1
|
Nguyen A, Roy JJS, Kim JH, Yun KH, Lee W, Kim KK, Kim T, Chaurasia AK. Repeated Exposure of Vancomycin to Vancomycin-Susceptible Staphylococcus aureus (VSSA) Parent Emerged VISA and VRSA Strains with Enhanced Virulence Potentials. J Microbiol 2024; 62:535-553. [PMID: 38814539 DOI: 10.1007/s12275-024-00139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
The emergence of resistance against the last-resort antibiotic vancomycin in staphylococcal infections is a serious concern for human health. Although various drug-resistant pathogens of diverse genetic backgrounds show higher virulence potential, the underlying mechanism behind this is not yet clear due to variability in their genetic dispositions. In this study, we investigated the correlation between resistance and virulence in adaptively evolved isogenic strains. The vancomycin-susceptible Staphylococcus aureus USA300 was exposed to various concentrations of vancomycin repeatedly as a mimic of the clinical regimen to obtain mutation(s)-accrued-clonally-selected (MACS) strains. The phenotypic analyses followed by expression of the representative genes responsible for virulence and resistance of MACS strains were investigated. MACS strains obtained under 2 and 8 µg/ml vancomycin, named Van2 and Van8, respectively; showed enhanced vancomycin minimal inhibitory concentrations (MIC) to 4 and 16 µg/ml, respectively. The cell adhesion and invasion of MACS strains increased in proportion to their MICs. The correlation between resistance and virulence potential was partially explained by the differential expression of genes known to be involved in both virulence and resistance in MACS strains compared to parent S. aureus USA300. Repeated treatment of vancomycin against vancomycin-susceptible S. aureus (VSSA) leads to the emergence of vancomycin-resistant strains with variable levels of enhanced virulence potentials.
Collapse
Affiliation(s)
- An Nguyen
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - J Jean Sophy Roy
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung-Hee Yun
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Truc Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Akhilesh Kumar Chaurasia
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Selvaraj SP, Chen JY. Conjugation of antimicrobial peptides to enhance therapeutic efficacy. Eur J Med Chem 2023; 259:115680. [PMID: 37515922 DOI: 10.1016/j.ejmech.2023.115680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
The growing prevalence of antimicrobial resistance (AMR) has brought with it a continual increase in the numbers of deaths from multidrug-resistant (MDR) infections. Since the current arsenal of antibiotics has become increasingly ineffective, there exists an urgent need for discovery and development of novel antimicrobials. Antimicrobial peptides (AMPs) are considered to be a promising class of molecules due to their broad-spectrum activities and low resistance rates compared with other types of antibiotics. Since AMPs also often play major roles in elevating the host immune response, the molecules may also be called "host defense peptides." Despite the great promise of AMPs, the majority remain unsuitable for clinical use due to issues of structural instability, degradation by proteases, and/or toxicity to host cells. Moreover, AMP activities in vivo can be influenced by many factors, such as interaction with blood and serum biomolecules, physiological salt concentrations or different pH values. To overcome these limitations, structural modifications can be made to the AMP. Among several modifications, physical and chemical conjugation of AMP to other biomolecules is widely considered an effective strategy. In this review, we discuss structural modification strategies related to conjugation of AMPs and their possible effects on mode of action. The conjugation of fatty acids, glycans, antibiotics, photosensitizers, polymers, nucleic acids, nanoparticles, and immobilization to biomaterials are highlighted.
Collapse
Affiliation(s)
- Sanjay Prasad Selvaraj
- Molecular and Biological Agricultural Science Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan; Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Rd, Jiaushi, Ilan, 262, Taiwan; The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
3
|
Xue S, Xu W, Wang L, Xu L, Calcul L, Teng P, Lu L, Jiang S, Cai J. Rational Design of Sulfonyl-γ-AApeptides as Highly Potent HIV-1 Fusion Inhibitors with Broad-Spectrum Activity. J Med Chem 2023; 66:13319-13331. [PMID: 37706450 DOI: 10.1021/acs.jmedchem.3c01412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The HIV-1 epidemic has significant social and economic implications for public health. Developing new antivirus drugs to eradicate drug resistance is still urgently needed. Herein, we demonstrated that sulfonyl-γ-AApeptides could be designed to mimic MTSC22EK, one potent HIV fusion inhibitor derived from CHR. The best two sequences revealed comparable activity to MTSC22EK in an authentic HIV-1 infection assay and exhibited broad-spectrum anti-HIV-1 activity to many HIV-1 clinical isolates. Furthermore, sulfonyl-γ-AApeptides show remarkable resistance to proteolysis and favorable permeability in PAMPA-GIT and PAMPA-BBB assays, suggesting that both sequences could control HIV-1 within the central nervous system and possess promising oral bioavailability. Mechanistic investigations suggest that these sulfonyl-γ-AApeptides function by mimicking the CHR of gp41 and tightly bind with NHR, thereby inhibiting the formation of the 6-HB structure necessary for HIV-1 fusion. Overall, our results suggest that sulfonyl-γ-AApeptides represent a new generation of anti-HIV-1 fusion inhibitors. Moreover, this design strategy could be adopted to modulate many of the PPIs.
Collapse
Affiliation(s)
- Songyi Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Ling Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Laurent Calcul
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
4
|
Zhou L, Jeong IH, Xue S, Xue M, Wang L, Li S, Liu R, Jeong GH, Wang X, Cai J, Yin J, Huang B. Inhibition of the Ubiquitin Transfer Cascade by a Peptidomimetic Foldamer Mimicking the E2 N-Terminal Helix. J Med Chem 2023; 66:491-502. [PMID: 36571278 DOI: 10.1021/acs.jmedchem.2c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The enzymatic cascades for ubiquitin transfer regulate key cellular processes and are the intense focus of drug development for treating cancer and neurodegenerative diseases. E1 is at the apex of the UB transfer cascade, and molecules inhibiting E1 have shown promising activities against cancer cell proliferation. Compared to small molecules, peptidomimetics have emerged as powerful tools to disrupt the protein-protein interactions (PPI) with less drug resistance and high stability in the cell. Herein, we harnessed the D-sulfono-γ-AA peptide to mimic the N-terminal helix of E2 and thereby inhibit E1-E2 interaction. Two stapled peptidomimetics, M1-S1 and M1-S2, were identified as effective inhibitors to block UB transfer from E1 to E2, as shown by in vitro and cellular assays. Our work suggested that PPIs with the N-terminal helix of E2 at the E1-E2 and E2-E3 interfaces could be a promising target for designing inhibitors against protein ubiquitination pathways in the cell.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia30303, United States
| | - In Ho Jeong
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia30303, United States
| | - Songyi Xue
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Menglin Xue
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Lei Wang
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Sihao Li
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Ruochuan Liu
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia30303, United States
| | - Geon Ho Jeong
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia30303, United States
| | - Xiaoyu Wang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia30303, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, Georgia30303, United States
| | - Bo Huang
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| |
Collapse
|
5
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
6
|
Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022; 10:4694-4723. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.
Collapse
Affiliation(s)
- Alpana Boruah
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Roy
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Zhang X, Wang M, Zhu X, Peng Y, Fu T, Hu CH, Cai J, Liao G. Development of Lipo-γ-AA Peptides as Potent Antifungal Agents. J Med Chem 2022; 65:8029-8039. [PMID: 35637173 DOI: 10.1021/acs.jmedchem.2c00595] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of drug-resistant fungal pathogens poses great threats to an increasing number of vulnerable populations worldwide, and the need for novel antifungal agents is imperative. In this work, a series of lipo-γ-AA peptides were synthesized and evaluated for their biological activities. One lead, MW5, exhibited potent and broad-spectrum antifungal activity. In addition, MW5 potently boosted the efficacy of fluconazole against clinical azole-resistant Candida isolates. Mechanistic investigation showed that the lead compound disrupted the cell membrane, significantly boosted the production of reactive oxygen species, and undermined the function of the efflux pump, thus resensitizing drug-resistant Candida albicans to fluconazole. Notably, coadministration of MW5 and fluconazole exhibited potent in vivo antifungal activity in a murine model of mucocutaneous candidiasis. Our results demonstrated that lipo-γ-AA peptides have great promise for use alone or in combination to combat drug-resistant Candida infections.
Collapse
Affiliation(s)
- Xing Zhang
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaodi Zhu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Yan Peng
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Tiwei Fu
- Chongqing Medical University Stomatology College, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Guojian Liao
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
8
|
Tallet L, Frisch E, Bornerie M, Medemblik C, Frisch B, Lavalle P, Guichard G, Douat C, Kichler A. Design of Oligourea-Based Foldamers with Antibacterial and Antifungal Activities. Molecules 2022; 27:1749. [PMID: 35268850 PMCID: PMC8911826 DOI: 10.3390/molecules27051749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
There is an urgent need to develop new therapeutic strategies to fight the emergence of multidrug resistant bacteria. Many antimicrobial peptides (AMPs) have been identified and characterized, but clinical translation has been limited partly due to their structural instability and degradability in physiological environments. The use of unnatural backbones leading to foldamers can generate peptidomimetics with improved properties and conformational stability. We recently reported the successful design of urea-based eukaryotic cell-penetrating foldamers (CPFs). Since cell-penetrating peptides and AMPs generally share many common features, we prepared new sequences derived from CPFs by varying the distribution of histidine- and arginine-type residues at the surface of the oligourea helix, and evaluated their activity on both Gram-positive and Gram-negative bacteria as well as on fungi. In addition, we prepared and tested new amphiphilic block cofoldamers consisting of an oligourea and a peptide segment whereby polar and charged residues are located in the peptide segment and more hydrophobic residues in the oligourea segment. Several foldamer sequences were found to display potent antibacterial activities even in the presence of 50% serum. Importantly, we show that these urea-based foldamers also possess promising antifungal properties.
Collapse
Affiliation(s)
- Lorène Tallet
- Inserm UMR 1121, 11 rue Humann, F-67085 Strasbourg, France; (L.T.); (E.F.); (C.M.); (P.L.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Emilie Frisch
- Inserm UMR 1121, 11 rue Humann, F-67085 Strasbourg, France; (L.T.); (E.F.); (C.M.); (P.L.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Mégane Bornerie
- CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France;
| | - Claire Medemblik
- Inserm UMR 1121, 11 rue Humann, F-67085 Strasbourg, France; (L.T.); (E.F.); (C.M.); (P.L.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Benoît Frisch
- CAMB 7199 CNRS, Equipe 3Bio, Faculté de Pharmacie, Université de Strasbourg, F-67401 Illkirch, France;
| | - Philippe Lavalle
- Inserm UMR 1121, 11 rue Humann, F-67085 Strasbourg, France; (L.T.); (E.F.); (C.M.); (P.L.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
| | - Gilles Guichard
- CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France;
| | - Céline Douat
- CNRS, Bordeaux INP, CBMN, UMR 5248, Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, F-33607 Pessac, France;
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 München, Germany
| | - Antoine Kichler
- CAMB 7199 CNRS, Equipe 3Bio, Faculté de Pharmacie, Université de Strasbourg, F-67401 Illkirch, France;
| |
Collapse
|
9
|
Abdildinova A, Kurth MJ, Gong Y. Solid‐Phase Synthesis of Peptidomimetics with Peptide Backbone Modifications. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Aizhan Abdildinova
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| | - Mark J. Kurth
- Department of Chemistry University of California Davis CA 95616 USA
| | - Young‐Dae Gong
- Innovative Drug Library Research Center Department of Chemistry College of Science Dongguk University 26, 3-ga, Pil-dong, Jung-gu Seoul 04620 Korea
| |
Collapse
|
10
|
Li W, Separovic F, O'Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 2021; 50:4932-4973. [PMID: 33710195 DOI: 10.1039/d0cs01026j] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.
Collapse
Affiliation(s)
- Wenyi Li
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, VIC 3010, Australia and School of Chemistry, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, Centre for Oral Health Research, University of Melbourne, VIC 3010, Australia. and Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia and The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
11
|
Wei L, Gao R, Wang M, Wang Y, Shi Y, Gu M, Cai J. Dimeric lipo-α/sulfono-γ-AA hybrid peptides as broad-spectrum antibiotic agents. Biomater Sci 2021; 9:3410-3424. [PMID: 33949388 PMCID: PMC8903075 DOI: 10.1039/d0bm01955k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
There is an urgent need to develop novel antibiotic agents that can combat emerging drug resistance. Herein, we report the design and investigation of a class of short dimeric antimicrobial lipo-α/sulfono-γ-AA hybrid peptides. Some of these peptides exhibit potent and broad-spectrum antimicrobial activity toward both clinically related Gram-positive and Gram-negative bacteria. The TEM study suggests that these hybrid peptides can compromise bacterial membranes and lead to bacterial death. Membrane depolarization and fluorescence microscopy studies also indicate that the mechanism of action is analogous to host-defense peptides (HDPs). Furthermore, the lead compound shows the ability to effectively inhibit biofilms formed from MRSA and E. coli. Further development of the short dimeric lipo-α/sulfono-γ-AA hybrid peptides may lead to a new generation of antimicrobial biomaterials to combat drug resistance.
Collapse
Affiliation(s)
- Lulu Wei
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Ruixuan Gao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Minghui Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Yafeng Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Yan Shi
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Meng Gu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| |
Collapse
|
12
|
Zhang Z, Jones MM, Sabatini C, Vanyo ST, Yang M, Kumar A, Jiang Y, Swihart MT, Visser MB, Cheng C. Synthesis and antibacterial activity of polymer-antibiotic conjugates incorporated into a resin-based dental adhesive. Biomater Sci 2021; 9:2043-2052. [PMID: 33464241 PMCID: PMC7990707 DOI: 10.1039/d0bm01910k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work reports on polymer-antibiotic conjugates (PACs) as additives to resin-based restorative dental materials as a new strategy to convey sustained antibacterial character to these materials. Such antibacterial performance is expected to improve their longevity in the oral cavity. Using the previously reported ciprofloxacin (Cip)-based PAC as a control, a penicillin V (PV)-based PAC was investigated. The monomer-antibiotic conjugate (MAC) containing a methacrylate monomer group and a PV moiety was prepared via nucleophilic substitution between 2-chloroethyl methacrylate (CEMA) and penicillin V potassium (PVK). The PV-based PAC was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of the MAC with hydroxyethyl methacrylate (HEMA), and further characterized by 1H NMR and gel permeation chromatography (GPC) analysis. Antibiotic resistance was investigated by passaging bacteria in low concentrations of the antibiotic for 19 days, followed by a 48 h challenge at higher concentrations. Our results suggest that the development of antibiotic resistance is unlikely. Zone of inhibition (ZOI) assays revealed no clearing zones around PV-containing resins indicating minimal antibiotic leakage from the material. Similarly, MTT assay demonstrated that the antibiotic-containing specimens did not release cytotoxic byproducts that may inhibit human gingival fibroblast growth. Counting of colony-forming units in an S. mutans biofilm model was used to assess bacterial survival at baseline and after subjecting the antibiotic-containing resin specimens to an enzymatic challenge for 30 days. Significantly reduced bacterial counts were observed as the biofilm aged from 24 to 72 h, and salivary enzymatic exposure did not reduce the antibacterial efficacy of the discs, suggesting that PV-resin will be effective in reducing the re-incidence of dental caries.
Collapse
Affiliation(s)
- Ziwen Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, Xu W, Ren C. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces 2021; 202:111682. [PMID: 33714188 DOI: 10.1016/j.colsurfb.2021.111682] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
In the past few decades, peptide antibacterial products with unique antibacterial mechanisms have attracted widespread interest. They can effectively reduce the probability of drug resistance of bacteria and are biocompatible, so they possess tremendous development prospects. This review provides recent research and analysis on the basic types of antimicrobial peptides (including poly (amino acid)s, short AMPs, and lipopeptides) and factors to optimize antimicrobial effects. It also summarizes the two most important modes of action of antimicrobial peptides and the latest developments in the application of AMPs, including antimicrobial agent, wound healing, preservative, antibacterial coating and others. Finally, we discuss the remaining challenges to improve the antibacterial peptides and propose prospects in the field.
Collapse
Affiliation(s)
- Yuhan Yan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuanze Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Zhiwen Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Xinhao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai, 264000, China.
| |
Collapse
|
14
|
Fuller AA, Moreno JL, Nguyen MT. Using Fluorescence to Enable Innovative Functions of Foldamers. Isr J Chem 2021. [DOI: 10.1002/ijch.202000109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amelia A. Fuller
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| | - Jose L. Moreno
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| | - Michelle T. Nguyen
- Department of Chemistry & Biochemistry Santa Clara University 500 El Camino Real Santa Clara CA 95053 USA
| |
Collapse
|
15
|
Lin S, Chen Y, Li H, Liu J, Liu S. Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents. Eur J Med Chem 2020; 202:112596. [PMID: 32659547 DOI: 10.1016/j.ejmech.2020.112596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023]
Abstract
New antimicrobial agents are urgently needed to overcome drug-resistant bacterial infections. Here we describe the design, synthesis and evaluation of a new class of amphiphilic sofalcone compounds as antimicrobial peptidomimetics. The most promising compound 14, bearing two arginine residues, showed poor hemolytic activity, low cytotoxicity, and excellent antimicrobial activity against Gram-positive bacteria, including MRSA. Compound 14, had good stability in various salt conditions, killed bacteria rapidly by directly disrupting bacterial cell membranes and was slow at developing bacterial resistance. Additionally, compound 14 exhibited effective in vivo efficacy in the murine model of bacterial keratitis caused by Staphylococcus aureus ATCC29213. Our studies suggested that compound 14 possessed promising potential to be used as a novel antimicrobial agent to combat drug-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Shuimu Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Yongzhi Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hongxia Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiayong Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Shouping Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|