1
|
Sudarshana KA, Sarma MJ, Radhakrishnan M, Chakravarty S, Srihari P, Mehta G. A protocol for directly accessing geminal C-4 diarylated pyrazol-5(4 H)-ones via tandem C-H aryne insertion and their inceptive neurobiological evaluation. Org Biomol Chem 2024; 22:714-719. [PMID: 38165701 DOI: 10.1039/d3ob01932b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Geminal C-4 diarylation of substituted pyrazol-5(4H)-ones with in situ generated arynes as the aryl source has been achieved in a one-flask operation. All the newly accessed C4-gem-diarylated pyrazolone entities were found to be non-cytotoxic with varying AChE enzyme inhibitory activities and BBB permeability attributes that augur well for further advancement towards CNS therapeutics for untreatable disorders.
Collapse
Affiliation(s)
- K A Sudarshana
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manas Jyoti Sarma
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| | - Mydhili Radhakrishnan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Sumana Chakravarty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Pabbaraja Srihari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, India.
| |
Collapse
|
2
|
Zhu K, Wang L, Liao T, Li W, Zhou J, You Y, Shi J. Progress in the development of TRPV1 small-molecule antagonists: Novel Strategies for pain management. Eur J Med Chem 2023; 261:115806. [PMID: 37713804 DOI: 10.1016/j.ejmech.2023.115806] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channels are widely distributed in sensory nerve endings, the central nervous system, and other tissues, functioning as ion channel proteins responsive to thermal pain and chemical stimuli. In recent years, the TRPV1 receptor has garnered significant interest as a potential therapeutic approach for various pain-related disorders, particularly TRPV1 antagonists. The present review offers a comprehensive, systematic exploration of both first- and second-generation TRPV1 antagonists in the context of pain management. Antagonists are categorized and explicated according to their structural characteristics. Detailed examination of binding modes, structural features, and pharmacological activities, alongside a critical appraisal of the advantages and limitations inherent to typical compounds within each structural category, are undertaken. Detailed discussions of the binding modes, structural features, pharmacological activities, advantages, and limitations of typical compounds within each structural category offer valuable insights and guidance for the future research and development of safer, more effective, and more targeted TRPV1 antagonists.
Collapse
Affiliation(s)
- Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Lin Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - TingTing Liao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jing Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
3
|
Rashdan HRM, El-Sayyad GS, Shehadi IA, Abdelmonsef AH. Antimicrobial Potency and E. coli β-Carbonic Anhydrase Inhibition Efficacy of Phenazone-Based Molecules. Molecules 2023; 28:7491. [PMID: 38005213 PMCID: PMC10672871 DOI: 10.3390/molecules28227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this investigation, 4-antipyrinecarboxaldhyde was reacted with methyl hydrazinecarbodithioate to afford the carbodithioate derivative 3. The as-prepared carbodithioate derivative 3 is considered to be a key molecule for the preparation of new antipyrine-1,3,4-thiadiazole-based molecules (4-9) through its reaction with the appropriate hydrazonoyl halides. Furthermore, a typical Biginelli three-component cyclocondensation reaction involving ethyl acetoacetate, 4-antipyrinecarboxaldhyde, and thiourea under the standard conditions is carried out in the presence of sulfuric acid to afford the corresponding antipyrine-pyrimidine hybrid molecule (10). The latter was submitted to react with hydrazine monohydrate to provide the corresponding hydrazide derivative (11) which, under reaction with ethyl acetoacetate in refluxing ethanol containing catalytic amount of acetic acid, afforded the corresponding derivative (12). The structure of the newly synthesized compounds was affirmed by their spectral and microanalytical data. We also screened for their antimicrobial potential (ZOI and MIC) and conducted a kinetic study. Additionally, the mechanism of biological action was assessed by a membrane leakage assay and SEM imaging technique. Moreover, the biological activities and the binding modes of these compounds were further supplemented by an in silico docking study against E. coli β-carbonic anhydrase. The amount of cellular protein released by E. coli is directly correlated to the concentration of compound 9, which was found to be 177.99 µg/mL following treatment with 1.0 mg/mL of compound 9. This finding supports compound 9's antibacterial properties and explains how the formation of holes in the E. coli cell membrane results in the release of proteins from the cytoplasm. The newly synthesized compounds represent acceptable antimicrobial activities with potential action against E. coli β-carbonic anhydrase. The docking studies and antimicrobial activity test proved that compound (9) declared a greater activity than the other synthesized compounds.
Collapse
Affiliation(s)
- Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza 12566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez 43511, Egypt
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11765, Egypt
| | - Ihsan A Shehadi
- Chemistry Department, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | |
Collapse
|
4
|
Lapshin LS, Shchegolkov EV, Burgart YV, Triandafilova GA, Krasnykh OP, Malysheva KO, Saloutin VI. Synthesis of new analgesics based on 4-isopropyl-1-phenyl-3-(trifluoromethyl)pyrazol-5-one. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Palakkeezhillam VNV, Haribabu J, Manakkadan V, Rasin P, Varughese RE, Gayathri D, Bhuvanesh N, Echeverria C, Sreekanth A. Synthesis, spectroscopic characterizations, single crystal X-ray analysis, DFT calculations, in vitro biological evaluation and in silico evaluation studies of thiosemicarbazones based 1,3,4-thiadiazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Sahoo CR, Paidesetty SK, Sarathbabu S, Dehury B, Senthil Kumar N, Padhy RN. Molecular dynamics simulation, synthesis and topoisomerase inhibitory actions of vanillin derivatives: a systematic computational structural integument. J Biomol Struct Dyn 2022; 40:11653-11663. [PMID: 34355674 DOI: 10.1080/07391102.2021.1961867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A series of 4-hydroxy-3-methoxy benzaldehyde (vanillin) derivatives (3a-3r) was designed for the principle of Schiff base condensation with several individual sulfanilamide analogues. The inhibitory potencies of the designed compounds were evaluated through molecular docking simulation studies against the targets, breast cancer-topo isomerase-IIα and estrogen receptor-α; and the top scoring poses with higher binding energy were selected to assess the mode of binding and stability of each complex through molecular dynamics simulations. Compounds that remained stable in the active sites of the both target receptors through a number of strong H-bonds and hydrophobic contacts were selected. Based on the computational results, these selected compounds, 3b, 3e and 3f were synthesized and were followed up for structural elucidation attempts, by FT/ATR, 1H NMR and 13C NMR. From the experimental in vitro studies on 3b, 3e and 3f, the following remarkable activities against breast cancer cell line were done; IC50 values of 3b, 3e and 3f were noted, 6.7, 4.3 and 11 ng/mL, respectively. These newly synthesized compounds may be used as novel inhibitors of nuclear receptors with potential therapeutic applications in control of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.,Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Budheswar Dehury
- Biomedical Informatics Centre, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | | | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Powerful Potential of Polyfluoroalkyl-Containing 4-Arylhydrazinylidenepyrazol-3-ones for Pharmaceuticals. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010059. [PMID: 36615256 PMCID: PMC9821843 DOI: 10.3390/molecules28010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
4-Arylhydrazinylidene-5-(polyfluoroalkyl)pyrazol-3-ones (4-AHPs) were found to be obtained by the regiospecific cyclization of 2-arylhydrazinylidene-3-(polyfluoroalkyl)-3-oxoesters with hydrazines, by the azo coupling of 4-nonsubstituted pyrazol-5-oles with aryldiazonium chlorides or by the firstly discovered acid-promoted self-condensation of 2-arylhydrazinylidene-3-oxoesters. All the 4-AHPs had an acceptable ADME profile. Varying the substituents in 4-AHPs promoted the switching or combining of their biological activity. The polyfluoroalkyl residue in 4-AHPs led to the appearance of an anticarboxylesterase action in the micromolar range. An NH-fragment and/or methyl group instead of the polyfluoroalkyl one in the 4-AHPs promoted antioxidant properties in the ABTS, FRAP and ORAC tests, as well as anti-cancer activity against HeLa that was at the Doxorubicin level coupled with lower cytotoxicity against normal human fibroblasts. Some Ph-N-substituted 4-AHPs could inhibit the growth of N. gonorrhoeae bacteria at MIC 0.9 μg/mL. The possibility of using 4-AHPs for cell visualization was shown. Most of the 4-AHPs exhibited a pronounced analgesic effect in a hot plate test in vivo at and above the diclofenac and metamizole levels except for the ones with two chlorine atoms in the aryl group. The methylsulfonyl residue was proved to raise the anti-inflammatory effect also. A mechanism of the antinociceptive action of the 4-AHPs through blocking the TRPV1 receptor was proposed and confirmed using in vitro experiment and molecular docking.
Collapse
|
8
|
Mal S, Malik U, Mahapatra M, Mishra A, Pal D, Paidesetty SK. A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective. Drug Dev Res 2022; 83:1469-1504. [PMID: 35971890 DOI: 10.1002/ddr.21979] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022]
Abstract
With different nitrogen-containing heterocyclic moieties, Indazoles earn one of the places among the top investigated molecules in medicinal research. Indazole, an important fused aromatic heterocyclic system containing benzene and pyrazole ring with a chemical formula of C7 H6 N2 , is also called benzopyrazole. Indazoles consist of three tautomeric forms in which 1H-tautomers (indazoles) and 2H-tautomers (isoindazoles) exist in all phases. The tautomerism in indazoles greatly influences synthesis, reactivity, physical and even the biological properties of indazoles. The thermodynamic internal energy calculation of these tautomers points view 1H-indazole as the predominant and stable form over 2H-indazole. The natural source of indazole is limited and exists in alkaloidal nature (i.e., nigellidine, nigeglanine, nigellicine, etc.) found from Nigella plants. Some of the FDA-approved drugs like Axitinib, Entrectinib, Niraparib, Benzydamine, and Granisetron are being used to treat renal cell cancer, non-small cell lung cancer (NSCLC), epithelial ovarian cancer, chronic inflammation, chemotherapy-induced nausea, vomiting, and many more uses. Besides all these advantages regarding its biological activity, the main issue about indazoles is the less abundance in plant sources, and their synthetic derivatives also often face problems with low yield. In this review article, we discuss its chemistry, tautomerism along with their effects, different schematics for the synthesis of indazole derivatives, and their different biological activities.
Collapse
Affiliation(s)
- Suvadeep Mal
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| | - Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Monalisa Mahapatra
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| | | | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
9
|
rel-2-[4-Chloro-2-[(5R,6R,7S)-6-[5-(4-methoxyphenyl)-3-(2-naphthyl)-3,4-dihydropyrazole-2-carbonyl]-5-methyl-2-oxo-3,5,6,7-tetrahydrothiopyrano[2,3-d]thiazol-7-yl]phenoxy]acetic Acid. MOLBANK 2022. [DOI: 10.3390/m1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The hetero-Diels–Alder reaction is the main synthetic tool for obtaining pharmacological agents with a thiopyrano[2,3-d]thiazole motif. In the present work, an efficient method for the synthesis of pyrazoline-containing thiopyrano[2,3-d]thiazole is described. The pyrazoline-bearing dienophile was proposed and used as effective building block for the synthesis of the title compound. The structure of the synthesized rel-2-[4-chloro-2-[(5R,6R,7S)-6-[5-(4-methoxyphenyl)-3-(2-naphthyl)-3,4-dihydropyrazole-2-carbonyl]-5-methyl-2-oxo-3,5,6,7-tetrahydrothiopyrano[2,3-d]thiazol-7-yl]phenoxy]acetic acid (3) was confirmed by 1H, 13C, 2D NMR, and LC-MS spectra. Anticancer activity in “60 lines screening” (NCI DTP protocol) was studied in vitro for the title compound.
Collapse
|
10
|
Branković J, Milovanović VM, Simijonović D, Novaković S, Petrović ZD, Trifunović SS, Bogdanović GA, Petrović VP. Pyrazolone-type compounds: synthesis and in silico assessment of antiviral potential against key viral proteins of SARS-CoV-2. RSC Adv 2022; 12:16054-16070. [PMID: 35733695 PMCID: PMC9136855 DOI: 10.1039/d2ra02542f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/20/2022] [Indexed: 12/16/2022] Open
Abstract
Coronavirus outbreak is still a major public health concern. The high mutation ability of SARS-CoV-2 periodically delivers more transmissible and dangerous variants. Hence, the necessity for an efficient and inexpensive antiviral agent is urgent. In this work, pyrazolone-type compounds were synthesised, characterised using spectroscopic methods and theoretical tools, and evaluated in silico against proteins of SARS-CoV-2 responsible for host cell entry and reproduction processes, i.e., spike protein (S), Mpro, and PLpro. Five of twenty compounds are newly synthesised. In addition, the crystal structure of a pyrazolone derivative bearing a vanillin moiety is determined. The obtained in silico results indicate a more favourable binding affinity of pyrazolone analogues towards Mpro, and PLpro in comparison to drugs lopinavir, remdesivir, chloroquine, and favipiravir, while in the case of S protein only lopinavir exerted higher binding affinity. Also, the investigations were performed on ACE2 and the spike RBD-ACE2 complex. The obtained results for these proteins suggest that selected compounds could express antiviral properties by blocking the binding to the host cell and viral spreading, also. Moreover, several derivatives expressed multitarget antiviral action, blocking both binding and reproduction processes. Additionally, in silico ADME/T calculations predicted favourable features of the synthesised compounds, i.e., drug-likeness, oral bioavailability, as well as good pharmacokinetic parameters related to absorption, metabolism, and toxicity. The obtained results imply the great potential of synthesised pyrazolones as multitarget agents against SARS-CoV-2 and represent a valuable background for further in vitro investigations.
Collapse
Affiliation(s)
- Jovica Branković
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| | - Vesna M Milovanović
- University of Kragujevac, Faculty of Agronomy, Department of Chemistry and Chemical Engineering Cara Dušana 34 32000 Čačak Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Slađana Novaković
- University of Belgrade, "VINCA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Department of Theoretical Physics and Condensed Matter Physics 11001 Belgrade Serbia
| | - Zorica D Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| | - Snežana S Trifunović
- University of Belgrade, Faculty of Chemistry Studentski trg 12-16 11000 Belgrade Serbia
| | - Goran A Bogdanović
- University of Belgrade, "VINCA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Department of Theoretical Physics and Condensed Matter Physics 11001 Belgrade Serbia
| | - Vladimir P Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| |
Collapse
|
11
|
Evaluation of characterization, biological and computational studies of new Schiff base ligand and some metal (II) complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Wen K, Wu Y, Chen J, Shi J, Zheng M, Yao X, Tang X. Copper-Mediated Decarboxylative Coupling of 3-Indoleacetic Acids with Pyrazolones. ACS OMEGA 2022; 7:5274-5282. [PMID: 35187342 PMCID: PMC8851627 DOI: 10.1021/acsomega.1c06443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 05/05/2023]
Abstract
A copper-mediated decarboxylative coupling reaction of 3-indoleacetic acids with pyrazolones was described. This protocol realized new functionalization of pyrazolones under simple reaction conditions and exhibited high functional group compatibility and broad substrate scope. Notably, the products displayed antiproliferative activity against cancer cells.
Collapse
|
13
|
Lusardi M, Rotolo C, Ponassi M, Iervasi E, Rosano C, Spallarossa A. One-pot synthesis and antiproliferative activity of highly functionalized pyrazole derivatives. ChemMedChem 2022; 17:e202100670. [PMID: 34994095 DOI: 10.1002/cmdc.202100670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Indexed: 11/09/2022]
Abstract
A series of highly functionalized pyrazole derivatives has been prepared by a one-pot, versatile and regioselective procedure. Pyrazoles 1-29 were tested in cell-based assay to assess their antiproliferative activity against a panel of tumour cells. Additionally, the cytotoxicity of prepared compounds was evaluated against normal human fibroblasts. The antiproliferative activity of the synthesized molecules emerged to be affected by the nature of the substituents of the pyrazole scaffold and derivatives 21-23 proved to inhibit the growth of melanoma and cervical cancer cells. Compound 23 was identified as the most active derivative and docking simulations predicted its ability to interact with estrogen receptors.
Collapse
Affiliation(s)
- Matteo Lusardi
- Università degli Studi di Genova Facoltà di Farmacia: Universita degli Studi di Genova Dipartimento di Farmacia, Farmacia, ITALY
| | - Chiara Rotolo
- Universita degli Studi di Genova Dipartimento di Farmacia, Farmacia, ITALY
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and mass spectrometry unit, ITALY
| | - Erika Iervasi
- IRCCS AOU San Martino: Ospedale Policlinico San Martino, Proteomics and mass spectrometry unit, ITALY
| | - Camillo Rosano
- IRCCS AOU San Martino: Ospedale Policlinico San Martino, Proteomics and mass spectrometry unit, ITALY
| | - Andrea Spallarossa
- Università degli Studi di Genova Scuola di Scienze Mediche e Farmaceutiche: Universita degli Studi di Genova Scuola di Scienze Mediche e Farmaceutiche, Farmacia, viale Benedetto Xv, 3, 16132, Genova, ITALY
| |
Collapse
|
14
|
Shchegolkov EV, Burgart YV, Matsneva DA, Borisevich SS, Kadyrova RA, Orshanskaya IR, Zarubaev VV, Saloutin VI. Polyfluoroalkylated antipyrines in Pd-catalyzed transformations. RSC Adv 2021; 11:35174-35181. [PMID: 35493195 PMCID: PMC9042801 DOI: 10.1039/d1ra06967e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
In the direct C–H arylation with arylhalogenides in the presence of Pd(OAc)2, trifluoromethyl-containing antipyrine reacts very slowly and incompletely owing to the low nucleophilicity of its C4 center. However, it was effective in modifying polyfluoroalkyl-substituted 4-bromo- and 4-iodo antipyrines by the Suzuki and Sonogashira reactions. It was established that using Pd2(dba)3 as catalyst and XPhos as phosphine ligand was the optimal catalytic system for the synthesis of 4-aryl- and 4-phenylethynyl-3-polyfluoroalkyl-antipyrines. Moreover, iodo-derivatives as the initial reagents were found to be more advantageous compared to bromo-containing analogs. It was found that 4-phenylethynyl-5-CF3-antipyrine has a moderate activity against the influenza virus A/Puerto Rico/8/34 (H1N1) and 4-iodo-5-CF3-antipyrine reveals a weak activity against the vaccine virus (strain Copenhagen) and bovine diarrhea virus (strain VC-1). Peculiarities of heterocyclic systems with electron-withdrawing groups (polyfluoroalkyl-containing antipyrines) in Pd-catalyzed C–H arylation and cross-coupling reactions.![]()
Collapse
Affiliation(s)
- Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences S. Kovalevskoi St., 22 Ekaterinburg 620990 Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences S. Kovalevskoi St., 22 Ekaterinburg 620990 Russia
| | - Daria A Matsneva
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences S. Kovalevskoi St., 22 Ekaterinburg 620990 Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry, Russian Academy of Sciences 71 October Ave. Ufa 450054 Russia
| | - Renata A Kadyrova
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology 14 Mira St. Saint-Petersburg 197101 Russia
| | - Iana R Orshanskaya
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology 14 Mira St. Saint-Petersburg 197101 Russia
| | - Vladimir V Zarubaev
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology 14 Mira St. Saint-Petersburg 197101 Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences S. Kovalevskoi St., 22 Ekaterinburg 620990 Russia
| |
Collapse
|
15
|
Pyrazole-based trinuclear and mononuclear complexes: synthesis, characterization, DNA interactions and cytotoxicity studies. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Sahoo CR, Paidesetty SK, Padhy RN. The recent development of thymol derivative as a promising pharmacological scaffold. Drug Dev Res 2021; 82:1079-1095. [PMID: 34164828 DOI: 10.1002/ddr.21848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/24/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023]
Abstract
Thymol (a phenol ring bearing active phytoconstituent) is a privileged scaffold, which is diversified in natural sources. This scaffold acts as an obligatory template for scheming and arriving at designing some newer drug-molecules with potential biological activities. In the pharmacological perspective, the promising active sites of the scaffold are the positions C-1, C-4, and C-6 of thymol that would be accountable for developing potent drug candidates. This review aims to explore the various synthetic routes and the structural-activity relationship of thymol scaffold with suitable active pharmacophore sites.
Collapse
Affiliation(s)
- Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Science and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India.,Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Science and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| |
Collapse
|
17
|
N-(3-Cyano-4,5,6,7-tetrahydrobenzothiophen-2-yl)-2-[[5-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)amino]-1,3,4-thiadiazol-2-yl]sulfanyl]acetamide. MOLBANK 2021. [DOI: 10.3390/m1211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The small pyrazolone-bearing molecules attract attention and are widely explored in drug design as pharmacological agents. The new pyrazolone-thiadiazole hybrid molecule N-(3-cyano-4,5,6,7-tetrahydrobenzothiophen-2-yl)-2-[[5-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)amino]-1,3,4-thiadiazol-2-yl]sulfanyl]acetamide (3) has been synthesized following a two-stage protocol using simple, convenient transformations and cheap, commercially available reagents. The compound’s structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), and liquid chromatography–mass spectrometry (LC–MS) spectra. The anti-inflammatory potency of 3 was evaluated in silico using molecular docking. The docking studies results suggest that title compound 3 is of great interest for further structure optimization and in-depth studies as a possible 5-lipoxygenase (5-LOX) inhibitor.
Collapse
|
18
|
Mukhtar SS, Hassan AS, Morsy NM, Hafez TS, Saleh FM, Hassaneen HM. Design, synthesis, molecular prediction and biological evaluation of pyrazole-azomethine conjugates as antimicrobial agents. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1894338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Shorouk S. Mukhtar
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Nesrin M. Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Taghrid S. Hafez
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Fatma M. Saleh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Hamdi M. Hassaneen
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
19
|
Ren H, Dhanaraj P, Enoch IVMV, Paulraj MS, Indiraleka M. Synthesis and biological evaluation of 4-aminoantipyrine analogues. Med Chem 2020; 18:26-35. [PMID: 33155926 DOI: 10.2174/1573406416666201106105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/23/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of the present study is to carry out a simple synthesis of aminoantipyrine analogues and exploration of their antibacterial, cytotoxic, and anticonvulsant potential. METHODS The compounds were characterized employing multi-spectroscopic methods. The in vitro pharmacological response of a series of bacteria were screened employing serial dilution method. The derivatives were screened against maximal electro-shock for their anticonvulsant activity. Molecular docking was carried out to optimize the interaction of the compounds with HPV16-E7 receptors. Further, the in vitro cytotoxicity was tested against human cervical cancer (SiHa) cell lines. RESULTS The compounds show protection against maximal electroshock, esp. 3-nirto- and 4-methyl-3-nitrobenzamido derivatives. In addition, they reveal appreciable DNA cleavage activities and interactions with HPV16-E7 protein receptors, esp. 3,5-dinitro- and 4-methyl-3-nitrobenzamido derivatives. Furthermore, they show potent activity against cervical cancer cells (LD50 value up to 1200 in the case of 4-methyl-3-nitrobenzamido derivative and an inhibition of a maximum of 97% of cells). CONCLUSIONS The simply synthesized aminoantipyrine derivatives show a variety of biological activities like antibacterial and anticancer effects. In addition, this is the first study demonstrating that 4-aminoantipyrine derivatives shows an anticonvulsant activity.
Collapse
Affiliation(s)
- Houwei Ren
- Department of Emergency, Taizhou People's Hospital, Taizhou, Jiangsu, 225300. China
| | - Premnath Dhanaraj
- Department of Biotechnology, School of Agriculture and Bioscience, Karunya Institute of Technology and sciences (Deemed-to-be University), Coimbatore 641114, Tamil Nadu. India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed-to-be University), Coimbatore 641114, Tamil Nadu. India
| | | | - Indiraleka M
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu . India
| |
Collapse
|