1
|
Kazemi Z, Moini N, Rudbari HA, Micale N. A comprehensive review on the development of chiral Cu, Ni, and Zn complexes as pharmaceutical agents over the past decades: Synthesis, molecular structure and biological activity. Med Res Rev 2025; 45:654-754. [PMID: 39297288 DOI: 10.1002/med.22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/09/2024] [Accepted: 08/25/2024] [Indexed: 02/06/2025]
Abstract
Chirality is a fundamental and widespread geometric structural property in living organisms that most biomacromolecules including nucleic acids, proteins and enzymes, possess. Consequently, the development of chiral drugs capable of binding specific targets have gradually gained wide attention in recent decades due to their selective effects on a broad spectrum of biological events ranging from cell metabolism to cell fate. In this context, the synthesis of chiral compounds as promising therapeutic candidates has assumed a major role in drug discovery. Among them, chiral metal complexes have attracted considerable interest due to their unique and intriguing structural features that could enable overcoming side effects and drug-resistance phenomena of metal-based drugs currently in the market such as cisplatin. In the current scenario, an in-depth overview of non-platinum chiral complexes needs to be presented and carried forward. Therefore, in this perspective article, an update of the scientific development of bioactive chiral copper, zinc and nickel complexes have been reported since they have not been thoroughly reviewed so far. Specifically, we focused the article mainly on metal complexes containing chiral ligands (type 2 chirality) as in literature they are more numerous than those with chirality at the metal center (type 1 chirality). Herein, not only their biological activity but also their mechanism of action is summarized. Furthermore, in the final section of the article we have highlighted copper-based complexes as those with a superior biological activity profile and greater prospects for development as a drug.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Nakisa Moini
- Department of Inorganic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
3
|
Nešić MD, Dučić T, Gemović B, Senćanski M, Algarra M, Gonçalves M, Stepić M, Popović IA, Kapuran Đ, Petković M. Prediction of Protein Targets in Ovarian Cancer Using a Ru-Complex and Carbon Dot Drug Delivery Therapeutic Nanosystems: A Bioinformatics and µ-FTIR Spectroscopy Approach. Pharmaceutics 2024; 16:997. [PMID: 39204341 PMCID: PMC11359177 DOI: 10.3390/pharmaceutics16080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
We predicted the protein therapeutic targets specific to a Ru-based potential drug and its combination with pristine and N-doped carbon dot drug delivery systems, denoted as RuCN/CDs and RuCN/N-CDs. Synchrotron-based FTIR microspectroscopy (µFTIR) in addition to bioinformatics data on drug structures and protein sequences were applied to assess changes in the protein secondary structure of A2780 cancer cells. µFTIR revealed the moieties of the target proteins' secondary structure changes only after the treatment with RuCN and RuCN/N-CDs. A higher content of α-helices and a lower content of β-sheets appeared in A2780 cells after RuCN treatment. Treatment with RuCN/N-CDs caused a substantial increase in parallel β-sheet numbers, random coil content, and tyrosine residue numbers. The results obtained suggest that the mitochondrion-related proteins NDUFA1 and NDUFB5 are affected by RuCN either via overexpression or stabilisation of helical structures. RuCN/N-CDs either induce overexpression of the β-sheet-rich protein NDUFS1 and affect its random coil structure or interact and stabilise its structure via hydrogen bonding between -NH2 groups from N-CDs with protein C=O groups and -OH groups of serine, threonine, and tyrosine residues. The N-CD nanocarrier tunes this drug's action by directing it toward a specific protein target, changing this drug's coordination ability and inducing changes in the protein's secondary structures and function.
Collapse
Affiliation(s)
- Maja D. Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Tanja Dučić
- ALBA-CELLS Synchrotron, 08290 Cerdanyola del Vallès, Spain
| | - Branislava Gemović
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (B.G.); (M.S.)
| | - Milan Senćanski
- Laboratory for Bioinformatics and Computational Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (B.G.); (M.S.)
| | - Manuel Algarra
- INAMAT2—Institute for Advanced Materials and Mathematics, Department of Science, Public University of Navarre, Campus de Arrosadia, 31006 Pamplona, Spain;
| | - Mara Gonçalves
- CQM—Centro de Química da Madeira, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Milutin Stepić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Iva A. Popović
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Đorđe Kapuran
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| | - Marijana Petković
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (I.A.P.); (Đ.K.); (M.P.)
| |
Collapse
|
4
|
Palmeira-Mello MV, Costa AR, de Oliveira LP, Blacque O, Gasser G, Batista AA. Exploring the potential of ruthenium(II)-phosphine-mercapto complexes as new anticancer agents. Dalton Trans 2024; 53:10947-10960. [PMID: 38895770 DOI: 10.1039/d4dt01191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Analu R Costa
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Leticia P de Oliveira
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Alzir A Batista
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Havrylyuk D, Heidary DK, Glazer EC. The Impact of Inorganic Systems and Photoactive Metal Compounds on Cytochrome P450 Enzymes and Metabolism: From Induction to Inhibition. Biomolecules 2024; 14:441. [PMID: 38672458 PMCID: PMC11048704 DOI: 10.3390/biom14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.
Collapse
Affiliation(s)
| | - David K. Heidary
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| | - Edith C. Glazer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| |
Collapse
|
6
|
Domínguez-Jurado E, Ripoll C, Lara-Sánchez A, Ocaña A, Vitórica-Yrezábal IJ, Bravo I, Alonso-Moreno C. Evaluation of heteroscorpionate ligands as scaffolds for the generation of Ruthenium(II) metallodrugs in breast cancer therapy. J Inorg Biochem 2024; 253:112486. [PMID: 38266323 DOI: 10.1016/j.jinorgbio.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The modular synthesis of the heteroscorpionate core is explored as a tool for the rapid development of ruthenium-based therapeutic agents. Starting with a series of structurally diverse alcohol-NN ligands, a family of heteroscorpionate-based ruthenium derivatives was synthesized, characterized, and evaluated as an alternative to platinum therapy for breast cancer therapy. In vitro, the antitumoral activity of the novel derivatives was assessed in a series of breast cancer cell lines using UNICAM-1 and cisplatin as metallodrug control. Through this approach, a bimetallic heteroscorpionate-based metallodrug (RUSCO-2) was identified as the lead compound of the series with an IC50 value range as low as 3-5 μM. Notably, RUSCO-2 was found to be highly cytotoxic in TNBC cell lines, suggesting a mode of action independent of the receptor status of the cells. As a proof of concept and taking advantage of the luminescent properties of one of the complexes obtained, uptake was monitored in human breast cancer MCF7 cell lines by fluorescence lifetime imaging microscopy (FLIM) to reveal that the compound is evenly distributed in the cytoplasm and that the incorporation of the heteroscorpionate ligand protects it from aqueous processes, conversion in another entity, or the loss of the chloride group. Finally, ROS studies were conducted, lipophilicity was estimated, the chloride/water exchange was studied, and stability studies in simulated biological media were carried out to propose structure-activity relationships.
Collapse
Affiliation(s)
- Elena Domínguez-Jurado
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain
| | - Consuelo Ripoll
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física. Facultad de Farmacia de Albacete, Albacete 02071, Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, Madrid, Spain
| | - Iñigo J Vitórica-Yrezábal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda de Fuentenueva. s/n, 18071 Granada, Spain
| | - Iván Bravo
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física. Facultad de Farmacia de Albacete, Albacete 02071, Spain
| | - Carlos Alonso-Moreno
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain.
| |
Collapse
|
7
|
Das S, Strachanowska M, Wadowski P, Juszczak M, Tokarz P, Kosińska A, Palusiak M, Rybarczyk-Pirek AJ, Wzgarda-Raj K, Vasudevan S, Chworos A, Woźniak K, Rudolf B. Synthesis, anticancer activity, and molecular docking of half-sandwich iron(II) cyclopentadienyl complexes with maleimide and phosphine or phosphite ligands. Sci Rep 2024; 14:5634. [PMID: 38454122 PMCID: PMC10920834 DOI: 10.1038/s41598-024-56339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
In these studies, we designed and investigated the potential anticancer activity of five iron(II) cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All complexes were characterized with spectroscopic analysis viz. NMR, FT-IR, ESI-MS, UV-Vis, fluorescence, XRD (for four complexes) and elemental analyses. For biological studies, we used three types of cells-normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and non-small-cell lung cancer A549 cells. We evaluated cell viability and DNA damage after cell incubation with these complexes. We observed that all iron(II) complexes were more cytotoxic for HL-60 cells than for A549 cells. The complex CpFe(CO)(P(OPh)3)(η1-N-maleimidato) 3b was the most cytotoxic with IC50 = 9.09 µM in HL-60 cells, IC50 = 19.16 µM in A549 and IC50 = 5.80 µM in PBM cells. The complex CpFe(CO)(P(Fu)3)(η1-N-maleimidato) 2b was cytotoxic only for both cancer cell lines, with IC50 = 10.03 µM in HL-60 cells and IC50 = 73.54 µM in A549 cells. We also found the genotoxic potential of the complex 2b in both types of cancer cells. However, the complex CpFe(CO)2(η1-N-maleimidato) 1 which we studied previously, was much more genotoxic than complex 2b, especially for A549 cells. The plasmid relaxation assay showed that iron(II) complexes do not induce strand breaks in fully paired ds-DNA. The DNA titration experiment showed no intercalation of complex 2b into DNA. Molecular docking revealed however that complexes CpFe(CO)(PPh3) (η1-N-maleimidato) 2a, 2b, 3b and CpFe(CO)(P(OiPr)3)(η1-N-maleimidato) 3c have the greatest potential to bind to mismatched DNA. Our studies demonstrated that the iron(II) complex 1 and 2b are the most interesting compounds in terms of selective cytotoxic action against cancer cells. However, the cellular mechanism of their anticancer activity requires further research.
Collapse
Affiliation(s)
- Sujoy Das
- Department of Organic Chemistry, University of Lodz, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Marcelina Strachanowska
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Piotr Wadowski
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Paulina Tokarz
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aneta Kosińska
- Department of Organic Chemistry, University of Lodz, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Marcin Palusiak
- Department of Physical Chemistry, University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236, Lodz, Poland
| | - Agnieszka J Rybarczyk-Pirek
- Department of Physical Chemistry, University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236, Lodz, Poland
| | - Kinga Wzgarda-Raj
- Department of Physical Chemistry, University of Lodz, Faculty of Chemistry, Pomorska 163/165, 90-236, Lodz, Poland
| | - Saranya Vasudevan
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, University of Lodz, Faculty of Biology and Environmental Protection, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Bogna Rudolf
- Department of Organic Chemistry, University of Lodz, Faculty of Chemistry, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
8
|
Sumithaa C, Gajda-Morszewski P, Ishaniya W, Khamrang T, Velusamy M, Bhuvanesh N, Brindell M, Mazuryk O, Ganeshpandian M. Design of an anticancer organoruthenium complex as the guest and polydiacetylene-coated fluorogenic nanocarrier as the host: engineering nanocarrier using ene-yne conjugation for sustained guest release, enhanced anticancer activity and reduced in vivo toxicity. Dalton Trans 2024; 53:966-985. [PMID: 38054338 DOI: 10.1039/d3dt03358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Despite the enormous efforts made over the past two decades to develop metallodrugs and nanocarriers for metallodrug delivery, there are still few precise strategies that aim to optimize the design of both metallodrugs and metallodrug carriers jointly in a concerted effort. In this work, three half-sandwich ruthenium(II) complexes with pyridylimidazo[1,5-a]pyridine ligand functionalized with polycyclic aromatic moiety (Ru(nap), Ru(ant), Ru(pyr)) are evaluated as possible anticancer candidates and polydiacetylene (PDA)-coated amino-functionalized mesoporous silica nanoparticles (AMSNs) are designed as a functional nanocarrier for drug delivery. Ru(pyr) exhibits higher cytotoxicity in HT-29 colorectal cancer cells compared to other complexes and cis-platin, but it does not exhibit better cellular uptake. Ru(pyr) is found to be preferentially accumulated in plasma, mitochondria, and ER-Golgi membrane. The complex induces cell cycle arrest in the G0/G1 phase, while higher concentrations cause programmed cell death via apoptosis. Ru(pyr) influences cancer cell adhesion property and acts as an antioxidant in HT-29 cells. In order to modulate the anticancer potency of Ru(pyr), AMSNs are used to encapsulate the complex, and then diacetylene self-assembly is allowed to deposit on the surface of the nanoparticles. Subsequently, the nanoparticles undergo topopolymerization, which results in π-conjugated PDA-Ru(pyr)@AMSNs. Owing to the ene-yne polymeric skeleton in the backbone, the non-fluorescent AMSNs turn into red-emissive particles, which are exploited for cell imaging applications. The release profile analysis reveals that such a π-conjugated polymer prevents the premature release of the complex from porous silica nanoparticles with the accelerated release of the complex in an acidic medium compared to physiological conditions. The PDA gatekeepers have also been proven to enhance the cellular internalization of Ru(pyr) with slow continuous release from the nanoformulation. Zebrafish embryo toxicity analysis suggests that the PDA-coated nanocarriers could be suitable candidates for in vivo investigations.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Przemyslaw Gajda-Morszewski
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Cracow, Poland
| | - Wickneswaran Ishaniya
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Themmila Khamrang
- Department of Chemistry, Dhanamanjuri University, Manipur 795001, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Nattamai Bhuvanesh
- X-ray Diffraction Lab, Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Malgorzata Brindell
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.
| | - Olga Mazuryk
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Cracow, Poland.
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
9
|
Ćwiklińska-Jurkowska M, Wiese-Szadkowska M, Janciauskiene S, Paprocka R. Disparities in Cisplatin-Induced Cytotoxicity-A Meta-Analysis of Selected Cancer Cell Lines. Molecules 2023; 28:5761. [PMID: 37570731 PMCID: PMC10421281 DOI: 10.3390/molecules28155761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a classic anticancer drug widely used as a reference drug to test new metal complex drug candidates. We found an unexpected diversity in cisplatin-related cytotoxicity values, expressed as IC50 (the half-maximal inhibitory concentration) in tumour cell lines, such as MCF-7, HepG2 and HeLa. We reviewed the data published from 2018 to 2022. A total of 41 articles based on 56 in vitro experiments met our eligibility criteria. Using a meta-analysis based on a random effect model, we evaluated the cytotoxicity of cisplatin (IC50) after 48- or 72-h cell exposure. We found large differences between studies using a particular cell line. According to the random effect model, the 95% confidence intervals for IC50 were extremely wide. The heterogeneity of cisplatin IC50, as measured by the I2 index for all cancer cell lines, was over 99.7% at culture times of 48 or 72 h. Therefore, the variability between studies is due to experimental heterogeneity rather than chance. Despite the higher IC50 values after 48 h than after 72 h, the heterogeneity between the two culture periods did not differ significantly. This indicates that the duration of cultivation is not the main cause of heterogeneity. Therefore, the available data is diverse and not useful as a reference. We discuss possible reasons for the IC50 heterogeneity and advise researchers to conduct preliminary testing before starting experiments and not to solely rely on the published data. We hope that this systematic meta-analysis will provide valuable information for researchers searching for new cancer drugs using cisplatin as a reference drug.
Collapse
Affiliation(s)
- Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Biomedical Systems Theory, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jagiellońska Str. 15, 87-067 Bydgoszcz, Poland;
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
10
|
Skoczynska A, Lewinski A, Pokora M, Paneth P, Budzisz E. An Overview of the Potential Medicinal and Pharmaceutical Properties of Ru(II)/(III) Complexes. Int J Mol Sci 2023; 24:ijms24119512. [PMID: 37298471 DOI: 10.3390/ijms24119512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review examines the existing knowledge about Ru(II)/(III) ion complexes with a potential application in medicine or pharmacy, which may offer greater potential in cancer chemotherapy than Pt(II) complexes, which are known to cause many side effects. Hence, much attention has been paid to research on cancer cell lines and clinical trials have been undertaken on ruthenium complexes. In addition to their antitumor activity, ruthenium complexes are under evaluation for other diseases, such as type 2 diabetes, Alzheimer's disease and HIV. Attempts are also being made to evaluate ruthenium complexes as potential photosensitizers with polypyridine ligands for use in cancer chemotherapy. The review also briefly examines theoretical approaches to studying the interactions of Ru(II)/Ru(III) complexes with biological receptors, which can facilitate the rational design of ruthenium-based drugs.
Collapse
Affiliation(s)
- Anna Skoczynska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Mateusz Pokora
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Piotr Paneth
- International Center of Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Elzbieta Budzisz
- Department of the Chemistry of Cosmetic Raw Materials, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
11
|
de Araujo-Neto JH, Guedes APM, Leite CM, Moraes CAF, Santos AL, Brito RDS, Rocha TL, Mello-Andrade F, Ellena J, Batista AA. "Half-Sandwich" Ruthenium Complexes with Alizarin as Anticancer Agents: In Vitro and In Vivo Studies. Inorg Chem 2023; 62:6955-6969. [PMID: 37099760 DOI: 10.1021/acs.inorgchem.3c00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Upon exploration of the chemistry of the combination of ruthenium/arene with anthraquinone alizarin (L), three new complexes with the general formulas [Ru(L)Cl(η6-p-cymene)] (C1), [Ru(L)(η6-p-cymene)(PPh3)]PF6 (C2), and [Ru(L)(η6-p-cymene)(PEt3)]PF6 (C3) were synthesized and characterized using spectroscopic techniques (mass, IR, and 1D and 2D NMR), molar conductivity, elemental analysis, and X-ray diffraction. Complex C1 exhibited fluorescence, such as free alizarin, while in C2 and C3, the emission was probably quenched by monophosphines and the crystallographic data showed that hydrophobic interactions are predominant in intermolecular contacts. The cytotoxicity of the complexes was evaluated in the MDA-MB-231 (triple-negative breast cancer), MCF-7 (breast cancer), and A549 (lung) tumor cell lines and MCF-10A (breast) and MRC-5 (lung) nontumor cell lines. Complexes C1 and C2 were more selective to the breast tumor cell lines, and C2 was the most cytotoxic (IC50 = 6.5 μM for MDA-MB-231). In addition, compound C1 performs a covalent interaction with DNA, while C2 and C3 present only weak interactions; however, internalization studies by flow cytometry and confocal microscopy showed that complex C1 does not accumulate in viable MDA-MB-231 cells and is detected in the cytoplasm only after cell permeabilization. Investigations of the mechanism of action of the complexes indicate that C2 promotes cell cycle arrest in the Sub-G1 phase in MDA-MB-231, inhibits its colony formation, and has a possible antimetastatic action, impeding cell migration in the wound-healing experiment (13% of wound healing in 24 h). The in vivo toxicological experiments with zebrafish indicate that C1 and C3 exhibit the most zebrafish embryo developmental toxicity (inhibition of spontaneous movements and heartbeats), while C2, the most promising anticancer drug in the in vitro preclinical tests, revealed the lowest toxicity in in vivo preclinical screening.
Collapse
Affiliation(s)
- João Honorato de Araujo-Neto
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Adriana P M Guedes
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Celisnolia M Leite
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
| | - Carlos André F Moraes
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Andressa L Santos
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Rafaella da S Brito
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Thiago L Rocha
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
| | - Francyelli Mello-Andrade
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás 74605-050, Brazil
- Instituto Federal de Educação Ciência e Tecnologia (IFG), Goiânia, Goiás 74055-110, Brazil
| | - Javier Ellena
- Instituto de Física de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo 13566-590, Brazil
| | - Alzir A Batista
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
12
|
Sumithaa C, Ganeshpandian M. Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal-Drug Synergism in Metallodrug Design. Mol Pharm 2023; 20:1453-1479. [PMID: 36802711 DOI: 10.1021/acs.molpharmaceut.2c01027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A novel strategy in metallodrug discovery today is incorporating clinically approved drugs into metal complexes as coordinating ligands. Using this strategy, various drugs have been repurposed to prepare organometallic complexes to overcome the resistance of drugs and to design promising alternatives to currently available metal-based drugs. Notably, the combination of organoruthenium moiety and clinical drug in a single molecule has been shown, in some instances, to enhance pharmacological activity and reduce toxicity in comparison to the parent drug. Thus, for the past two decades, there has been increasing interest in exploiting metal-drug synergism to develop multifunctional organoruthenium drug candidates. Herein, we summarized the recent reports of rationally designed half-sandwich Ru(arene) complexes containing different FDA-approved drugs. This review also focuses on the mode of coordination of drugs, ligand-exchange kinetics, mechanism of action, and structure-activity relationship of organoruthenated complexes containing drugs. We hope this discussion may serve to shed light on future developments in ruthenium-based metallopharmaceuticals.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| |
Collapse
|
13
|
Silva HVR, da Silva GÁF, Zavan B, Machado RP, de Araujo-Neto JH, Ellena JA, Ionta M, Barbosa MIF, Doriguetto AC. The nicotinamide ruthenium(II) complex induces the production of reactive oxygen species (ROS), cell cycle arrest, and apoptosis in melanoma cells. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Azmanova M, Rafols L, Cooper PA, Seaton CC, Shnyder SD, Pitto‐Barry A. Anticancer Water-Soluble Organoruthenium Complexes: Synthesis and Preclinical Evaluation. Chembiochem 2022; 23:e202200259. [PMID: 35838006 PMCID: PMC9545474 DOI: 10.1002/cbic.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/13/2022] [Indexed: 11/18/2022]
Abstract
The synthesis, characterisation, and evaluation of the in vitro cytotoxicity of five maleonitriledithiolate-based ruthenium metal complexes bearing various phosphine ligands towards two ovarian cancer cell lines (A2780 and A2780cisR), one non-small-cell lung cancer cell line (H460) and one normal prostate cell line (PNT2) are presented herein. These 18-electron complexes were designed with four water-soluble phosphine ligands to increase the water-solubility character of the corresponding electron-deficient ruthenium complex which showed great in vitro promises, and triphenylphosphine for comparison. The complexes with triphenylphosphine-3,3',3''-trisulfonic acid and triphenylphosphine present similar cytotoxicity compared to the 16-electron precursor, with equal cytotoxicity to both A2780 and A2780cisR. Hints at the mechanism of action suggest an apoptotic pathway based on reactive oxygen species (ROS) production. No toxicity was observed in preliminary in vivo pilot studies for these two complexes in subcutaneous A2780 and A2780cisR xenograft models, with some evidence of tumour growth delay.
Collapse
Affiliation(s)
- Maria Azmanova
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | - Laia Rafols
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | | | - Colin C. Seaton
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| | - Steven D. Shnyder
- Institute of Cancer TherapeuticsUniversity of BradfordBD7 1DPBradfordUK
| | - Anaïs Pitto‐Barry
- Université Paris-SaclayCNRSInstitut Galien Paris-Saclay92296Châtenay-MalabryFrance
- School of Chemistry and BiosciencesUniversity of BradfordBD7 1DPBradfordUK
| |
Collapse
|
15
|
Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Paprocka R, Wiese-Szadkowska M, Janciauskiene S, Kosmalski T, Kulik M, Helmin-Basa A. Latest developments in metal complexes as anticancer agents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214307] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
|
18
|
Ryan RT, Havrylyuk D, Stevens KC, Moore LH, Parkin S, Blackburn JS, Heidary DK, Selegue JP, Glazer EC. Biological Investigations of Ru(II) Complexes With Diverse β-diketone Ligands. Eur J Inorg Chem 2021; 2021:3611-3621. [PMID: 34539235 PMCID: PMC8447810 DOI: 10.1002/ejic.202100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 02/04/2023]
Abstract
The β-diketone scaffold is a commonly used synthetic intermediate, and is a functional group found in natural products such as curcuminoids. This core structure can also act as a chelating ligand for a variety of metals. In order to assess the potential of this scaffold for medicinal inorganic chemistry, seven different κ2-O,O'-chelating ligands were used to construct Ru(II) complexes with polypyridyl co-ligands, and their biological activity was evaluated. The complexes demonstrated promising structure-dependent cytotoxicity. Three complexes maintained high activity in a tumor spheroid model, and all complexes demonstrated low in vivo toxicity in a zebrafish model. From this series, the best compound exhibited a ~ 30-fold window between cytotoxicity in a 3-D tumor spheroid model and potential in vivo toxicity. These results suggest that κ2-O,O'-ligands can be incorporated into Ru(II)-polypyridyl complexes to create favorable candidates for future drug development.
Collapse
Affiliation(s)
- Raphael T Ryan
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - Dmytro Havrylyuk
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - Kimberly C Stevens
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - L Henry Moore
- University of Kentucky, Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - Jessica S Blackburn
- University of Kentucky, Department of Molecular and Cellular Biochemistry, University of Kentucky, 741 S. Limestone, Lexington, KY 40536, USA
| | - David K Heidary
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - John P Selegue
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| | - Edith C Glazer
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, Kentucky 40506, USA
| |
Collapse
|
19
|
Lenis-Rojas OA, Roma-Rodrigues C, Fernandes AR, Carvalho A, Cordeiro S, Guerra-Varela J, Sánchez L, Vázquez-García D, López-Torres M, Fernández A, Fernández JJ. Evaluation of the In Vitro and In Vivo Efficacy of Ruthenium Polypyridyl Compounds against Breast Cancer. Int J Mol Sci 2021; 22:ijms22168916. [PMID: 34445620 PMCID: PMC8396206 DOI: 10.3390/ijms22168916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
The clinical success of cisplatin, carboplatin, and oxaliplatin has sparked the interest of medicinal inorganic chemistry to synthesize and study compounds with non-platinum metal centers. Despite Ru(II)-polypyridyl complexes being widely studied and well established for their antitumor properties, there are not enough in vivo studies to establish the potentiality of this type of compound. Therefore, we report to the best of our knowledge the first in vivo study of Ru(II)-polypyridyl complexes against breast cancer with promising results. In order to conduct our study, we used MCF7 zebrafish xenografts and ruthenium complexes [Ru(bipy)2(C12H8N6-N,N)][CF3SO3]2Ru1 and [{Ru(bipy)2}2(μ-C12H8N6-N,N)][CF3SO3]4Ru2, which were recently developed by our group. Ru1 and Ru2 reduced the tumor size by an average of 30% without causing significant signs of lethality when administered at low doses of 1.25 mg·L-1. Moreover, the in vitro selectivity results were confirmed in vivo against MCF7 breast cancer cells. Surprisingly, this work suggests that both the mono- and the dinuclear Ru(II)-polypyridyl compounds have in vivo potential against breast cancer, since there were no significant differences between both treatments, highlighting Ru1 and Ru2 as promising chemotherapy agents in breast cancer therapy.
Collapse
Affiliation(s)
- Oscar A. Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal;
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Correspondence: (A.R.F.); (J.J.F.)
| | - Andreia Carvalho
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
| | - Sandra Cordeiro
- UCIBIO, Departamento Ciências da Vida, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal; (C.R.-R.); (A.C.); (S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Jorge Guerra-Varela
- Departamento de Zoología, Genética y Antropología Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (J.G.-V.); (L.S.)
| | - Laura Sánchez
- Departamento de Zoología, Genética y Antropología Física. Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (J.G.-V.); (L.S.)
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Digna Vázquez-García
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Margarita López-Torres
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Alberto Fernández
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
| | - Jesús J. Fernández
- Departamento de Química, Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain; (D.V.-G.); (M.L.-T.); (A.F.)
- Correspondence: (A.R.F.); (J.J.F.)
| |
Collapse
|
20
|
Geisler H, Westermayr J, Cseh K, Wenisch D, Fuchs V, Harringer S, Plutzar S, Gajic N, Hejl M, Jakupec MA, Marquetand P, Kandioller W. Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorg Chem 2021; 60:9805-9819. [PMID: 34115482 PMCID: PMC8261824 DOI: 10.1021/acs.inorgchem.1c01083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A series of nine RuII arene complexes bearing tridentate naphthoquinone-based N,O,O-ligands was synthesized and characterized. Aqueous stability and their hydrolysis mechanism were investigated via UV/vis photometry, HPLC-MS, and density functional theory calculations. Substituents with a positive inductive effect improved their stability at physiological pH (7.4) intensely, whereas substituents such as halogens accelerated hydrolysis and formation of dimeric pyrazolate and hydroxido bridged dimers. The observed cytotoxic profile is unusual, as complexes exhibited much higher cytotoxicity in SW480 colon cancer cells than in the broadly chemo- (incl. platinum-) sensitive CH1/PA-1 teratocarcinoma cells. This activity pattern as well as reduced or slightly enhanced ROS generation and the lack of DNA interactions indicate a mode of action different from established or previously investigated classes of metallodrugs.
Collapse
Affiliation(s)
- Heiko Geisler
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Julia Westermayr
- Department
of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV47AL, United Kingdom
| | - Klaudia Cseh
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Dominik Wenisch
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Valentin Fuchs
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sophia Harringer
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Sarah Plutzar
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Natalie Gajic
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michaela Hejl
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria
| | - Michael A. Jakupec
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria
| | - Philipp Marquetand
- Faculty
of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Waehringer Str. 17, A-1090 Vienna, Austria,Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Str. 17, 1090 Wien, Austria
| | - Wolfgang Kandioller
- Faculty
of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Vienna, Austria,Research
Cluster “Translational Cancer Therapy Research”, University of Vienna, Waehringer Str. 42, A-1090 Vienna, Austria,. Phone: +43 1 4277
52609
| |
Collapse
|
21
|
Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213890] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Rani S, Raheja K, Luxami V, Paul K. A review on diverse heterocyclic compounds as the privileged scaffolds in non-steroidal aromatase inhibitors. Bioorg Chem 2021; 113:105017. [PMID: 34091288 DOI: 10.1016/j.bioorg.2021.105017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer, emerging malignancy is common among women due to overexpression of estrogen. Estrogens are biosynthesized from androgens by aromatase, a cytochrome P450 enzyme complex, and play a pivotal role in stimulating cell proliferation. Therefore, deprivation of estrogen by blocking aromatase is considered as the effective way for the inhibition and treatment of breast cancer. In recent years, various non-steroidal heterocyclic functionalities have been extensively developed and studied for their aromatase inhibition activity. This review provides information about the structural-activity relationship of heterocycles (Type II) towards aromatase. This aids the medicinal chemist around the significance of different heterocyclic moieties and helps to design potent aromatase inhibitors.
Collapse
Affiliation(s)
- Sudesh Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Konpal Raheja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| |
Collapse
|
23
|
Nayeem N, Contel M. Exploring the Potential of Metallodrugs as Chemotherapeutics for Triple Negative Breast Cancer. Chemistry 2021; 27:8891-8917. [PMID: 33857345 DOI: 10.1002/chem.202100438] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/11/2022]
Abstract
This review focuses on studies of coordination and organometallic compounds as potential chemotherapeutics against triple negative breast cancer (TNBC) which has one of the poorest prognoses and worst survival rates from all breast cancer types. At present, chemotherapy is still the standard of care for TNBC since only one type of targeted therapy has been recently developed. References for metal-based compounds studied in TNBC cell lines will be listed, and those of metal-specific reviews, but a detailed overview will also be provided on compounds studied in vivo (mostly in mice models) and those compounds for which some preliminary mechanistic data was obtained (in TNBC cell lines and tumors) and/or for which bioactive ligands have been used. The main goal of this review is to highlight the most promising metal-based compounds with potential as chemotherapeutic agents in TNBC.
Collapse
Affiliation(s)
- Nazia Nayeem
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA
| | - Maria Contel
- Brooklyn College Cancer Center BCCC-CURE, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.,Biology PhD Program, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,Chemistry and Biochemistry PhD Programs, The Graduate Center, The City University of New York, 365 5th Avenue, New York, New York, 11006, USA.,University of Hawaii Cancer Center, 701 Ilalo St, Honolulu, Hawaii, 96813, USA
| |
Collapse
|
24
|
Hairat S, Zaki M. Half sandwiched RutheniumII complexes: En Route towards the targeted delivery by Human Serum Albumin (HSA). J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Corsinovi D, Usai A, Sarlo MD, Giannaccini M, Ori M. Zebrafish Avatar to Develop Precision Breast Cancer Therapies. Anticancer Agents Med Chem 2021; 22:748-759. [PMID: 33797388 DOI: 10.2174/1871520621666210402111634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Zebrafish (Danio rerio) is a vertebrate that has become a popular alternative model for the cellular and molecular study of human tumors and for drug testing and validating approaches. Notably, zebrafish embryos, thanks to their accessibility, allow rapid collection of in vivo results prodromal to validation in the murine models in respect to the 3R principles. The generation of tumor xenograft in zebrafish embryos and larvae, or zebrafish avatar, represents a unique opportunity to study tumor growth, angiogenesis, cell invasion and metastatic dissemination, interaction between tumor and host in vivo avoiding immunogenic rejection, representing a promising platform for the translational research and personalized therapies. OBJECTIVE In this mini-review we report recent advances in breast cancer research and drug testing that took advantage of the zebrafish xenograft model using both breast cancer cell lines and patient's biopsy. CONCLUSION Patient derived xenograft, together with the gene editing, the omics biotechnology, the in vivo time lapse imaging and the high-throughput screening that are already set up and largely used in zebrafish, could represent a step forward towards precision and personalized medicine in the breast cancer research field.
Collapse
Affiliation(s)
- Debora Corsinovi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa. Italy
| | - Alice Usai
- Department of Biology, University of Pisa, Pisa. Italy
| | | | | | - Michela Ori
- Department of Biology, University of Pisa, Pisa. Italy
| |
Collapse
|
26
|
Liu RX, Luo RY, Tang MT, Liu YC, Chen ZF, Liang H. The first copper(I) complex of anthrahydrazone with potential ROS scavenging activity showed significant in vitro anticancer activity by inducing apoptosis and autophagy. J Inorg Biochem 2021; 218:111390. [PMID: 33721719 DOI: 10.1016/j.jinorgbio.2021.111390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
Based on the anticancer pharmacophore of anthrahydrazone and quinoline, a new quinolylanthrahydrazone ligand, 9-AQH (anthracene-9-quinolylhydrazone), was synthesized to further afford four metal complexes, [CoII(9-AQH)(NO3)2(H2O)] (1), [NiII(9-AQH)2(H2O)2]·2NO3 (2), [CuI(9-AQH)2]·NO3 (3), [ZnII(9-AQH)2(NO3)]·NO3 (4), determined by X-ray single crystal diffraction analysis. The reaction of Cu(NO3)2 with 9-AQH formed the stable and repeatable copper(I) complex 3. In vitro screening demonstrated only 3 showed significant and broad-spectrum anticancer activity, indicating that Cu(I) played a key role in exerting the anticancer activity. In solution, Cu(I) was not naturally oxidized to Cu(II) suggested by 1H-NMR (Nuclear Magnetic Resonance) and EPR (Electron Paramagnetic Resonance) analysis. The presence of 3 could also catalyze the H2O2 system to give hydroxyl free radicals, suggested by further EPR and electrophoresis assay. At the cellular level, although no obvious Cu(II) signals were detected and the total ROS (Reactive Oxygen Species) scavenging in the tumor cells treated with 3, the potential redox property between Cu(I)/Cu(II), as a key role, should not be denied for the significant anticancer activity of 3, considering the much complicated circumstance and other reductive substances in cells. The anticancer mechanism of 3 on the most sensitive MGC-803 cells pointed to significant cell apoptosis through mitochondrial pathway, rather than cell cycle arrest. While the autophagy observed in tumor cells treated by 3 suggested its complicated anticancer mechanism, and whether there was an intrinsic correlation still needed to be further investigated.
Collapse
Affiliation(s)
- Rui-Xue Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Ru-Yi Luo
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Meng-Ting Tang
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Yan-Cheng Liu
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| | - Zhen-Feng Chen
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China
| | - Hong Liang
- School of Chemistry & Pharmaceutical Sciences, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
27
|
Lenis-Rojas OA, Robalo MP, Tomaz AI, Fernandes AR, Roma-Rodrigues C, Teixeira RG, Marques F, Folgueira M, Yáñez J, Gonzalez AA, Salamini-Montemurri M, Pech-Puch D, Vázquez-García D, Torres ML, Fernández A, Fernández JJ. Half-Sandwich Ru( p-cymene) Compounds with Diphosphanes: In Vitro and In Vivo Evaluation As Potential Anticancer Metallodrugs. Inorg Chem 2021; 60:2914-2930. [PMID: 33570919 DOI: 10.1021/acs.inorgchem.0c02768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ruthenium(II) complexes are currently considered attractive alternatives to the widely used platinum-based drugs. We present herein the synthesis and characterization of half-sandwich ruthenium compounds formulated as [Ru(p-cymene)(L)Cl][CF3SO3] (L = 1,1-bis(methylenediphenylphosphano)ethylene, 1; L = 1,1-bis(diphenylphosphano)ethylene, 2), which were characterized by elemental analysis, mass spectrometry, 1H and 31P{1H} NMR, UV-vis and IR spectroscopy, conductivity measurements and cyclic voltammetry. The molecular structures for both complexes were determined by single-crystal X-ray diffraction. Their cytotoxic activity was evaluated using the MTT assay against human tumor cells, namely ovarian (A2780) and breast (MCF7 and MDA-MB-231). Both complexes were active against breast adenocarcinoma cells, with complex 1 exhibiting a quite remarkable cytotoxicity in the submicromolar range. Interestingly, at concentrations equivalent to the IC50 values in the MCF7 cancer cells, complexes 1 and 2 presented lower cytotoxicity in normal human primary fibroblasts. The antiproliferative effects of 1 and 2 in MCF7 cells might be associated with the induction of reactive oxygen species (ROS), leading to a combined cell death mechanism via apoptosis and autophagy. Despite the fact that in vitro a partial intercalation between complexes and DNA was observed, no MCF7 cell cycle delay or arrest was observed, indicating that DNA might not be a direct target. Complexes 1 and 2 both exhibited a moderate to strong interaction with human serum albumin, suggesting that protein targets may be involved in their mode of action. Their acute toxicity was evaluated in the zebrafish model. Complex 1 (the most toxic of the two) exhibited a lethal toxicity LC50 value about 1 order of magnitude higher than any IC50 concentrations found for the cancer cell models used, highlighting its therapeutic relevance as a drug candidate in cancer chemotherapy.
Collapse
Affiliation(s)
- Oscar A Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - M Paula Robalo
- Área Departamental de Engenharia Química, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ricardo G Teixeira
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologías Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
| | - Mónica Folgueira
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain.,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, U.K
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Anabel Alba Gonzalez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Martín Salamini-Montemurri
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Dawrin Pech-Puch
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain.,Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, C.P. 97100, Mérida, Yucatán, Mexico
| | - Digna Vázquez-García
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Margarita López Torres
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Alberto Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Jesús J Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
28
|
Ryan RT, Havrylyuk D, Stevens KC, Moore LH, Kim DY, Blackburn JS, Heidary DK, Selegue JP, Glazer EC. Avobenzone incorporation in a diverse range of Ru(II) scaffolds produces potent potential antineoplastic agents. Dalton Trans 2020; 49:12161-12167. [PMID: 32845256 PMCID: PMC8607750 DOI: 10.1039/d0dt02016h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Four structurally distinct classes of polypyridyl ruthenium complexes containing avobenzone exhibited low micromolar and submicromolar potencies in cancer cells, and were up to 273-fold more active than the parent ligand. Visible light irradiation enhanced the cytotoxicity of some complexes, making them promising candidates for combined chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Raphael T Ryan
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Golbaghi G, Groleau M, López de los Santos Y, Doucet N, Déziel E, Castonguay A. Cationic Ru
II
Cyclopentadienyl Complexes with Antifungal Activity against Several
Candida
Species. Chembiochem 2020; 21:3112-3119. [DOI: 10.1002/cbic.202000254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Golara Golbaghi
- Organometallic Chemistry Laboratory for the Design of Catalysts and Therapeutics INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Marie‐Christine Groleau
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | | | - Nicolas Doucet
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Eric Déziel
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Annie Castonguay
- Organometallic Chemistry Laboratory for the Design of Catalysts and Therapeutics INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| |
Collapse
|
30
|
Chen C, Xu C, Li T, Lu S, Luo F, Wang H. Novel NHC-coordinated ruthenium(II) arene complexes achieve synergistic efficacy as safe and effective anticancer therapeutics. Eur J Med Chem 2020; 203:112605. [PMID: 32688202 DOI: 10.1016/j.ejmech.2020.112605] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
There is an urgent need for more effective, less toxic cancer therapy agents. Motivated by this need, we synthesized a small panel of N-heterocyclic carbene (NHC)-coordinated ruthenium(II) arene complexes Ru1-Ru6 with the formula [Ru(p-cymene)(L)Cl]PF6 (L = NHC ligand with varying substituents). Cell-based in vitro studies revealed that despite the structural similarity, Ru1-Ru6 exhibited distinct cytotoxic activities against cancer cells. In particular, Ru4 and Ru6, which bear n-octyl and pentamethylbenzyl motifs, respectively, were the most active at inducing apoptosis. In human ovarian A2780 cancer cells, Ru4 and Ru6 showed the highest cytotoxicities with IC50 values of 2.74 ± 0.15 μM and 1.98 ± 0.10 μM, respectively, and they were approximately 2-fold more potent than cisplatin (IC50 = 5.55 ± 0.37 μM). In addition to the cell killing capacity, inhibition of cell migration was validated by using these two optimized complexes. Mechanistic studies revealed that Ru4 and Ru6 complexes induced apoptosis in a caspase-dependent manner, primarily through intracellular reactive oxygen species (ROS) overproduction and cell cycle arrest at G1 phase. Furthermore, in a preclinical metastatic model of A2780 tumor xenograft, administration of Ru4 and Ru6 (20 μmol/kg) resulted in a marked inhibition of tumor progression and metastasis. Finally, a substantially alleviated systemic toxicity was observed for both complexes in comparison with cisplatin in animals. Overall, this study greatly increases our understanding of NHC-coordinated Ru(II) arene metallodrugs, aiding further investigation of their therapeutic potential in the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Chao Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Chang Xu
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Tongyu Li
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Siming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Fangzhou Luo
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
31
|
Jiang GB, Zhang WY, He M, Gu YY, Bai L, Wang YJ, Yi QY, Du F. Development of four ruthenium polypyridyl complexes as antitumor agents: Design, biological evaluation and mechanism investigation. J Inorg Biochem 2020; 208:111104. [PMID: 32485635 DOI: 10.1016/j.jinorgbio.2020.111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Ruthenium complexes are expected to be new opportunities for the development of antitumor agents. Herein, four ruthenium polypyridyl complexes ([Ru(bpy)2(CAPIP)](ClO4)2 (Ru(II)-1, bpy = 2,2'-bipyridine; CAPIP = (E)-2-(2-(furan-2-yl)vinyl)-1H-imidazo[4,5-f][1,10]phenanthroline), [Ru(phen)2(CA-PIP)](ClO4)2 (Ru(II)-2, phen = 1,10-phenanthroline), [Ru(dmb)2(CAPIP)](ClO4)2 (Ru(II)-3, dmb = 4,4'-dimethyl-2,2'-bipyridine), [Ru(dmb)2(ETPIP)](ClO4)2 (Ru(II)-4, ETPIP = 2-(4-(thiophen-2-ylethynyl)phenyl)-1H-imidazo[4,5-f][1,10]phen-anthroline)) have been investigated as mitochondria-targeted antitumor metallodrugs. DNA binding studies indicated that target Ru(II) complexes interacts with CT DNA (calf thymus DNA) by an intercalative mode. Cytotoxicity assay results demonstrate that Ru(II) complexes show high cytotoxicity against A549 cells with low IC50 value of 23.6 ± 2.3, 20.1 ± 1.9, 22.7 ± 1.8 and 18.4 ± 2.3 μM, respectively. Flow cytometry and morphological analysis revealed that these Ru(II) complexes can induce apoptosis in A549 cells. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were also investigated by ImageXpress Micro XLS system. The experimental results indicate that the reactive oxygen species in A549 cells increased significantly and mitochondrial membrane potential decreased obviously. In addition, colocalization studies shown these complexes could get to the cytoplasm through the cell membrane and accumulate in the mitochondria. Furthermore, Ru(II) complexes can effectively induces cell cycle arrest at the S phase in A549 cells. Finally, cell invasion assay and quantitative studies were also performed to investigate the mechanism of this process. All in together, this study suggested that these Ru(II) complexes could induce apoptosis in A549 cells through cell cycle arrest and ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Guang-Bin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.
| | - Wen-Yao Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Miao He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi-Ying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lan Bai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yang-Jie Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiao-Yan Yi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fan Du
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
32
|
Rationally Designed Ruthenium Complexes for Breast Cancer Therapy. Molecules 2020; 25:molecules25020265. [PMID: 31936496 PMCID: PMC7024301 DOI: 10.3390/molecules25020265] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the anticancer potential of ruthenium-based complexes, several species were reported as promising candidates for the treatment of breast cancer, which accounts for the greatest number of new cases in women every year worldwide. Among these ruthenium complexes, species containing bioactive ligand(s) have attracted increasing attention due to their potential multitargeting properties, leading to anticancer drug candidates with a broader range of cellular targets/modes of action. This review of the literature aims at providing an overview of the rationally designed ruthenium-based complexes that have been reported to date for which ligands were carefully selected for the treatment of hormone receptor positive breast cancers (estrogen receptor (ER+) or progesterone receptor (PR+)). In addition, this brief survey highlights some of the most successful examples of ruthenium complexes reported for the treatment of triple negative breast cancer (TNBC), a highly aggressive type of cancer, regardless of if their ligands are known to have the ability to achieve a specific biological function.
Collapse
|