1
|
Chen W, Fang H, He H, Ping J, Ge J. An Effective Reaction-Based Virtual Screening Method to Discover New CDK8 Ligands. ChemMedChem 2025; 20:e202400825. [PMID: 39972506 DOI: 10.1002/cmdc.202400825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
Cyclin Dependent Kinase 8 (CDK8) is a valuable drug target for cancer suppression. Through an effective reaction-based virtual screening method consisting of pharmacophore modeling, Scifinder database searches, and energy evaluations, a number of new type II CDK8 ligands were discovered with comparable or better binding free energies than the ones reported in literature. In this method, a pharmacophore model, derived from seven crystal structures of CDK8 and type II ligands, was able to catch the key interactions for ligands binding at the ATP binding site of CDK8. This model then was used to screen the results from Scifinder database searches that apply chemical reaction rules in the search cycles, and the output compounds were evaluated and ranked first by a fast energy estimation method and then by the VM2 free energy calculation method. Among the top discovered ligands, three have lower Kd values against CDK8 than a potent reference ligand, and compound F (3-[3-tert-butyl-1-(4-methylphenyl)-1H-pyrazol-5-yl]-1-(8-hydroxynaphthalen-1-yl)urea) is the most potent one with an Kd value of 7.5 nM. Compound F has a relatively small molecular structure, receives both strong van der Waals energy and optimized overall electrostatic energy when binding with CDK8, and deserves to be a promising lead compound for further development. This effective virtual screening method and the novel compounds found in this work have implications for CDK8 drug discovery.
Collapse
Affiliation(s)
- Wei Chen
- School of Pharmacy, Fuzhou Medical College of NanChang University, Fuzhou, JiangXi, 344000, China
- Key Laboratory of AI-Powered Innovation in Drug Discovery of Jiangxi Education Institutes, Fuzhou, JiangXi, 344000, China
| | - Hanlin Fang
- School of Pharmacy, Fuzhou Medical College of NanChang University, Fuzhou, JiangXi, 344000, China
| | - Huan He
- School of Pharmacy, Fuzhou Medical College of NanChang University, Fuzhou, JiangXi, 344000, China
- Key Laboratory of AI-Powered Innovation in Drug Discovery of Jiangxi Education Institutes, Fuzhou, JiangXi, 344000, China
| | - Jing Ping
- School of Pharmacy, Fuzhou Medical College of NanChang University, Fuzhou, JiangXi, 344000, China
- Key Laboratory of AI-Powered Innovation in Drug Discovery of Jiangxi Education Institutes, Fuzhou, JiangXi, 344000, China
| | - Jianxin Ge
- Fuzhou Ecological Environment Technology Support Center, Fuzhou, JiangXi, 344000, China
| |
Collapse
|
2
|
Lin TE, Chou CH, Wu YW, Sung TY, Hsu JY, Yen SC, Hsieh JH, Chang YW, Pan SL, Huang WJ, Hsu KC, Yang CR. Identification of a Potent CDK8 Inhibitor Using Structure-Based Virtual Screening. J Chem Inf Model 2025; 65:378-389. [PMID: 39740163 PMCID: PMC11733953 DOI: 10.1021/acs.jcim.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Pulmonary fibrosis is excessive scarring of the lung tissues. Transforming growth factor-beta (TGF-β) has been implicated in pulmonary fibrosis due to its ability to induce the epithelial-to-mesenchymal transition (EMT) and promote epithelial cell migration. Cyclin-dependent kinase 8 (CDK8) can mediate the TGF-β signaling pathways and could function as an alternative therapeutic target for treating pulmonary fibrosis. Here, we performed a structure-based virtual screening campaign to identify CDK8 inhibitors from a library of 1.6 million compounds. The screening process ended with the identification of a novel CDK8 inhibitor, P162-0948 (IC50: 50.4 nM). An interaction analysis highlighted important CDK8-ligand interactions that support its binding and inhibitory activity. Testing against a panel of 60 different kinases demonstrated P162-0948 selectivity toward CDK8. Crucially, the inhibitor was found to be structurally novel when compared to known CDK8 inhibitors. Testing in A549 human alveolar epithelial cell lines showed that the P162-0948 can reduce cell migration and protein expression of EMT-related proteins. When P162-0948 was treated in cells at 5 μM, phosphorylation of Smad in the nucleus was reduced, which suggests disruption of the TGF-β/Smad signaling pathway. The identification of P162-0948 shows that it is not only potent, but its structural novelty can inform future design studies for potential therapeutics targeting pulmonary fibrosis.
Collapse
Affiliation(s)
- Tony Eight Lin
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hsuan Chou
- School of
Pharmacy, College of Medicine, National
Taiwan University, Taipei 10051, Taiwan
| | - Yi-Wen Wu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tzu-Ying Sung
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Jui-Yi Hsu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Shih-Chung Yen
- Warshel
Institute
for Computational Biology, The Chinese University
of Hong Kong (Shenzhen), Shenzhen, Guangdong 518172, People’s Republic of China
| | - Jui-Hua Hsieh
- Division
of Translational Toxicology, National Institute of Environmental Health
Sciences, National Institutes of Health, Durham, North Carolina 27709-2233, United
States
| | - Yu-Wei Chang
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department
of Traditional Chinese Medicine, Chang Gung
Memorial Hospital, Keelung Medical Center, Keelung 20401,Taiwan
| | - Shiow-Lin Pan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research
Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031,Taiwan
| | - Wei-Jan Huang
- Ph.D. Program
in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- School of
Pharmacy, Taipei Medical University, Taipei 10051, Taiwan
| | - Kai-Cheng Hsu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
for Cancer Molecular Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program
in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research
Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031,Taiwan
- Cancer
Center, Wan Fang Hospital, Taipei Medical
University, Taipei 11696,Taiwan
| | - Chia-Ron Yang
- School of
Pharmacy, College of Medicine, National
Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
3
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
4
|
Chatterjee I, Ali K, Panda G. A Synthetic Overview of Benzoxazines and Benzoxazepines as Anticancer Agents. ChemMedChem 2023; 18:e202200617. [PMID: 36598081 DOI: 10.1002/cmdc.202200617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Benzoxazines and benzoxazepines are nitrogen and oxygen-containing six and seven-membered benzo-fused heterocyclic scaffolds, respectively. Benzoxazepines and benzoxazines are well-known pharmacophores in pharmaceutical chemistry, which are of significant interest and have been extensively studied because of their promising activity against various diseases including their wide range of anticancer activity. Several reports are known for synthesizing benzoxazine and benzoxazepine-based compounds in the literature. Herein this review provides a critical analysis of synthetic strategies towards benzoxazines and benzoxazepines along with various ranges of anticancer activities based on these molecules that have been reported from 2010 onwards. This review also focuses on the structure-activity relationship of the benzoxazine and benzoxazepine scaffolds containing bioactive compounds and describes how the structural modification affects their anticancer activity.
Collapse
Affiliation(s)
- Indranil Chatterjee
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India
| | - Kasim Ali
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India.,AcSIR-Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India.,AcSIR-Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
5
|
Xie Z, Hou S, Yang X, Duan Y, Han J, Wang Q, Liao C. Lessons Learned from Past Cyclin-Dependent Kinase Drug Discovery Efforts. J Med Chem 2022; 65:6356-6389. [PMID: 35235745 DOI: 10.1021/acs.jmedchem.1c02190] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inhibition of cyclin-dependent kinases (CDKs) has become an effective therapeutic strategy for treating various diseases, especially cancer. Over almost three decades, although great efforts have been made to discover CDK inhibitors, many of which have entered clinical trials, only four CDK inhibitors have been approved. In the process of CDK inhibitor development, many difficulties and misunderstandings have hampered their discovery and clinical applications, which mainly include inadequate understanding of the biological functions of CDKs, less attention paid to pan- and multi-CDK inhibitors, nonideal isoform selectivity of developed selective CDK inhibitors, overlooking the metabolic stability of early discovered CDK inhibitors, no effective resistance solutions, and a lack of available combination therapy and effective biomarkers for CDK therapies. After reviewing the mechanisms of CDKs and the research progress of CDK inhibitors, this perspective summarizes and discusses these difficulties or lessons, hoping to facilitate the successful discovery of more useful CDK inhibitors.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Shuzeng Hou
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jihong Han
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qin Wang
- Department of Otolaryngology─Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
6
|
Liu Y, Fu L, Wu J, Liu M, Wang G, Liu B, Zhang L. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy. Eur J Med Chem 2021; 229:114056. [PMID: 34942431 DOI: 10.1016/j.ejmech.2021.114056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
In the wake of the development of the concept of cell cycle and its limiting points, cyclin-dependent kinases (CDKs) are considered to play a central role in regulating cell cycle progression. Recent studies have strongly demonstrated that CDKs also has multiple functions, especially in response to extracellular and intracellular signals by interfering with transcriptional events. Consequently, how to inhibit their function has been a hot research topic. It is worth noting that the key role of CDKs in regulating transcription has been explored in recent years, but its related pharmacological targets are less developed, and most inhibitors have not entered the clinical stage. Accordingly, this perspective focus on the biological functions of transcription related CDKs and their complexes, some key upstream and downstream signals, and inhibitors for cancer treatment in recent years. In addition, some corresponding combined treatment strategies will provide a more novel perspective for future cancer remedy.
Collapse
Affiliation(s)
- Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
7
|
Yu M, Teo T, Yang Y, Li M, Long Y, Philip S, Noll B, Heinemann GK, Diab S, Eldi P, Mekonnen L, Anshabo AT, Rahaman MH, Milne R, Hayball JD, Wang S. Potent and orally bioavailable CDK8 inhibitors: Design, synthesis, structure-activity relationship analysis and biological evaluation. Eur J Med Chem 2021; 214:113248. [PMID: 33571827 DOI: 10.1016/j.ejmech.2021.113248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/23/2022]
Abstract
CDK8 regulates transcription either by phosphorylation of transcription factors or, as part of a four-subunit kinase module, through a reversible association of the kinase module with the Mediator complex, a highly conserved transcriptional coactivator. Deregulation of CDK8 has been found in various types of human cancer, while the role of CDK8 in supressing anti-cancer response of natural killer cells is being understood. Currently, CDK8-targeting cancer drugs are highly sought-after. Herein we detail the discovery of a series of novel pyridine-derived CDK8 inhibitors. Medicinal chemistry optimisation gave rise to 38 (AU1-100), a potent CDK8 inhibitor with oral bioavailability. The compound inhibited the proliferation of MV4-11 acute myeloid leukaemia cells with the kinase activity of cellular CDK8 dampened. No systemic toxicology was observed in the mice treated with 38. These results warrant further pre-clinical studies of 38 as an anti-cancer agent.
Collapse
Affiliation(s)
- Mingfeng Yu
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Theodosia Teo
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Yuchao Yang
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Manjun Li
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Yi Long
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stephen Philip
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Benjamin Noll
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Gary K Heinemann
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sarah Diab
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Preethi Eldi
- Experimental Therapeutics, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Laychiluh Mekonnen
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Abel T Anshabo
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Muhammed H Rahaman
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Robert Milne
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - John D Hayball
- Experimental Therapeutics, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Shudong Wang
- Drug Discovery and Development, Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
8
|
Wu D, Zhang Z, Chen X, Yan Y, Liu X. Angel or Devil ? - CDK8 as the new drug target. Eur J Med Chem 2020; 213:113043. [PMID: 33257171 DOI: 10.1016/j.ejmech.2020.113043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays an momentous role in transcription regulation by forming kinase module or transcription factor phosphorylation. A large number of evidences have identified CDK8 as an important factor in cancer occurrence and development. In addition, CDK8 also participates in the regulation of cancer cell stress response to radiotherapy and chemotherapy, assists tumor cell invasion, metastasis, and drug resistance. Therefore, CDK8 is regarded as a promising target for cancer therapy. Most studies in recent years supported the role of CDK8 as a carcinogen, however, under certain conditions, CDK8 exists as a tumor suppressor. The functional diversity of CDK8 and its exceptional role in different types of cancer have aroused great interest from scientists but even more controversy during the discovery of CDK8 inhibitors. In addition, CDK8 appears to be an effective target for inflammation diseases and immune system disorders. Therefore, we summarized the research results of CDK8, involving physiological/pathogenic mechanisms and the development status of compounds targeting CDK8, provide a reference for the feasibility evaluation of CDK8 as a therapeutic target, and guidance for researchers who are involved in this field for the first time.
Collapse
Affiliation(s)
- Dan Wu
- School of Biological Engineering, Hefei Technology College, Hefei, 238000, PR China
| | - Zhaoyan Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|