S. aureus, respectively. Multi-step resistance selection showed both bacteria were sensitive to P-FAH-Cu-bpy without induction of resistance within 30 generations. With P-FAH-Cu-bpy treatment, the release of nucleotides and proteins and alkaline phosphatase was increased, but the activity of K+-Na+-ATPase and Ca2+-Mg2+-ATPase and membrane conductivity were decreased in both pathogens. In conclusion, P-FAH-Cu-bpy induced death of both bacteria by destroying the cell membrane structure and blocking energy and exhibited strong antibacterial activity against E. coli and S. aureus without inducing microbial resistance.
Collapse
Affiliation(s)
- Tamasha Kurmanjiang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Xiaojing Wang
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Jinyu Li
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China.
| | - Nuramina Mamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Marhaba Nurmamat
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830017, Xinjiang, China
| | - Guanchen Xu
- Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, China
| |
Collapse
|
28
|
Akocak S, Lolak N, Giovannuzzi S, Supuran CT. Potent and selective carbonic anhydrase inhibition activities of pyrazolones bearing benzenesulfonamides. Bioorg Med Chem Lett 2023; 95:129479. [PMID: 37704010 DOI: 10.1016/j.bmcl.2023.129479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
This research introduces a series of fourteen 4-aryl-hydrazonopyrazolone sulfonamide derivatives, denoted as 3(a-g) and 4(a-g), which encompass various aromatic substitutions. The aim was to assess the inhibitory potential of these compounds against four significant isoforms, including the cytosolic isoforms hCA I and II, as well as the tumor-associated membrane-bound isoforms hCA IX and XII. Most of the tested compounds exhibited substantial inhibition against the tumor-associated isoform hCA IX, with Ki values spanning from 1.1 to 158.2 nM. Notably, compounds 3e and 3g showed particularly strong inhibitory activity against the tumor-associated membrane-bound isoforms, hCA IX and XII, while maintaining a high selectivity ratio over cytosolic off-target isoforms hCA I and II. This selectivity is vital due to the potential of hCA IX and hCA XII as drug targets for hypoxic tumors. In an effort to create novel analogs that exhibit enhanced carbonic anhydrase inhibitory activity and specificity, we investigated the structure-activity relationships of these compounds and provided a concise interpretation of our findings. Consequently, these compounds merit consideration for subsequent medicinal and pharmacological research, holding potential for developing novel therapeutic agents targeting specific isoforms in hypoxic tumors.
Collapse
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Turkey.
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, 02040 Adıyaman, Turkey
| | - Simone Giovannuzzi
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Via U. Schiff 6, 50019 Sesto Fiorentino (Florence), Italy.
| |
Collapse
|
29
|
Singh V, Mishra BK, Kumar D, Tiwari B. Construction of Highly Functionalized C4-Oxyacylated and Aminated Pyrazolines. Org Lett 2023; 25:7089-7094. [PMID: 37748130 DOI: 10.1021/acs.orglett.3c02366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Pyrazolines and pyrazolones are prevalent cores in drugs and bioactive molecules. Functionalizing them with heteroatoms on the ring improves or expands their clinical efficacy. However, a general method to selectively heterofunctionalize them at C4 and C5 is still elusive. Herein, we have demonstrated an iodine(III)-mediated construction of C4-heterofunctionalized pyrazolines from α,β-unsaturated hydrazones. The oxyacylated and aminated products, bearing a tertiary as well as a secondary stereocenter, were obtained via aza-Michael, followed by a C-O/C-N bond formation. A deprotection/oxidation sequence produced pyrazolones in a quantitative yield.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Deepak Kumar
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
30
|
Hanpaibool C, Ounjai P, Yotphan S, Mulholland AJ, Spencer J, Ngamwongsatit N, Rungrotmongkol T. Enhancement by pyrazolones of colistin efficacy against mcr-1-expressing E. coli: an in silico and in vitro investigation. J Comput Aided Mol Des 2023; 37:479-489. [PMID: 37488458 DOI: 10.1007/s10822-023-00519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Owing to the emergence of antibiotic resistance, the polymyxin colistin has been recently revived to treat acute, multidrug-resistant Gram-negative bacterial infections. Positively charged colistin binds to negatively charged lipids and damages the outer membrane of Gram-negative bacteria. However, the MCR-1 protein, encoded by the mobile colistin resistance (mcr) gene, is involved in bacterial colistin resistance by catalysing phosphoethanolamine (PEA) transfer onto lipid A, neutralising its negative charge, and thereby reducing its interaction with colistin. Our preliminary results showed that treatment with a reference pyrazolone compound significantly reduced colistin minimal inhibitory concentrations in Escherichia coli expressing mcr-1 mediated colistin resistance (Hanpaibool et al. in ACS Omega, 2023). A docking-MD combination was used in an ensemble-based docking approach to identify further pyrazolone compounds as candidate MCR-1 inhibitors. Docking simulations revealed that 13/28 of the pyrazolone compounds tested are predicted to have lower binding free energies than the reference compound. Four of these were chosen for in vitro testing, with the results demonstrating that all the compounds tested could lower colistin MICs in an E. coli strain carrying the mcr-1 gene. Docking of pyrazolones into the MCR-1 active site reveals residues that are implicated in ligand-protein interactions, particularly E246, T285, H395, H466, and H478, which are located in the MCR-1 active site and which participate in interactions with MCR-1 in ≥ 8/10 of the lowest energy complexes. This study establishes pyrazolone-induced colistin susceptibility in E. coli carrying the mcr-1 gene, providing a method for the development of novel treatments against colistin-resistant bacteria.
Collapse
Affiliation(s)
- Chonnikan Hanpaibool
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence On Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok, 10400, Thailand
| | - Sirilata Yotphan
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
31
|
Xue A, Wei S, Wei X, Huang Y, Qu J, Wang B. Squaramide-catalyzed asymmetric regioselective allylic alkylation of 4-aminopyrazolones with Morita-Baylis-Hillman carbonates. Org Biomol Chem 2023; 21:7173-7179. [PMID: 37609939 DOI: 10.1039/d3ob01098h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An efficient squaramide-catalyzed asymmetric allylic alkylation of 4-aminopyrazolones with various MBH carbonates via different pathways has been described. This method provides access to a series of pyrazolone derivatives bearing a nitrogen-containing quaternary stereocenter in high yields with excellent enantioselectivities and regioselectivities under mild conditions. In addition, we utilized the target products to construct a range of bi-heterocyclic skeletons through [3 + 2] cycloadditions. These novel hybrid heterocycles would be promising candidates for drug-discovery programs and chemical biology.
Collapse
Affiliation(s)
- Aiqi Xue
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Shiqiang Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| |
Collapse
|
32
|
Mies T, White AJP, Rzepa HS, Barluzzi L, Devgan M, Layfield RA, Barrett AGM. Syntheses and Characterization of Main Group, Transition Metal, Lanthanide, and Actinide Complexes of Bidentate Acylpyrazolone Ligands. Inorg Chem 2023; 62:13253-13276. [PMID: 37549423 PMCID: PMC10445273 DOI: 10.1021/acs.inorgchem.3c01506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The synthesis of acylpyrazolone salts and their complexes of main group elements, transition metals, lanthanides, and actinides are described and characterized inter alia by means of single-crystal X-ray crystallography, NMR, and IR spectroscopies. The complexes consist of two, three, or four acylprazolone ligands bound to the metal atom, resulting in a structurally diverse set of coordination complexes with (distorted) octahedral, pentagonal-bipyramidal, or antiprismatic arrangements. Several complexes proved to be polymeric in the solid state including heterobimetallic sodium/lanthanide coordination polymers. A selection of the polymeric compounds was analyzed via TG/DTA measurements to establish their stability. The ligands, in turn, were readily synthesized in good yields from commercially available hydrazine hydrochloride salts. These findings demonstrate that acylpyrazolone ligands can form complexes with metals of varying ionic radii, highlighted by their utility in other areas such as analytical and metal organic framework chemistry.
Collapse
Affiliation(s)
- Thomas Mies
- Department
of Chemistry, Imperial College, Molecular
Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, England
| | - Andrew J. P. White
- Department
of Chemistry, Imperial College, Molecular
Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, England
| | - Henry S. Rzepa
- Department
of Chemistry, Imperial College, Molecular
Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, England
| | - Luciano Barluzzi
- Department
of Chemistry, University of Sussex, Falmer, Brighton BN1 9QR, England
| | - Mohit Devgan
- Department
of Chemistry, Imperial College, Molecular
Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, England
| | - Richard A. Layfield
- Department
of Chemistry, University of Sussex, Falmer, Brighton BN1 9QR, England
| | - Anthony G. M. Barrett
- Department
of Chemistry, Imperial College, Molecular
Sciences Research Hub, White City Campus, 82 Wood Lane, London W12 0BZ, England
| |
Collapse
|
33
|
Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci 2023; 24:12724. [PMID: 37628906 PMCID: PMC10454718 DOI: 10.3390/ijms241612724] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyrazole derivatives, as a class of heterocyclic compounds, possess unique chemical structures that confer them with a broad spectrum of pharmacological activities. They have been extensively explored for designing potent and selective anticancer agents. In recent years, numerous pyrazole derivatives have been synthesized and evaluated for their anticancer potential against various cancer cell lines. Structure-activity relationship studies have shown that appropriate substitution on different positions of the pyrazole ring can significantly enhance anticancer efficacy and tumor selectivity. It is noteworthy that many pyrazole derivatives have demonstrated multiple mechanisms of anticancer action by interacting with various targets including tubulin, EGFR, CDK, BTK, and DNA. Therefore, this review summarizes the current understanding on the structural features of pyrazole derivatives and their structure-activity relationships with different targets, aiming to facilitate the development of potential pyrazole-based anticancer drugs. We focus on the latest research advances in anticancer activities of pyrazole compounds reported from 2018 to present.
Collapse
Affiliation(s)
- Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
34
|
Morales-Manrique C, Baquero EA, Guevara-Pulido J. Recent Advances in the Synthesis of 3,4-Dihydropyran-2-Ones Organocatalyzed by N-Heterocyclic Carbenes. Molecules 2023; 28:molecules28093743. [PMID: 37175154 PMCID: PMC10179788 DOI: 10.3390/molecules28093743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, N-heterocyclic carbenes (NHC) have gained recognition as versatile molecules capable of acting as organocatalysts in various reactions, particularly through the activation of aldehydes via Breslow-type adducts. This organocatalytic activation has enabled the production of numerous 3,4-dihydropyran-2-ones and related derivatives. In this review, we provide an overview of the production of 3,4-dihydropyran-2-ones and derivatives via organocatalytic processes involving NHCs over the past eight years. These processes involve the use of a diverse range of substrates, catalysts, and reaction conditions, which can be classified into [4+2]-and [3+3]-type cycloadditions, primarily aimed at synthesizing this skeleton due to its biological activity and multiple stereocenters. These processes are scaled up to the gram scale, and the resulting products are often directed towards epimerization and functionalization to produce more complex molecules with potential applications in the biological field. Finally, we provide a perspective and the future directions of this topic in organic synthesis.
Collapse
Affiliation(s)
- Camilo Morales-Manrique
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 111321, Colombia
- INQA, Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 11001, Colombia
| | - Edwin A Baquero
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá 111321, Colombia
| | - James Guevara-Pulido
- INQA, Química Farmacéutica, Facultad de Ciencias, Universidad El Bosque, Bogotá 11001, Colombia
| |
Collapse
|
35
|
Wang Q, Li S, Yang G, Zou X, Yin X, Feng J, Chen H, Yang C, Zhang L, Lu C, Yue G. DABCO-Catalyzed Mono-/Diallylation of N-Unsubstituted Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipoles with Morita-Baylis-Hillman Carbonates. Molecules 2023; 28:molecules28073002. [PMID: 37049765 PMCID: PMC10095907 DOI: 10.3390/molecules28073002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Allylation of N-unsubstituted isatin N,N′-cyclic azomethine imines with Morita-Baylis-Hillman carbonates in the presence of 1–10 mol% DABCO in DCM at room temperature, rapidly gave N-allylated and N, β-diallylated isatin N,N′-cyclic azomethine imine 1,3-dipoles in moderate to high yields. The reaction features mild reaction conditions, easily practical operation, and short reaction times in most cases. Furthermore, the alkylated products were transformed into novel bicyclic spiropyrrolidine oxoindole derivatives through the [3+2] or [3+3]-cycloaddition with maleimides or Knoevenagel adducts.
Collapse
|
36
|
Musa A, Abulkhair HS, Aljuhani A, Rezki N, Abdelgawad MA, Shalaby K, El-Ghorab AH, Aouad MR. Phenylpyrazolone-1,2,3-triazole Hybrids as Potent Antiviral Agents with Promising SARS-CoV-2 Main Protease Inhibition Potential. Pharmaceuticals (Basel) 2023; 16:ph16030463. [PMID: 36986562 PMCID: PMC10051656 DOI: 10.3390/ph16030463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
COVID-19 infection is now considered one of the leading causes of human death. As an attempt towards the discovery of novel medications for the COVID-19 pandemic, nineteen novel compounds containing 1,2,3-triazole side chains linked to phenylpyrazolone scaffold and terminal lipophilic aryl parts with prominent substituent functionalities were designed and synthesized via a click reaction based on our previous work. The novel compounds were assessed using an in vitro effect on the growth of SARS-CoV-2 virus-infested Vero cells with different compound concentrations: 1 and 10 μM. The data revealed that most of these derivatives showed potent cellular anti-COVID-19 activity and inhibited viral replication by more than 50% with no or weak cytotoxic effect on harboring cells. In addition, in vitro assay employing the SARS-CoV-2-Main protease inhibition assay was done to test the inhibitors' ability to block the common primary protease of the SARS-CoV-2 virus as a mode of action. The obtained results show that the one non-linker analog 6h and two amide-based linkers 6i and 6q were the most active compounds with IC50 values of 5.08, 3.16, and 7.55 μM, respectively, against the viral protease in comparison to data of the selective antiviral agent GC-376. Molecular modeling studies were done for compound placement within the binding pocket of protease which reveal conserved residues hydrogen bonding and non-hydrogen interactions of 6i analog fragments: triazole scaffold, aryl part, and linker. Moreover, the stability of compounds and their interactions with the target pocket were also studied and analyzed by molecular dynamic simulations. The physicochemical and toxicity profiles were predicted, and the results show that compounds behave as an antiviral activity with low or no cellular or organ toxicity. All research results point to the potential usage of new chemotype potent derivatives as promising leads to be explored in vivo that might open the door to rational drug development of SARS-CoV-2 Main protease potent medicines.
Collapse
Affiliation(s)
- Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt
| | - Ateyatallah Aljuhani
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Nadjet Rezki
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ahmed H El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohamed R Aouad
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| |
Collapse
|
37
|
Cong S, Shi Y, Yu G, Zhong F, Li J, Liu J, Ye C, Tan Z, Deng Y. Discovery of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones as balanced multifunctional agents against Alzheimer's disease. Eur J Med Chem 2023; 250:115216. [PMID: 36857812 DOI: 10.1016/j.ejmech.2023.115216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Based on previous work, a series of novel 5-(2-hydroxyphenyl)-2-phthalide-3(3H)-pyrazolones derivatives were identified as potential multifunctional therapeutic agents for Alzheimer's disease. Biological evaluation exhibited that these derivatives had great performance against MAO-B, Aβ1-42 aggregation, oxidative stress and metal ion dyshomeostasis. Among them, 10x was selected as the optimal agent for its excellent MAO-B inhibitory activity (IC50 = 0.41 μM, SI > 24.4), good antioxidant activity (1.16 Trolox equivalent) and anti-Aβ aggregation activity (56.03% and 57.51% for inhibition of self- and Cu2+-induced Aβ1-42 aggregation; 81.91% and 82.40% for disaggregation of self- and Cu2+-induced Aβ1-42 fibrils at 25.0 μM). Besides, 10x also exhibited obvious metal-ion chelating ability, anti-neuroinflammation (NO, TNF-α), neuroprotective activity and BBB permeability. More importantly, in vivo behavioral assessment demonstrated 10x could remarkably improve the memory and cognitive impairment in Aβ1-42 induced AD mice model. Overall, these test results indicated 10x could serve as a balanced multifunctional anti-AD agent and deserved further research.
Collapse
Affiliation(s)
- Shiqin Cong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yichun Shi
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Guangjun Yu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Feng Zhong
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jingjing Li
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jing Liu
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chanyuan Ye
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenghuai Tan
- Institute of Traditional Chinese Medicine Pharmacology and Toxicology, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yong Deng
- Department of Medicinal Chemistry, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Hu X, Guo H, Jiang H, Zheng R, Zhou Y, Wang L. Visible-light-induced C(sp 3)-H thiocyanation of pyrazolin-5-ones: a practical synthesis of 4-thiocyanated 5-hydroxy-1 H-pyrazoles. Org Biomol Chem 2023; 21:2232-2235. [PMID: 36810647 DOI: 10.1039/d3ob00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A direct, aerobic and visible light photocatalytic approach to synthesize 4-thiocyanated 5-hydroxy-1H-pyrazoles via cross-coupling of pyrazolin-5-ones with ammonium thiocyanate is described. Under redox-neutral and metal-free conditions, a series of 4-thiocyanated 5-hydroxy-1H-pyrazoles could be easily and efficiently obtained in good to high yields by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source.
Collapse
Affiliation(s)
- Xiurong Hu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Haichang Guo
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Huajiang Jiang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Renhua Zheng
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Yaqin Zhou
- Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| | - Lei Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China. .,Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| |
Collapse
|
39
|
Hanpaibool C, Ngamwongsatit N, Ounjai P, Yotphan S, Wolschann P, Mulholland AJ, Spencer J, Rungrotmongkol T. Pyrazolones Potentiate Colistin Activity against MCR-1-Producing Resistant Bacteria: Computational and Microbiological Study. ACS OMEGA 2023; 8:8366-8376. [PMID: 36910942 PMCID: PMC9996792 DOI: 10.1021/acsomega.2c07165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The polymyxin colistin is a last line antibiotic for extensively resistant Gram-negative bacteria. Colistin binding to lipid A disrupts the Gram-negative outer membrane, but mobile colistin resistance (mcr) gene family members confer resistance by catalyzing phosphoethanolamine (PEA) transfer onto lipid A, neutralizing its negative charge to reduce colistin interactions. Multiple mcr isoforms have been identified in clinical and environmental isolates, with mcr-1 being the most widespread and mcr-3 being common in South and East Asia. Preliminary screening revealed that treatment with pyrazolones significantly reduced mcr-1, but not mcr-3, mediated colistin resistance. Molecular dynamics (MD) simulations of the catalytic domains of MCR-1 and a homology model of MCR-3, in different protonation states of active site residues H395/H380 and H478/H463, indicate that the MCR-1 active site has greater water accessibility than MCR-3, but that this is less influenced by changes in protonation. MD-optimized structures of MCR-1 and MCR-3 were used in virtual screening of 20 pyrazolone derivatives. Docking of these into the MCR-1/MCR-3 active sites identifies common residues likely to be involved in protein-ligand interactions, specifically the catalytic threonine (MCR-1 T285, MCR-3 T277) site of PEA addition, as well as differential interactions with adjacent amino acids. Minimal inhibitory concentration assays showed that the pyrazolone with the lowest predicted binding energy (ST3f) restores colistin susceptibility of mcr-1, but not mcr-3, expressing Escherichia coli. Thus, simulations indicate differences in the active site structure between MCR-1 and MCR-3 that may give rise to differences in pyrazolone binding and so relate to differential effects upon producer E. coli. This work identifies pyrazolones as able to restore colistin susceptibility of mcr-1-producing bacteria, laying the foundation for further investigations of their activity as phosphoethanolamine transferase inhibitors as well as of their differential activity toward mcr isoforms.
Collapse
Affiliation(s)
- Chonnikan Hanpaibool
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Natharin Ngamwongsatit
- Department
of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
- Laboratory
of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Puey Ounjai
- Department
of Biology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
- Center
of Excellence on Environmental Health and Toxicology, Office of Higher
Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Sirilata Yotphan
- Center of
Excellence for Innovation in Chemistry (PERCH-CIC), Department of
Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Peter Wolschann
- Institute
of Theoretical Chemistry, University of
Vienna, Vienna 1090, Austria
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Biocatalyst and Sustainable Biotechnology, Department
of Biochemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10400, Thailand
| |
Collapse
|
40
|
Lapshin LS, Shchegolkov EV, Burgart YV, Triandafilova GA, Krasnykh OP, Malysheva KO, Saloutin VI. Synthesis of new analgesics based on 4-isopropyl-1-phenyl-3-(trifluoromethyl)pyrazol-5-one. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
41
|
Li Y, Luo Y, Wang J, Shi H, Liao J, Wang Y, Chen Z, Xiong L, Zhang C, Wang T. Discovery of novel danshensu derivatives bearing pyrazolone moiety as potential anti-ischemic stroke agents with antioxidant activity. Bioorg Chem 2023; 131:106283. [PMID: 36436417 DOI: 10.1016/j.bioorg.2022.106283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Neuroprotective agents with attenuation of oxidative stress by directly scavenging ROS and indirectly through Keap1-Nrf2 signal pathway activation may be a promising cerebral ischemic stroke therapeutic strategy. In this study, a series of novel danshensu derivatives bearing pyrazolone moieties with dual antioxidant effects were synthesized for the treatment of ischemic stroke. Most compounds exhibited considerable DPPH free radical scavenging ability and neuroprotective activity against H2O2-induced oxidative injury in PC12 neuronal cells, without cytotoxicity. Among these target compounds, Del03 displayed the strongest dose-dependent neuroprotective activity in vitro, directly downregulated intracellular ROS levels, and improved the oxidative stress parameters MDA, SOD, and LDH. Del03 also promoted Nrf2 translocation to the nucleus, subsequently increasing the expression of the Nrf2 downstream target HO-1. Molecular docking analysis revealed that Del03 could anchor to the key site of Keap1. Del03 possessed the ability to penetrate blood-brain barrier and displayed good ability on pharmacokinetic properties in rats Del03 possessed good BBB penetration efficiency, suitable pharmacokinetic properties in vivo. Del03 reduced cerebral infarction volume and promoted neurological function in a middle cerebral artery occlusion (MCAO) mouse model at a dose of 20 mg/kg by intravenous injection. The characteristics of Del03 detailed in this study demonstrate its potential as a therapeutic agent in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jing Wang
- Department of Pharmacy, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Hao Shi
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Wang
- Baoshan Zhaohui New Drug R & D and Transformation Functional Platform, Zhaohui Pharmaceutical, Shanghai 201908, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York 11439, USA
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
42
|
Shaikh S, Dhavan P, Singh P, Uparkar J, Vaidya SP, Jadhav BL, Ramana MMV. Design, synthesis and biological evaluation of novel antipyrine based α-aminophosphonates as anti-Alzheimer and anti-inflammatory agent. J Biomol Struct Dyn 2023; 41:386-401. [PMID: 34878960 DOI: 10.1080/07391102.2021.2006088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, a series of novel antipyrine based α-aminophosphonates derivatives were synthesized and characterized. The synthesized derivatives were subjected for in vitro cholinesterase inhibition, enzyme kinetic studies, protein denaturation assay, proteinase inhibitory assay and cell viability assay. For cholinesterase inhibition, the results inferred that the test compounds possess better AChE activity (0.46 to 6.67 µM) than BuChE (2.395 to 12.47 µM). Compound 4j inhibited both AChE and BuChE (IC50 = 0.475 ± 0.12 µM and 2.95 ± 0.16 µM, respectively), implying that it serves as a dual AChE/BuChE inhibitor. Also, kinetic studies revealed that compound 4j exhibits mixed-type inhibition against both AChE and BuChE, with Ki values of 3.003 µM and 5.750 µM, respectively. Further, protein denaturation and proteinase inhibitory assays were used to test in vitro anti-inflammatory potential. It was found that compound 4o exhibited highest activity against protein denaturation (IC50 = 42.64 ± 0.19 µM) and proteinase inhibition (IC50 = 37.57 ± 0.19 µM) when compared to diclofenac. In addition, cell viability assay revealed that active compounds possess no cytotoxicity against N2a cell and RAW 264.7 macrophages. Finally, molecular docking experiments for AChE, BuChE, and COX-2 were conducted to better understand the binding modes of active compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarfaraz Shaikh
- Department of Chemistry, University of Mumbai, Santacruz East, Mumbai, India
| | - Pratik Dhavan
- Department of Life sciences, University of Mumbai, Santacruz East, Mumbai, India
| | - Pinky Singh
- Department of Microbiology, Haffkine Institute, Parel, Mumbai, India
| | - Jasmin Uparkar
- Department of Chemistry, University of Mumbai, Santacruz East, Mumbai, India
| | - S P Vaidya
- Department of Microbiology, Haffkine Institute, Parel, Mumbai, India
| | - B L Jadhav
- Department of Life sciences, University of Mumbai, Santacruz East, Mumbai, India
| | - M M V Ramana
- Department of Chemistry, University of Mumbai, Santacruz East, Mumbai, India
| |
Collapse
|
43
|
Branković J, Milovanović VM, Petrović ZD, Simijonović D, Petrović VP. Pyrazolone-type compounds (part II): in vitro and in silico evaluation of antioxidant potential; structure-activity relationship. RSC Adv 2023; 13:2884-2895. [PMID: 36756409 PMCID: PMC9846718 DOI: 10.1039/d2ra08280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The pyrazolone class comprises a variety of hybrid compounds displaying diverse biological actions. Although studied for decades, these compounds are still of interest due to their facile chemical transformations. In our previous work, we presented the synthetic route of functionalised pyrazolone derivatives. The presence of pyrazolone structural motif in many drugs, such as edaravone, prompted us to investigate the antioxidant features of the selected compounds. In this paper, we provide an extensive in vitro and in silico description of the antioxidant properties of selected pyrazolone analogues. The obtained in vitro results revealed their great antiradical potency against the DPPH radical (IC50 values in the 2.6-7.8 μM range), where the best results were obtained for analogues bearing a catechol moiety. Density functional theory (DFT) was used to assess their antioxidant capacity from the thermodynamic aspect. Here, good agreement with in vitro results was achieved. DFT was employed for the prediction of the most preferable radical scavenging pathway, also. In polar solvents, the SPLET mechanism is a favourable scavenging route, whereas in nonpolar solvents the HAT is slightly predominant. Furthermore, antioxidant mechanisms were studied in the presence of relevant reactive oxygen species. The obtained values of the reaction enthalpies with the selected radicals revealed that HAT is slightly prevailing in polar solvents, while the SPLET mechanism is dominant in nonpolar solvents. Regarding the well-known antioxidant features of the drug edaravone, these findings represent valuable data for this pyrazolone class and could be used as the basis for further investigations.
Collapse
Affiliation(s)
- Jovica Branković
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| | - Vesna M Milovanović
- University of Kragujevac, Faculty of Agronomy, Department of Chemistry and Chemical Engineering Cara Dušana 34 32000 Čačak Serbia
| | - Zorica D Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Vladimir P Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| |
Collapse
|
44
|
Prasad MS, Sivaprakash M. Asymmetric synthesis of the perhydroepoxyethanoindole core via sequential [4 + 2]-addition/reduction/fluoroannulation reactions. Org Biomol Chem 2023; 21:339-344. [PMID: 36477116 DOI: 10.1039/d2ob02058k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Herein, we present the sequential aminocatalytic [4 + 2]-addition/reduction and fluoroannulation reactions to afford a novel class of bridged fluoro-perhydroepoxyethanoindole spiropyrazolone and fluoro-perhydroepoxyethanoindole spirooxindole moieties with six contiguous stereocenters. An array of perhydroepoxyethanoindole core derivatives (up to 31 examples) mimicking aspidosperma alkaloids were obtained with moderate to good yields and excellent enantio- and diastereo-selectivities (up to 69% overall yield, up to 99.9% ee and up to >20 : 1 dr). Furthermore, we have also disclosed the synthesis of the unexpected tribromo derivative of hexahydroepoxyethanoindole spiropyrazolone in a moderate yield with excellent selectivity by employing the developed protocol in sequential bromoannulation reactions.
Collapse
Affiliation(s)
- Madavi S Prasad
- Asymmetric synthesis and catalysis laboratory, Department of Chemistry, Central University of Tamil Nadu (CUTN), Tiruvarur-610 005, India.
| | - Murugesan Sivaprakash
- Asymmetric synthesis and catalysis laboratory, Department of Chemistry, Central University of Tamil Nadu (CUTN), Tiruvarur-610 005, India.
| |
Collapse
|
45
|
Khurshid A, Saeed A, Shabir G, Gil DM, Bolte M, Erben MF. Synthesis of phenazone based carboxamide under thiourea reaction conditions. Molecular and crystal structure, Hirshfeld surface analysis and intermolecular interaction energies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Chandane W, Gajare S, Patil A, Rashinkar G, Tamhankar B. Nanoparticle Supported Bronsted Acidic Ionic Liquid Catalyzed Synthesis of Dihydro-1H-pyrazolylnaphthalene-1,4-diones. Catal Letters 2022. [DOI: 10.1007/s10562-022-04243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Powerful Potential of Polyfluoroalkyl-Containing 4-Arylhydrazinylidenepyrazol-3-ones for Pharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010059. [PMID: 36615256 PMCID: PMC9821843 DOI: 10.3390/molecules28010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 μg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking.
Collapse
|
48
|
Synthesis of 4-Aminopyrazol-5-ols as Edaravone Analogs and Their Antioxidant Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227722. [PMID: 36431823 PMCID: PMC9699072 DOI: 10.3390/molecules27227722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022]
Abstract
One of the powerful antioxidants used clinically is Edaravone (EDA). We synthesized a series of new EDA analogs, 4-aminopyrazol-5-ol hydrochlorides, including polyfluoroalkyl derivatives, via the reduction of 4-hydroxyiminopyrazol-5-ones. The primary antioxidant activity of the compounds in comparison with EDA was investigated in vitro using ABTS, FRAP, and ORAC tests. In all tests, 4-Amino-3-pyrazol-5-ols were effective. The lead compound, 4-amino-3-methyl-1-phenylpyrazol-5-ol hydrochloride (APH), showed the following activities: ABTS, 0.93 TEAC; FRAP, 0.98 TE; and ORAC, 4.39 TE. APH and its NH-analog were not cytotoxic against cultured normal human fibroblasts even at 100 μM, in contrast to EDA. According to QM calculations, 4-aminopyrazolols were characterized by lower gaps, IP, and η compared to 4-hydroxyiminopyrazol-5-ones, consistent with their higher antioxidant activities in ABTS and FRAP tests, realized by the SET mechanism. The radical-scavenging action evaluated in the ORAC test occurred by the HAT mechanism through OH bond breaking in all compounds, directly dependent on the dissociation energy of the OH bond. All the studied compounds demonstrated the absence of anticholinesterase activity and moderate inhibition of CES by some 4-aminopyrazolols. Thus, the lead compound APH was found to be a good antioxidant with the potential to be developed as a novel therapeutic drug candidate in the treatment of diseases associated with oxidative stress.
Collapse
|
49
|
Kochetkov KA, Gorunova ON, Bystrova NA, Dudina PV, Akimov MG. Synthesis and physiological activity of new imidazolidin-2-one bis-heterocyclic derivatives. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Synthesis and Characterization of a Calcium‐Pyrazolonato Complex. Observation of
In‐Situ
Desolvation During Micro‐Electron Diffraction. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|