1
|
Hong XQ, Chen L, Yu XH, Li L, Wu JQ, Hu J, Mao QC, Chen WH. Ferroptosis of Cancer Cells via Tubulin Degradation and Mitochondrial Dysfunction: A Novel Mechanism of Anticancer Effect for Small-Molecule Anion Transporters. J Med Chem 2025. [PMID: 40383925 DOI: 10.1021/acs.jmedchem.4c03227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Synthetic anion transporters disrupt the homeostasis of cellular anions and may therefore be developed as a promising cancer therapy. Herein, we demonstrated that trifluoromethylation of a benzimidazole-based anion transporter led to up to 4.84 × 103-fold increase in the anionophoric activity and promising cytotoxicity toward the selected solid tumor cells. The most active compound 6 was able to efficiently elevate intracellular chloride anions, induce the degradation of tubulin, perturb microtubule stability, increase lipid peroxidation, and impair mitochondrial function. This compound predominantly triggered ferroptosis, along with apoptosis as a complementary mechanism, unveiling a new pathway for the anticancer effects of synthetic anion transporters. Furthermore, compound 6 demonstrated potent antitumor activity against HeLa xenografts with minimal side effects and might find high potentials in the field of cancer chemotherapy.
Collapse
Affiliation(s)
- Xiao-Qiao Hong
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Xi-Hui Yu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Lanqing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Jia-Qiang Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China
| | - Qin-Chao Mao
- Department of Pharmacy, Guangdong Maoming Health Vocational College, Maoming 525000, P. R. China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, P. R. China
| |
Collapse
|
2
|
Sang X, Jiao H, Meng Q, Fang X, Pan Q, Zhou J, Qian T, Zhang W, Xu Y, An J, Huang Z, Hu H. Structural mechanisms underlying the modulation of CXCR4 by diverse small-molecule antagonists. Proc Natl Acad Sci U S A 2025; 122:e2425795122. [PMID: 40063796 PMCID: PMC11929458 DOI: 10.1073/pnas.2425795122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025] Open
Abstract
CXCR4 (CXC chemokine receptor type 4), a member of the G protein-coupled receptor superfamily, plays a role in cell migration and functions as a coreceptor for HIV entry. Molecular therapeutics targeting CXCR4 have been under intensive investigation. To date, only two small-molecule antagonist drugs targeting CXCR4, plerixafor (AMD3100) and mavorixafor (AMD070), have been approved. Here, we present the high-resolution structures of CXCR4 complexed with AMD3100 and AMD070, as well as a small-molecule antagonist HF51116 that has very different chemical structure and binding mechanism from AMD3100 and AMD070. The interactions between these antagonists and the receptor are analyzed in details, and the mechanisms of antagonism are elucidated. Both the major and minor subpockets on CXCR4 are found to be involved in binding of these small-molecule antagonists. The distinct conformations of Trp942.60 observed in these structures highlight the plasticity of the binding pocket on CXCR4, offering valuable insights into the exploration and refinement of therapeutic strategies targeting this chemokine receptor.
Collapse
Affiliation(s)
- Xiaohong Sang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Qian Meng
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Jiao Zhou
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Tingli Qian
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Wanqin Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| | - Yan Xu
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Ziwei Huang
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
- School of Life Sciences, Tsinghua University, Beijing100084, China
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA92037
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen518172, China
| |
Collapse
|
3
|
Wang F, Ma J, Yang L, Hu P, Tang S, Wang J, Li Z. Discovery of novel CXCR4 inhibitors for the treatment of inflammation by virtual screening and biological evaluation. Eur J Med Chem 2024; 275:116605. [PMID: 38885550 DOI: 10.1016/j.ejmech.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) exerts considerable influence on the pathogenesis of inflammatory disorders and offers a potent avenue for drug intervention. This research utilizes a hybrid virtual screening methodology constructed using computer-aided drug design to discover novel CXCR4 inhibitors for the treatment of inflammation. First, a compound library was screened by Lipinski's five rules and adsorption, distribution, metabolism, excretion and toxicity properties. Second, the HypoGen algorithm was used in constructing a 3D-QSAR pharmacophore model and verify it layer by layer, and the obtained optimal pharmacophore 1 (Hypo 1) was used as a 3D query for compound screening. Then, hit compounds were obtained through molecular docking (Libdock and CDOCKER). The toxicity of the compounds to MDA-MB-231 cells was evaluated in vitro, and their binding affinity to the target was evaluated according to how they compete with 12G5 antibody for CXCR4 on the surfaces of the MDA-MB-231 cells. Compound Hit14 showed the strongest binding affinity among the hit compounds and inhibited cell migration and invasion in Matrigel invasion and wound healing assay at a concentration of 100 nM, demonstrating a better effect than AMD3100. Western Blot experiments further showed that Hit14 blocked the CXCR4/CXCL12-mediated phosphorylation of Akt. Meanwhile, cellular thermal displacement assay analysis showed that CXCR4 protein bound to Hit14 had high thermal stability. Finally, through in vivo experiments, we found that Hit14 inhibited mouse ear inflammation and reduced ear swelling and damage. Therefore, Hit14 is a promising drug for the further development of CXCR4 inhibitors for inflammation treatment.
Collapse
Affiliation(s)
- Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jie Ma
- The Central Hospital of Wuhan, Tongji Medical College of HUST, Wuhan, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ping Hu
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siming Tang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing Wang
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Yang J, Tian E, Chen L, Liu Z, Ren Y, Mao W, Zhang Y, Zhang J. Development and therapeutic perspectives of CXCR4 antagonists for disease therapy. Eur J Med Chem 2024; 275:116594. [PMID: 38879970 DOI: 10.1016/j.ejmech.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Chemokine receptor 4 (CXCR4) is a subtype receptor protein of the GPCR family with a seven-transmembrane structure widely distributed in human tissues. CXCR4 is involved in diseases (e.g., HIV-1 infection), cancer proliferation and metastasis, inflammation signaling pathways, and leukemia, making it a promising drug target. Clinical trials on CXCR4 antagonists mainly focused on peptides and antibodies, with a few small molecule compounds, such as AMD11070 (2) and MSX-122 (3), showing promise in cancer treatment. This perspective discusses the structure-activity relationship (SAR) of CXCR4 and its role in diseases, mainly focusing on the SAR of CXCR4 antagonists. It also explores the standard structural features and target interactions of CXCR4 binding in different disease categories. Furthermore, it investigates various modification strategies to propose potential improvements in the effectiveness of CXCR4 drugs.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihang Liu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wuyu Mao
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yiwen Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and Institute of Respiratory Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Keypour H, Fatemikia H, Karamian R, Rezaei MT, Ghasemian Sorboni S, William Gable R. Molecular docking and biological activities of Ni(II), Cu(II) and Co(II) complexes with a new potentially hexadentate polyamine ligand; X-ray crystal structure of the Cu(II) complex. J Biomol Struct Dyn 2024; 42:7370-7383. [PMID: 37522181 DOI: 10.1080/07391102.2023.2240412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Three new metal complexes have been obtained from the reaction of a new polyamine (L) with Ni(II), Cu(II), and Co(II) ions. The X-ray structural analysis of the Cu(II) complex shows that the copper atom is in a very distorted square pyramidal environment, coordinated by five of the six nitrogen donor atoms of the potentially hexadentate ligand. To evaluate the biological potential of the ligand and the synthesized metal complexes, their binding behavior with DNA was studied by molecular modeling methods. The Molecular docking studies showed that the free ligand and its complexes were bound to the major groove of DNA. The antioxidant activities of the ligand and its metal complexes were also assessed, in vitro, using 2,2-diphenyl-1-picrylhydrazyl. The synthesized compounds were tested for activity against lung carcinoma epithelial cells (A549) using the MTT cell viability assay. A comparative study of the IC50 values indicated that the Cu(II) complex exhibited the highest activity, while the Co(II) and Ni(II) complexes showed more potent antiproliferative activity than the ligand. The antibacterial activities of the synthesized complexes were evaluated using micro-broth dilution and disk diffusion methods. The complexes showed greater antibacterial activity than the free ligand.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hassan Keypour
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | | | - Roya Karamian
- Department of Biology, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
| | | | | | | |
Collapse
|
6
|
Martínez-Asensio M, Sàrrias L, Gorjón-de-Pablo G, Fernández-Serrano M, Camaló-Vila J, Gibert A, Puig de la Bellacasa R, Teixidó J, Roué G, Borrell JI, Estrada-Tejedor R. Applying Molecular Modeling to the Design of Innovative, Non-Symmetrical CXCR4 Inhibitors with Potent Anticancer Activity. Int J Mol Sci 2024; 25:9446. [PMID: 39273392 PMCID: PMC11394923 DOI: 10.3390/ijms25179446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The identification of new compounds with potential activity against CXC chemokine receptor type 4 (CXCR4) has been broadly studied, implying several chemical families, particularly AMD3100 derivatives. Molecular modeling has played a pivotal role in the identification of new active compounds. But, has its golden age ended? A virtual library of 450,000 tetraamines of general structure 8 was constructed by using five spacers and 300 diamines, which were obtained from the corresponding commercially available cyclic amines. Diversity selection was performed to guide the virtual screening of the former database and to select the most representative set of compounds. Molecular docking on the CXCR4 crystal structure allowed us to rank the selection and identify those candidate molecules with potential antitumor activity against diffuse large B-cell lymphoma (DLBCL). Among them, compound A{17,18} stood out for being a non-symmetrical structure, synthetically feasible, and with promising activity against DLBCL in in vitro experiments. The focused study of symmetrical-related compounds allowed us to identify potential pre-hits (IC50~20 µM), evidencing that molecular design is still relevant in the development of new CXCR4 inhibitor candidates.
Collapse
Affiliation(s)
- Miquel Martínez-Asensio
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Lluís Sàrrias
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Gema Gorjón-de-Pablo
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, E-08916 Badalona, Spain
| | | | - Judith Camaló-Vila
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Albert Gibert
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Raimon Puig de la Bellacasa
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Jordi Teixidó
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, E-08916 Badalona, Spain
| | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| | - Roger Estrada-Tejedor
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain
| |
Collapse
|
7
|
Meng Q, Zhu R, Mao Y, Zhu S, Wu Y, Huang L, Ciechanover A, An J, Xu Y, Huang Z. Biological and mutational analyses of CXCR4-antagonist interactions and design of new antagonistic analogs. Biosci Rep 2023; 43:BSR20230981. [PMID: 38131305 PMCID: PMC10987480 DOI: 10.1042/bsr20230981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The chemokine receptor CXCR4 has become an attractive therapeutic target for HIV-1 infection, hematopoietic stem cell mobilization, and cancer metastasis. A wide variety of synthetic antagonists of CXCR4 have been developed and studied for a growing list of clinical applications. To compare the biological effects of different antagonists on CXCR4 functions and their common and/or distinctive molecular interactions with the receptor, we conducted head-to-head comparative cell-based biological and mutational analyses of the interactions with CXCR4 of eleven reported antagonists, including HC4319, DV3, DV1, DV1 dimer, V1, vMIP-II, CVX15, LY2510924, IT1t, AMD3100, and AMD11070 that were representative of different structural classes of D-peptides, L-peptide, natural chemokine, cyclic peptides, and small molecules. The results were rationalized by molecular modeling of CXCR4-antagonist interactions from which the common as well as different receptor binding sites of these antagonists were derived, revealing a number of important residues such as W94, D97, H113, D171, D262, and E288, mostly of negative charge. To further examine this finding, we designed and synthesized new antagonistic analogs by adding positively charged residues Arg to a D-peptide template to enhance the postulated charge-charge interactions. The newly designed analogs displayed significantly increased binding to CXCR4, which supports the notion that negatively charged residues of CXCR4 can engage in interactions with moieties of positive charge of the antagonistic ligands. The results from these mutational, modeling and new analog design studies shed new insight into the molecular mechanisms of different types of antagonists in recognizing CXCR4 and guide the development of new therapeutic agents.
Collapse
Affiliation(s)
- Qian Meng
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ruohan Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujia Mao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Siyu Zhu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lina S.M. Huang
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
| | - Aaron Ciechanover
- The Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jing An
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
| | - Yan Xu
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, U.S.A
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
8
|
HIV-1 gp120-CXCR4 recognition probed with synthetic nanomolar affinity D-peptides containing fragments of gp120 V3 loop. Eur J Med Chem 2022; 244:114797. [PMID: 36270088 PMCID: PMC10150781 DOI: 10.1016/j.ejmech.2022.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) recognizes one of its principal coreceptors, the CXC chemokine receptor 4 (CXCR4) on the host cell via the third variable loop (V3 loop) of HIV-1 envelope glycoprotein gp120 during the viral entry process. Here, we investigated the stereochemical mechanism of the molecular recognition of HIV-1 gp120 V3 loop with coreceptor CXCR4 by using peptide probes containing important fragments of the V3 loop. The tip and base/stem fragments of the V3 loop critical for V3 loop function were linked individually with the fragment derived from another CXCR4's chemokine ligand, vMIP-II to generate nanomolar affinity peptide probes of the interactions of CXCR4-V3 loop fragments. When the amino acid residues of the V3 loop fragments in these combinational peptides were changed from L-to D-configurations, the resulting peptides remarkably retained or had even enhanced recognition by CXCR4 as shown by competitive ligand-receptor binding. The ability of these peptides, regardless of the different l- or d-amino acids used, in binding CXCR4 and antagonizing CXCR4 functions was demonstrated by their blockade of calcium influx, cell migration, and CXCR4 internalization triggered by the activation of CXCR4 signaling by its endogenous ligand SDF-1α. The structural mechanisms of CXCR4 interactions with these peptides were examined with site-directed mutagenesis and molecular modeling. These results indicate that CXCR4's interface with key segments of HIV-1 gp120 V3 loop is flexible in terms of stereospecificity of ligand-receptor interaction which may have implication on understanding the viral entry mechanism and how the virus evades immune detection with V3 loop mutations and retains effective recognition of the host cell's coreceptor.
Collapse
|
9
|
Impact of Molecular Symmetry/Asymmetry on Insulin-Sensitizing Treatments for Type 2 Diabetes. Symmetry (Basel) 2022. [DOI: 10.3390/sym14061240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the advantages and disadvantages of asymmetrical thiazolidinediones as insulin-sensitizers have been well-studied, the relevance of symmetry and asymmetry for thiazolidinediones and biguanides has scarcely been explored. Regarding symmetrical molecules, only one thiazolidinedione and no biguanides have been evaluated and proposed as an antihyperglycemic agent for treating type 2 diabetes. Since molecular structure defines physicochemical, pharmacological, and toxicological properties, it is important to gain greater insights into poorly investigated patterns. For example, compounds with intrinsic antioxidant properties commonly have low toxicity. Additionally, the molecular symmetry and asymmetry of ligands are each associated with affinity for certain types of receptors. An advantageous response obtained in one therapeutic application may imply a poor or even adverse effect in another. Within the context of general patterns, each compound must be assessed individually. The current review aimed to summarize the available evidence for the advantages and disadvantages of utilizing symmetrical and asymmetrical thiazolidinediones and biguanides as insulin sensitizers in patients with type 2 diabetes. Other applications of these same compounds are also examined as well as the various uses of additional symmetrical molecules. More research is needed to exploit the potential of symmetrical molecules as insulin sensitizers.
Collapse
|
10
|
A fragment integrational approach to GPCR inhibition: Identification of a high affinity small molecule CXCR4 antagonist. Eur J Med Chem 2022; 231:114150. [DOI: 10.1016/j.ejmech.2022.114150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
11
|
Huang LSM, Snyder EY, Schooley RT. Strategies and progress in CXCR4-targeted anti-HIV therapeutic development. Clin Infect Dis 2021; 73:919-924. [PMID: 33624027 DOI: 10.1093/cid/ciab160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
The acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV), has been a global public health challenge for several decades. The majority of HIV infection is caused by the human immunodeficiency virus type 1 (HIV-1) which enters and infects a host cell via the cell surface proteins of CD4 as the primary receptor, and chemokine receptors CXCR4 or CCR5 as the co-receptor-then undergoing replication using the cell's intracellular machinery. Whereas many drugs targeting CCR5-mediated entry or HIV-1 replication via reverse transcriptase or proteases have long been used clinically, agents targeting CXCR4 are yet to be advanced to clinical application. Here in this review we highlight some of the strategies for and progress made in the discovery of novel small molecules, peptides, and larger molecules that target CXCR4, and their future prospects for translation into the clinic as a new class of anti-HIV therapeutics.
Collapse
Affiliation(s)
- Lina S M Huang
- Center for Innovative Phage Applications and Therapeutics, Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, U.S.A
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, U.S.A.,Sanford Consortium for Regenerative Medicine.,Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla U.S.A
| | - Robert T Schooley
- Center for Innovative Phage Applications and Therapeutics, Department of Medicine, Division of Infectious Diseases and Global Public Health, School of Medicine, University of California San Diego, La Jolla, U.S.A
| |
Collapse
|
12
|
Fang X, Fang X, Mao Y, Ciechanover A, Xu Y, An J, Huang Z. A novel small molecule CXCR4 antagonist potently mobilizes hematopoietic stem cells in mice and monkeys. Stem Cell Res Ther 2021; 12:17. [PMID: 33413613 PMCID: PMC7791974 DOI: 10.1186/s13287-020-02073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022] Open
Abstract
Background Hematopoietic stem cell (HSC) transplantation is an effective treatment strategy for many types of diseases. Peripheral blood (PB) is the most commonly used source of bone marrow (BM)-derived stem cells for current HSC transplantation. However, PB usually contains very few HSCs under normal conditions, as these cells are normally retained within the BM. This retention depends on the interaction between the CXC chemokine receptor 4 (CXCR4) expressed on the HSCs and its natural chemokine ligand, stromal cell-derived factor (SDF)-1α (also named CXCL12) present in the BM stromal microenvironment. In clinical practice, blocking this interaction with a CXCR4 antagonist can induce the rapid mobilization of HSCs from the BM into the PB. Methods C3H/HEJ, DBA/2, CD45.1+, and CD45.2+ mice and monkeys were employed in colony-forming unit (CFU) assays, flow cytometry assays, and competitive/noncompetitive transplantation assays, to assess the short-term mobilization efficacy of HF51116 and the long-term repopulating (LTR) ability of HSCs. Kinetics of different blood cells and the concentration of HF51116 in PB were also explored by blood routine examinations and pharmacokinetic assays. Results In this paper, we report that a novel small molecule CXCR4 antagonist, HF51116, which was designed and synthesized by our laboratory, can rapidly and potently mobilize HSCs from BM to PB in mice and monkeys. HF51116 not only mobilized HSCs when used alone but also synergized with the mobilizing effects of granulocyte colony-stimulating factor (G-CSF) after co-administration. Following mobilization by HF51116 and G-CSF, the long-term repopulating (LTR) and self-renewing HSCs were sufficiently engrafted in primary and secondary lethally irradiated mice and were able to rescue and support long-term mouse survival. In monkeys, HF51116 exhibited strong HSC mobilization activity and quickly reached the highest in vivo blood drug concentration. Conclusions These results demonstrate that HF51116 is a new promising stem cell mobilizer which specifically targets CXCR4 and merits further preclinical and clinical studies.
Collapse
Affiliation(s)
- Xiao Fang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiong Fang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujia Mao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Aaron Ciechanover
- The Rapport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.,Nobel Institute of Biomedicine, Zhuhai, 519080, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China
| | - Yan Xu
- School of Life Sciences, Tsinghua University, Beijing, China.,Nobel Institute of Biomedicine, Zhuhai, 519080, China.,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China
| | - Jing An
- Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Ziwei Huang
- School of Life Sciences, Tsinghua University, Beijing, China. .,Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, China. .,Division of Infectious Diseases and Global Public Health, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Vitale RM, Thellung S, Tinto F, Solari A, Gatti M, Nuzzo G, Ioannou E, Roussis V, Ciavatta ML, Manzo E, Florio T, Amodeo P. Identification of the hydantoin alkaloids parazoanthines as novel CXCR4 antagonists by computational and in vitro functional characterization. Bioorg Chem 2020; 105:104337. [PMID: 33113408 DOI: 10.1016/j.bioorg.2020.104337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022]
Abstract
CXCR4 chemokine receptor represents an attractive pharmacological target due to its key role in cancer metastasis and inflammatory diseases. Starting from our previously-developed pharmacophoric model, we applied a combined computational and experimental approach that led to the identification of the hydantoin alkaloids parazoanthines, isolated from the Mediterranean Sea anemone Parazoanthus axinellae, as novel CXCR4 antagonists. Parazoanthine analogues were then synthesized to evaluate the contribution of functional groups to the overall activity. Within the panel of synthesized natural and non-natural parazoanthines, parazoanthine-B was identified as the most potent CXCR4 antagonist with an IC50 value of 9.3 nM, even though all the investigated compounds were able to antagonize in vitro the down-stream effects of CXC12, albeit with variable potency and efficacy. The results of our study strongly support this class of small molecules as potent CXCR4 antagonists in tumoral pathologies characterized by an overexpression of this receptor. Furthermore, their structure-activity relationships allowed the optimization of our pharmacophoric model, useful for large-scale in silico screening.
Collapse
Affiliation(s)
- Rosa Maria Vitale
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Stefano Thellung
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Francesco Tinto
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Agnese Solari
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Monica Gatti
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Genoveffa Nuzzo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Maria Letizia Ciavatta
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy.
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; IRCCS Policlinico San Martino, 16132 Genova, Italy.
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078, Pozzuoli, (NA), Italy.
| |
Collapse
|