1
|
Yakkala PA, Kamal A. Dual-targeting inhibitors involving tubulin for the treatment of cancer. Bioorg Chem 2025; 156:108116. [PMID: 39823818 DOI: 10.1016/j.bioorg.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025]
Abstract
Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes. Despite clinical approval of several tubulin inhibitors, their efficacy is hampered by drug resistance and toxic side effects. Dual targeting inhibitors of tubulin and other cancer-related pathways have emerged as vital components in cancer therapy, with promising prospects in both market availability and ongoing clinical trials. The rational design of hybrid inhibitors targeting both pathways presents an innovative approach to combatting cancer. However, despite the potent anti-tumor activity exhibited by several compounds, research on their anti-angiogenic potential remains limited. This review emphasizes the significance of tubulin based dual-target inhibitors, elucidating their mechanisms of action. Recent advances in exploring therapeutic efficacy, toxicity profiles, and challenges such as MDR are discussed. By presenting the research progress of tubulin based dual-target inhibitors as potential anticancer agents, this study delivers valuable insights for the development of more efficient drugs for cancer therapy.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Human Nutrition and Analytical Chemistry, Human Nutrition Program, The Ohio State University, Columbus, OH 43212, United States of America; Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India.
| |
Collapse
|
2
|
Saini M, Paul S, Acharya A, Acharya SS, Kundu CN, Guchhait SK. Scaffold overlay of flavonoid-inspired molecules: Discovery of 2,3-diaryl-pyridopyrimidin-4-imine/ones as dual hTopo-II and tubulin targeting anticancer agents. Bioorg Chem 2024; 152:107738. [PMID: 39182257 DOI: 10.1016/j.bioorg.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Almost half of all medicines approved by the U.S. Food and Drug Administration have been found to be developed based on inspiration from natural products (NPs). Here, we report a novel strategy of scaffold overlaying of scaffold-hopped analogs of bioactive flavones and isoflavones and installation of drug-privileged motifs, which has led to discovery of anticancer agents that surpass the functional efficiency of the original NPs. The analogs, 2,3-diaryl-pyridopyrimidin-4-imine/ones were efficiently synthesized by an approach of a nitrile-stabilized quaternary ammonium ylide as masked synthon and Pd-catalyzed activation-arylation methods. Compared to the NPs, these NP-analogs exhibited differentiated functions; dual inhibition of human topoisomerase-II (hTopo-II) enzyme and tubulin polymerization, and pronounced antiproliferative effect against various cancer cell lines, including numerous drug-resistant cancer cells. The most active compound 5l displayed significant inhibition of migration ability of cancer cells and blocked G1/S phase transition in cell cycle. Compound 5l caused pronounced effect in expression patterns of various key cell cycle regulatory proteins; up-regulation of apoptotic proteins, Bax, Caspase 3 and p53, and down-regulation of apoptosis-inhibiting proteins, BcL-xL, Cyclin D1, Cyclin E1 and NF-κB, which indicates high efficiency of the molecule 5l in apoptosis-signal axis interfering potential. Cheminformatics analysis revealed that 2,3-diaryl-pyridopyrimidin-4-imine/ones occupy a distinctive drug-relevant chemical space that is seldom represented by natural products and good physicochemical, ADMET and pharmacokinetic-relevant profile. Together, the anticancer potential of the investigated analogs was found to be much more efficient compared to the original natural products and two anticancer drugs, Etoposide (hTopo-II inhibitor) and 5-Flurouracile (5-FU).
Collapse
Affiliation(s)
- Meenu Saini
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Subarno Paul
- School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Ayan Acharya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India
| | - Sushree Subhadra Acharya
- School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Chanakya Nath Kundu
- School of Biotechnology, KIIT deemed to be University, Campus-11, Patia, Bhubaneswar, Orissa 751024, India
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, SAS Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
3
|
Lv X, Li C, Guo MM, Hong W, Chen LC, Zhang QC, Chen ZN. Hydroxyl Group as the 'Bridge' to Enhance the Single-Molecule Conductance by Hyperconjugation. Molecules 2024; 29:2440. [PMID: 38893316 PMCID: PMC11173964 DOI: 10.3390/molecules29112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
For designing single-molecule devices that have both conjugation systems and structural flexibility, a hyperconjugated molecule with a σ-π bond interaction is considered an ideal candidate. In the investigation of conductance at the single-molecule level, since few hyperconjugation systems have been involved, the strategy of building hyperconjugation systems and the mechanism of electron transport within this system remain unexplored. Based on the skipped-conjugated structure, we present a rational approach to construct a hyperconjugation molecule using a hydroxyl group, which serves as a bridge to interact with the conjugated fragments. The measurement of single-molecule conductance reveals a two-fold conductance enhancement of the hyperconjugation system having the 'bridging' hydroxyl group compared to hydroxyl-free derivatives. Theoretical studies demonstrate that the hydroxyl group in the hyperconjugation system connects the LUMO of the two conjugated fragments and opens a through-space channel for electron transport to enhance the conductance.
Collapse
Affiliation(s)
- Xin Lv
- Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.L.); (C.L.); (M.-M.G.); (Z.-N.C.)
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Chang Li
- Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.L.); (C.L.); (M.-M.G.); (Z.-N.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Meng Guo
- Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.L.); (C.L.); (M.-M.G.); (Z.-N.C.)
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
| | - Li-Chuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
| | - Qian-Chong Zhang
- Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.L.); (C.L.); (M.-M.G.); (Z.-N.C.)
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Zhong-Ning Chen
- Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.L.); (C.L.); (M.-M.G.); (Z.-N.C.)
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
4
|
Srithanyarat T, Taoma K, Sutthibutpong T, Ruengjitchatchawalya M, Liangruksa M, Laomettachit T. Interpreting drug synergy in breast cancer with deep learning using target-protein inhibition profiles. BioData Min 2024; 17:8. [PMID: 38424554 PMCID: PMC10905801 DOI: 10.1186/s13040-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy among women worldwide. Despite advances in treating breast cancer over the past decades, drug resistance and adverse effects remain challenging. Recent therapeutic progress has shifted toward using drug combinations for better treatment efficiency. However, with a growing number of potential small-molecule cancer inhibitors, in silico strategies to predict pharmacological synergy before experimental trials are required to compensate for time and cost restrictions. Many deep learning models have been previously proposed to predict the synergistic effects of drug combinations with high performance. However, these models heavily relied on a large number of drug chemical structural fingerprints as their main features, which made model interpretation a challenge. RESULTS This study developed a deep neural network model that predicts synergy between small-molecule pairs based on their inhibitory activities against 13 selected key proteins. The synergy prediction model achieved a Pearson correlation coefficient between model predictions and experimental data of 0.63 across five breast cancer cell lines. BT-549 and MCF-7 achieved the highest correlation of 0.67 when considering individual cell lines. Despite achieving a moderate correlation compared to previous deep learning models, our model offers a distinctive advantage in terms of interpretability. Using the inhibitory activities against key protein targets as the main features allowed a straightforward interpretation of the model since the individual features had direct biological meaning. By tracing the synergistic interactions of compounds through their target proteins, we gained insights into the patterns our model recognized as indicative of synergistic effects. CONCLUSIONS The framework employed in the present study lays the groundwork for future advancements, especially in model interpretation. By combining deep learning techniques and target-specific models, this study shed light on potential patterns of target-protein inhibition profiles that could be exploited in breast cancer treatment.
Collapse
Affiliation(s)
- Thanyawee Srithanyarat
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Kittisak Taoma
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Thana Sutthibutpong
- Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
- Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Monrudee Liangruksa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| |
Collapse
|
5
|
Kuzovlev AS, Zybalov MD, Golovin AV, Gureev MA, Kasatkina MA, Biryukov MV, Belik AR, Silonov SA, Yunin MA, Zigangirova NA, Reshetnikov VV, Isakova YE, Porozov YB, Ivanov RA. Naphthyl-Substituted Indole and Pyrrole Carboxylic Acids as Effective Antibiotic Potentiators-Inhibitors of Bacterial Cystathionine γ-Lyase. Int J Mol Sci 2023; 24:16331. [PMID: 38003521 PMCID: PMC10671052 DOI: 10.3390/ijms242216331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Over the past decades, the problem of bacterial resistance to most antibiotics has become a serious threat to patients' survival. Nevertheless, antibiotics of a novel class have not been approved since the 1980s. The development of antibiotic potentiators is an appealing alternative to the challenging process of searching for new antimicrobials. Production of H2S-one of the leading defense mechanisms crucial for bacterial survival-can be influenced by the inhibition of relevant enzymes: bacterial cystathionine γ-lyase (bCSE), bacterial cystathionine β-synthase (bCBS), or 3-mercaptopyruvate sulfurtransferase (MST). The first one makes the main contribution to H2S generation. Herein, we present data on the synthesis, in silico analyses, and enzymatic and microbiological assays of novel bCSE inhibitors. Combined molecular docking and molecular dynamics analyses revealed a novel binding mode of these ligands to bCSE. Lead compound 2a manifested strong potentiating activity when applied in combination with some commonly used antibiotics against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The compound was found to have favorable in vitro absorption, distribution, metabolism, excretion, and toxicity parameters. The high effectiveness and safety of compound 2a makes it a promising candidate for enhancing the activity of antibiotics against high-priority pathogens.
Collapse
Affiliation(s)
- Andrey S. Kuzovlev
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
| | - Mikhail D. Zybalov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
| | - Andrey V. Golovin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1/73 Leninskie gori St., 119234 Moscow, Russia;
- Laboratory of Bioinformatics, Center of AI and Information Technologies, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.A.G.); (Y.B.P.)
| | - Maxim A. Gureev
- Laboratory of Bioinformatics, Center of AI and Information Technologies, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.A.G.); (Y.B.P.)
- Laboratory of Bio- and Chemoinformatics, Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University, 8/2 Trubetskaya, 119991 Moscow, Russia
| | - Mariia A. Kasatkina
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
| | - Mikhail V. Biryukov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leninskie gori St., 119234 Moscow, Russia
| | - Albina R. Belik
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
| | - Sergey A. Silonov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia
| | - Maxim A. Yunin
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
| | - Nailya A. Zigangirova
- Medical Microbiology Department, Laboratory of Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, 18 Gamaleya St., 123098 Moscow, Russia;
| | - Vasiliy V. Reshetnikov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
- Institute of Cytology and Genetics, Siberian Branch of RAS, 10 Akademika Lavrentyeva, 630090 Novosibirsk, Russia
| | - Yulia E. Isakova
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
| | - Yuri B. Porozov
- Laboratory of Bioinformatics, Center of AI and Information Technologies, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.A.G.); (Y.B.P.)
- Laboratory of Bio- and Chemoinformatics, Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University, 8/2 Trubetskaya, 119991 Moscow, Russia
| | - Roman A. Ivanov
- Translational Medicine Research Center, Sirius University of Science and Technology, Olympic Ave. 1, 354340 Sochi, Russia; (M.D.Z.); (M.A.K.); (M.V.B.); (A.R.B.); (S.A.S.); (M.A.Y.); (V.V.R.); (Y.E.I.); (R.A.I.)
| |
Collapse
|
6
|
Kumar K, Das R, Thapa B, Rakhecha B, Srivastava S, Savita K, Israr M, Chanda D, Banerjee D, Shanker K, Bawankule DU, Santini B, Di Paolo ML, Via LD, Passarella D, Negi AS. Dual targeted 2-Benzylideneindanone pendant hydroxamic acid group exhibits selective HDAC6 inhibition along with tubulin stabilization effect. Bioorg Med Chem 2023; 86:117300. [PMID: 37146520 DOI: 10.1016/j.bmc.2023.117300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Abnormal epigenetics has been recognised as an early event in tumour progression and aberrant acetylation of lysine in particular has been understood in tumorigenesis. Therefore, it has become an attractive target for anticancer drug development. However, HDAC inhibitors have limited success due to toxicity and drug resistance concerns. Present study deals with design and synthesis of bivalent indanone based HDAC6 and antitubulin ligands as anticancer agents. Two of the analogues 9 and 21 exhibited potent antiproliferative activities (IC50, 0.36-3.27 µM) and high potency against HDAC 6 enzyme. Compound 21 showed high selectivity against HDAC 6 while 9 exhibited low selectivity. Both the compounds also showed microtubule stabilization effects and moderate anti-inflammatory effect. Dual targeted anticancer agents with concomitant anti-inflammatory effects will be more attractive clinical candidates in future.
Collapse
Affiliation(s)
- Kapil Kumar
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Ranjana Das
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Barsha Thapa
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Bharti Rakhecha
- CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sapna Srivastava
- CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Kumari Savita
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Monazza Israr
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Debabrata Chanda
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Dibyendu Banerjee
- CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Karuna Shanker
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - D U Bawankule
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Benedetta Santini
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, via G. Colombo 3, 35131 Padova, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, 35131 Padova, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India.
| |
Collapse
|
7
|
Singh S, Trivedi L, Vasudev PG, Passarella D, Negi AS. An Efficient Merging of DBU/Enolate and DBU/Benzyl Bromide Organocycles for the Synthesis of alpha Benzylated1-Indanone Derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj00783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The merging of dual organocycles of the bicyclic amidine base 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) was demonstrated for the synthesis of alpha benzylated 1-indanones. A highly reactive enolate intermediate was formed in the...
Collapse
|
8
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
9
|
Zhao C, Tang C, Li C, Ning W, Hu Z, Xin L, Zhou HB, Huang J. Novel hybrid conjugates with dual estrogen receptor α degradation and histone deacetylase inhibitory activities for breast cancer therapy. Bioorg Med Chem 2021; 40:116185. [PMID: 33965842 DOI: 10.1016/j.bmc.2021.116185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Hormone therapy targeting estrogen receptors is widely used clinically for the treatment of breast cancer, such as tamoxifen, but most of them are partial agonists, which can cause serious side effects after long-term use. The use of selective estrogen receptor down-regulators (SERDs) may be an effective alternative to breast cancer therapy by directly degrading ERα protein to shut down ERα signaling. However, the solely clinically used SERD fulvestrant, is low orally bioavailable and requires intravenous injection, which severely limits its clinical application. On the other hand, double- or multi-target conjugates, which are able to synergize antitumor activity by different pathways, thus may enhance therapeutic effect in comparison with single targeted therapy. In this study, we designed and synthesized a series of novel dual-functional conjugates targeting both ERα degradation and histone deacetylase inhibiton by combining a privileged SERD skeleton 7-oxabicyclo[2.2.1]heptane sulfonamide (OBHSA) with a histone deacetylase inhibitor side chain. We found that substituents on both the sulfonamide nitrogen and phenyl group of OBHSA unit had significant effect on biological activities. Among them, conjugate 16i with N-methyl and naphthyl groups exhibited potent antiproliferative activity against MCF-7 cells, and excellent ERα degradation activity and HDACs inhibitory ability. A further molecular docking study indicated the interaction patterns of these conjugates with ERα, which may provide guidance to design novel SERDs or PROTAC-like SERDs for breast cancer therapy.
Collapse
Affiliation(s)
- Chenxi Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chu Tang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Changhao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wentao Ning
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiye Hu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Lilan Xin
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Hai-Bing Zhou
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Frontier Science Center for Immunology and Metabolism, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Fatima K, Wani ZA, Meena A, Luqman S. Geraniol exerts its antiproliferative action by modulating molecular targets in lung and skin carcinoma cells. Phytother Res 2021; 35:3861-3874. [PMID: 33826182 DOI: 10.1002/ptr.7094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/13/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022]
Abstract
Geraniol, an acyclic monoterpene present in several plant species' essential oils, is utilized as a food additive. It possesses potent antiproliferative and antitumor effects ascribed to its antiinflammatory, and antioxidant properties. The study aimed to understand geraniol's mechanism in human lung and skin cancer cells by employing molecular and cell target-based assays. SRB, NRU, MTT assays, qRT-PCR, molecular docking, and EAC model were used. Geraniol inhibits the proliferation of PC-3, A431, and A549 cells (~50%) and suppresses the activity of ornithine decarboxylase (15.42 ± 0.61 μM) and hyaluronidase (57.61 ± 8.53 μM) in A549 cells; LOX-5 (25.44 ± 3.50 μM) and hyaluronidase (90.71 ± 2.38 μM) in A431 cells. The qRT-expression analysis of the targeted gene depicts non-significant change at the transcriptional level of LOX-5 in A431 cells. A robust binding interaction of geraniol with molecular targets was observed in the molecular docking studies. In Ehrlich Ascites Carcinoma model, geraniol inhibit tumor growth by 50.08% at 75 mg/kg bw and was found to be safe up to 1,000 mg/kg bw in a toxicity study. Geraniol has two prenyl units allied head-to-tail and functionalized with one hydroxyl group at its tail end could be responsible for the antiproliferative activity. These observations provide evidence for geraniol to be used as a new prototype to develop a novel anticancer agent.
Collapse
Affiliation(s)
- Kaneez Fatima
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Zahoor Ahmad Wani
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|