1
|
Laskowski T, Kosno M, Andrałojć W, Pakuła J, Stojałowski R, Borzyszkowska-Bukowska J, Paluszkiewicz E, Mazerska Z. The interactions of Pu22 G-quadruplex, derived from c-MYC promoter sequence, with antitumor acridine derivatives-An NMR/MD combined study. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102513. [PMID: 40226330 PMCID: PMC11986977 DOI: 10.1016/j.omtn.2025.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 03/07/2025] [Indexed: 04/15/2025]
Abstract
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents that exhibit significant antitumor activity against a wide range of cancer cell lines and solid tumors in vivo. UAs consist of two different acridine-based ring systems, which are connected by an aminoalkyl linker. Recent studies have demonstrated that UAs can suppress the c-MYC protooncogene, which is overexpressed in many tumor types. As a proposed molecular basis for this activity, UAs have been suggested to stabilize the G-quadruplex structure formed within the promoter region of c-MYC. In this study, we performed spectroscopic and computational analyses to investigate the stereochemistry of the c-MYC NHE III1 representative G-quadruplex, codenamed Pu22, in complex with two promising bisacridines, C-2045 and C-2053, as well as their monomeric counterparts, C-1311 and C-1748. C-1311 formed a well-defined 1:2 mol/mol DNA:ligand non-covalent adduct, whose solution structure was determined via 2D NMR. In contrast, C-1748 displayed weak and nonspecific interactions with the Pu22 G-quadruplex. Finally, the Pu22:UA complexes were examined using a combination of NMR and molecular modeling approaches, including umbrella sampling simulations. These results provide insights into the interaction mechanisms of UAs with G-quadruplex structures and highlight their potential as therapeutic agents targeting c-MYC.
Collapse
Affiliation(s)
- Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland
| | - Julia Pakuła
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Rafał Stojałowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
2
|
Sharma P, Paul K. Selective Recognition of Oncogene Promoter C-Myc G-Quadruplex: Design, Synthesis, and In Vitro Evaluation of Naphthalimide and Imidazo[1,2- a]pyrazines for Their Anticancer Activity. ACS APPLIED BIO MATERIALS 2025; 8:1377-1396. [PMID: 39844620 DOI: 10.1021/acsabm.4c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
c-Myc is a transcription factor that is overexpressed in most human cancers. Despite its challenging nature, we have developed a series of naphthalimide-imidazopyrazine conjugates to target c-Myc. The library of synthesized derivatives was tested for their anticancer activity against a nine-panel of cancer cell lines. Compound 8eb showed excellent cytotoxicity against all the tested cancer cell lines, with the range of growth inhibition from -98.79% to 96.62% at a single-dose concentration of 10-5 M. Further, 8eb was employed for a 5-dose assay against the same cancer cell lines, which showed efficacy at varying concentrations with an MG-MID GI50 value of 2.61 μM. Biophysical studies were performed to explore the interaction of 8eb with c-Myc Pu27 over ct-DNA, oncogene promotor Pu22, and human telomere, with a binding constant value of 1.3 × 107 M-1. Additionally, experiments were performed to get insights into the interaction mechanism between 8eb and the c-Myc oncogene promoter. A molecular docking study unveiled the stacking of the compound with G4 DNA through groove binding, where very few reports are available, with a favorable binding energy of -9.2 kcal/mol. Moreover, the pharmacokinetic study and HOMO-LUMO energy gap analysis underscored the potency of the active candidate. The compound's binding ability toward HSA was also assessed, where results suggested effective binding of the compound to HSA, revealing its potential for easy delivery to the target site. The above findings suggested that these newly synthesized candidates with potent anticancer activity offer a promising avenue as G4 DNA c-Myc stabilizers.
Collapse
Affiliation(s)
- Palak Sharma
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| |
Collapse
|
3
|
Kurdyn A, Pawłowska M, Paluszkiewicz E, Cichorek M, Augustin E. c-Myc inhibition and p21 modulation contribute to unsymmetrical bisacridines-induced apoptosis and senescence in pancreatic cancer cells. Pharmacol Rep 2025; 77:182-209. [PMID: 39361216 PMCID: PMC11743403 DOI: 10.1007/s43440-024-00658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 01/21/2025]
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most aggressive cancers and is the seventh leading cause of cancer-related death worldwide. PC is characterized by rapid progression and resistance to conventional treatments. Mutations in KRAS, CDKN2A, TP53, SMAD4/DPC4, and MYC are major genetic alterations associated with poor treatment outcomes in patients with PC. Therefore, optimizing PC therapy is a tremendous challenge. Unsymmetrical bisacridines (UAs), synthesized by our group, are new promising compounds that have exhibited high cytotoxicity and antitumor activity against several solid tumors, including pancreatic cancer. METHODS The cellular effects induced by UAs in PC cells were evaluated by MTT assay (cell growth inhibition), flow cytometry, and fluorescence and light microscopy (cell cycle distribution, apoptosis, and senescence detection). Analysis of the effects of UAs on the levels of proteins (c-Myc, p53, SMAD4, p21, and p16) was performed by Western blotting. RESULTS Apoptosis was the main triggered mechanism of death after UAs treatment, and induction of the SMAD4 protein can facilitate this process. c-Myc, which is one of the molecular targets of UAs, can participate in the induction of cell death in a p53-independent manner. Moreover, UAs can also induce accelerated senescence through the upregulation of p21. Notably, senescent cells can die via apoptosis after prolonged exposure to UAs. CONCLUSIONS UAs have emerged as potent anticancer agents that induce apoptosis by inhibiting c-Myc protein and triggering cellular senescence in a dose-dependent manner by increasing p21 levels. Thus, UAs exhibit desirable features as promising candidates for future pancreatic anticancer therapies.
Collapse
Affiliation(s)
- Agnieszka Kurdyn
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Mirosława Cichorek
- Department of Embryology, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, Gdańsk, 80-233, Poland.
| |
Collapse
|
4
|
Frackowiak JE, Kubica P, Kosno M, Potęga A, Owczarek-Grzymkowska K, Borzyszkowska-Bukowska J, Laskowski T, Paluszkiewicz E, Mazerska Z. Distinct cellular uptake patterns of two anticancer unsymmetrical bisacridines and their metabolic transformation in tumor cells. J Pharm Biomed Anal 2025; 252:116493. [PMID: 39368137 DOI: 10.1016/j.jpba.2024.116493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents. Their high cytotoxicity towards multiple human cancer cell lines and inhibition of human tumor xenograft growth in nude mice signal their potential for cancer treatment. Therefore, the mechanism of their strong biological activity is broadly investigated. Here, we explore the efflux and metabolism of UAs, as both strongly contribute to the development of drug resistance in cancer cells. We tested two highly cytotoxic UAs, C-2028 and C-2045, as well as their glucuronic acid and glutathione conjugates in human cancer cell lines (HepG2 and LS174T). As a point of reference for cell-based systems, we examined the rate of UA metabolic conversion in cell-free systems. A multiple reaction monitoring (MRM)-mass spectrometry (MS) method was developed in the present study for analysis of UAs and their metabolic conversion in complex biological matrices. Individual analytes were identified by several features: their retention time, mass-to-charge ratio and unique fragmentation pattern. The rate of UA uptake and metabolic transformation was monitored for 24 h in cell extracts and cell culture medium. Both UAs were rapidly internalized by cells. However, C-2028 was gradually accumulated, while C-2045 was eventually released from cells during treatment. UAs demonstrated limited metabolic conversion in cells. The glucuronic acid conjugate was excreted, whereas the glutathione conjugate was deposited in cancer cells. Our results obtained from cell-free and cell-based systems, using a uniform MRM-MS method, will provide valuable insight into the mechanism of UA biological activity in diverse biological models.
Collapse
Affiliation(s)
- Joanna E Frackowiak
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland.
| | - Paweł Kubica
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Katarzyna Owczarek-Grzymkowska
- Department of Biochemistry, Bioanalytical Laboratory, Faculty of Medicine, Medical University of Gdańsk, 1 Dębinki Str., Gdańsk 80-211, Poland
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland.
| |
Collapse
|
5
|
Pawłowska M, Kulesza J, Paluszkiewicz E, Augustin E, Mazerska Z. Unsymmetrical Bisacridines' Interactions with ABC Transporters and Their Cellular Impact on Colon LS 174T and Prostate DU 145 Cancer Cells. Molecules 2024; 29:5582. [PMID: 39683740 DOI: 10.3390/molecules29235582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Multidrug resistance (MDR) is a process that constitutes a significant obstacle to effective anticancer therapy. Here, we examined whether unsymmetrical bisacridines (UAs) are substrates for ABC transporters and can influence their expression in human colon LS 174T and prostate DU 145 cancer cells. Moreover, we investigated the cytotoxicity and the cellular response induced by UAs in these cells. The ATPase activities of MDR1, MRP1, and MRP2 were measured using vesicles prepared from insect Sf9 cells expressing particular ABC transporters. The gene expression and protein levels were analyzed using qPCR and Western blotting. The cellular effects were studied by MTT (cytotoxicity), flow cytometry (cell cycle analysis and phosphatidylserine externalization), and fluorescence microscopy. We showed that UAs are substrates for MDR1. Importantly, they did not influence remarkably the expressions of the ABCB1, ABCC1, and ABCC2 genes and the levels of the MDR1 and PXR proteins in the studied cells. Furthermore, the cytotoxicity and the level of apoptosis triggered by UAs in LS 174T cells possessing higher expressions of metabolic enzymes were lower compared with DU 145 cells. These results indicate that during possible UA treatment, the occurrence of drug resistance could be limited, which could favor the use of such compounds as potential candidates for future studies.
Collapse
Affiliation(s)
- Monika Pawłowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Jolanta Kulesza
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Pilch J, Potęga A, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Nowicka AM. In vitro biological evaluation of a novel folic acid-targeted receptor quantum dot-β-cyclodextrin carrier for C-2028 unsymmetrical bisacridine in the treatment of human lung and prostate cancers. Pharmacol Rep 2024; 76:823-837. [PMID: 38888724 PMCID: PMC11294431 DOI: 10.1007/s43440-024-00606-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Traditional small-molecule chemotherapeutics usually do not distinguish tumors from healthy tissues. However, nanotechnology creates nanocarriers that selectively deliver drugs to their site of action. This work is the next step in the development of the quantum dot-β-cyclodextrin-folic acid (QD-β-CD-FA) platform for targeted and selected delivery of C-2028 unsymmetrical bisacridine in cancer therapy. METHODS Herein, we report an initial biological evaluation (using flow cytometry and light microscopy) as well as cell migration analysis of QD-β-CD(C-2028)-FA nanoconjugate and its components in the selected human lung and prostate cancer cells, as well as against their respective normal cells. RESULTS C-2028 compound induced apoptosis, which was much stronger in cancer cells compared to normal cells. Conjugation of C-2028 with QDgreen increased cellular senescence, while the introduction of FA to the conjugate significantly decreased this process. C-2028 nanoencapsulation also reduced cell migration. Importantly, QDgreen and QDgreen-β-CD-FA themselves did not induce any toxic responses in studied cells. CONCLUSIONS In conclusion, the results demonstrate the high potential of a novel folic acid-targeted receptor quantum dot-β-cyclodextrin carrier (QDgreen-β-CD-FA) for drug delivery in cancer treatment. Nanoplatforms increased the amount of delivered compounds and demonstrated high suitability.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland.
| | - Agnieszka Potęga
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland
| | - Patrycja Kowalik
- Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
| | | | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewa Paluszkiewicz
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., Gdańsk, 80-233, Poland
| | | |
Collapse
|
7
|
Kulesza J, Paluszkiewicz E, Augustin E. Cellular Effects of Selected Unsymmetrical Bisacridines on the Multicellular Tumor Spheroids of HCT116 Colon and A549 Lung Cancer Cells in Comparison to Monolayer Cultures. Int J Mol Sci 2023; 24:15780. [PMID: 37958764 PMCID: PMC10649579 DOI: 10.3390/ijms242115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Multicellular tumor spheroids are a good tool for testing new anticancer drugs, including those that may target cancer stem cells (CSCs), which are responsible for cancer progression, metastasis, and recurrence. Therefore, we applied this model in our studies of highly active antitumor unsymmetrical bisacridines (UAs). We investigated the cellular response induced by UAs in 2D and 3D cultures of HCT116 colon and A549 lung cancer cells, with an additional focus on their impact on the CSC-like population. We showed that UAs affected the viability of the studied cells, as well as their spherogenic potential in the 2D and 3D cultures. Furthermore, we proved that the most promising UAs (C-2045 and C-2053) induced apoptosis in the HCT116 and A549 spheres to a similar, or even higher, extent than what was found in monolayer conditions. Next, we identified the population of the CSC-like cells in the 2D and 3D cultures of the studied cell lines by determining the levels of CD166, CD133, CD44, and EpCAM markers. We showed that the selected UAs affected the CSC-like population in both of the cell lines, and that A549 was affected more profoundly in 3D than in 2D cultures. Thus, the UAs exhibited high antitumor properties in both the 2D and 3D conditions, which makes them promising candidates for future therapeutic applications.
Collapse
Affiliation(s)
| | | | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (J.K.); (E.P.)
| |
Collapse
|
8
|
Potęga A, Göldner V, Niehaves E, Paluszkiewicz E, Karst U. Electrochemistry/mass spectrometry (EC/MS) for fast generation and identification of novel reactive metabolites of two unsymmetrical bisacridines with anticancer activity. J Pharm Biomed Anal 2023; 235:115607. [PMID: 37523868 DOI: 10.1016/j.jpba.2023.115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
The development of a new drug requires knowledge about its metabolic fate in a living organism, regarding the comprehensive assessment of both drug therapeutic activity and toxicity profiles. Electrochemistry (EC) coupled with mass spectrometry (MS) is an efficient tool for predicting the phase I metabolism of redox-sensitive drugs. In particular, EC/MS represents a clear advantage for the generation of reactive drug transformation products and their direct identification compared to biological matrices. In this work, we focused on the characterization of novel electrochemical products of two representative unsymmetrical bisacridines (C-2028 and C-2045) with demonstrated high anticancer activity. The electrochemical thin-layer flow-through cell μ-PrepCell 2.0 (Antec Scientific) was used here for the effective metabolite electrosynthesis. The electrochemical simulation of C-2028 reductive and C-2045 oxidative metabolism resulted in the generation of new products that were not observed before. The formation of nitroso [M-O+H]+ and azoxy [2M-3O+H]+ species from C-2028, as well as a series of hydroxylated and/or dehydrogenated products, including possible quinones [M-2H+H]+ and [M+O-2H+H]+ from C-2045, was demonstrated. For the latter, a glutathione S-conjugate (m/z 935.3130) was also obtained in measurements supplemented with the excess of reduced glutathione. For the identification of the products of interest, structural confirmation based on MS/MS fragmentation experiments was performed. Novel products of electrochemical conversions of unsymmetrical bisacridines were discussed in the context of their possible biological effect on the human organism.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
| | - Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Erik Niehaves
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
9
|
Potęga A, Rafalska D, Kazimierczyk D, Kosno M, Pawłowicz A, Andrałojć W, Paluszkiewicz E, Laskowski T. In Vitro Enzyme Kinetics and NMR-Based Product Elucidation for Glutathione S-Conjugation of the Anticancer Unsymmetrical Bisacridine C-2028 in Liver Microsomes and Cytosol: Major Role of Glutathione S-Transferase M1-1 Isoenzyme. Molecules 2023; 28:6812. [PMID: 37836655 PMCID: PMC10574777 DOI: 10.3390/molecules28196812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This work is the next step in studying the interplay between C-2028 (anticancer-active unsymmetrical bisacridine developed in our group) and the glutathione S-transferase/glutathione (GST/GSH) system. Here, we analyzed the concentration- and pH-dependent GSH conjugation of C-2028 in rat liver microsomes and cytosol. We also applied three recombinant human GST isoenzymes, which altered expression was found in various tumors. The formation of GSH S-conjugate of C-2028 in liver subfractions followed Michaelis-Menten kinetics. We found that C-2028 was conjugated with GSH preferentially by GSTM1-1, revealing a sigmoidal kinetic model. Using a colorimetric assay (MTT test), we initially assessed the cellular GST/GSH-dependent biotransformation of C-2028 in relation to cytotoxicity against Du-145 human prostate cancer cells in the presence or absence of the modulator of GSH biosynthesis. Pretreatment of cells with buthionine sulfoximine resulted in a cytotoxicity decrease, suggesting a possible GSH-mediated bioactivation process. Altogether, our results confirmed the importance of GSH conjugation in C-2028 metabolism, which humans must consider when planning a treatment strategy. Finally, nuclear magnetic resonance spectroscopy elucidated the structure of the GSH-derived product of C-2028. Hence, synthesizing the compound standard necessary for further advanced biological and bioanalytical investigations will be achievable.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Dominika Rafalska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Dawid Kazimierczyk
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Aleksandra Pawłowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland; (A.P.); (W.A.)
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland; (A.P.); (W.A.)
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (D.R.); (D.K.); (M.K.); (E.P.); (T.L.)
| |
Collapse
|
10
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
11
|
Laskowski T, Kosno M, Andrałojć W, Frackowiak JE, Borzyszkowska-Bukowska J, Szczeblewski P, Radoń N, Świerżewska M, Woźny A, Paluszkiewicz E, Mazerska Z. The interactions of monomeric acridines and unsymmetrical bisacridines (UAs) with DNA duplexes: an insight provided by NMR and MD studies. Sci Rep 2023; 13:3431. [PMID: 36859494 PMCID: PMC9977845 DOI: 10.1038/s41598-023-30587-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
Members of a novel class of anticancer compounds, exhibiting high antitumor activity, i.e. the unsymmetrical bisacridines (UAs), consist of two heteroaromatic ring systems. One of the ring systems is an imidazoacridinone moiety, with the skeleton identical to the structural base of Symadex. The second one is a 1-nitroacridine moiety, hence it may be regarded as Nitracrine's structural basis. These monoacridine units are connected by an aminoalkyl linker, which vary in structure. In theory, these unsymmetrical dimers should act as double-stranded DNA (dsDNA) bis-intercalators, since the monomeric units constituting the UAs were previously reported to exhibit an intercalating mode of binding into dsDNA. On the contrary, our earlier, preliminary studies have suggested that specific and/or structurally well-defined binding of UAs into DNA duplexes might not be the case. In this contribution, we have revisited and carefully examined the dsDNA-binding properties of monoacridines C-1305, C-1311 (Symadex), C-283 (Ledakrin/Nitracrine) and C-1748, as well as bisacridines C-2028, C-2041, C-2045 and C-2053 using advanced NMR techniques, aided by molecular modelling calculations and the analysis of UV-VIS spectra, decomposed by chemometric techniques. These studies allowed us to explain, why the properties of UAs are not a simple sum of the features exhibited by the acridine monomers.
Collapse
Affiliation(s)
- Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233, Gdańsk, Poland.
| | - Michał Kosno
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Witold Andrałojć
- grid.413454.30000 0001 1958 0162Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland
| | - Joanna E. Frackowiak
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Julia Borzyszkowska-Bukowska
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Paweł Szczeblewski
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Nikola Radoń
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Maria Świerżewska
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Anna Woźny
- grid.6868.00000 0001 2187 838XFaculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Ewa Paluszkiewicz
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Zofia Mazerska
- grid.6868.00000 0001 2187 838XDepartment of Pharmaceutical Technology and Biochemistry and BioTechMed Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
12
|
pH-Responsive Drug Delivery Nanoplatforms as Smart Carriers of Unsymmetrical Bisacridines for Targeted Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010201. [PMID: 36678830 PMCID: PMC9861370 DOI: 10.3390/pharmaceutics15010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Selective therapy and controlled drug release at an intracellular level remain key challenges for effective cancer treatment. Here, we employed folic acid (FA) as a self-navigating molecule in nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) for the delivery of antitumor unsymmetrical bisacridine compound (C-2028) to lung and prostate cancers as well as normal cells. The bisacridine derivative can form the inclusion complex with β-cyclodextrin molecule, due to the presence of a planar fragment in its structure. The stability of such a complex is pH-dependent. The drug release profile at different pH values and the mechanism of C-2028 release from QDs-β-CD-FA nanoconjugates were investigated. Next, the intracellular fate of compounds and their influence on lysosomal content in the cells were also studied. Confocal Laser Scanning Microscopy studies proved that all investigated compounds were delivered to acidic organelles, the pH of which promoted an increased release of C-2028 from its nanoconjugates. Since the pH in normal cells is higher than in cancer cells, the release of C-2028 from its nanoconjugates is decreased in these cells. Additionally, we obtained the concentration profiles of C-2028 in the selected cells treated with unbound C-2028 or nanoconjugate by the HPLC analysis.
Collapse
|
13
|
Varakumar P, Rajagopal K, Aparna B, Raman K, Byran G, Gonçalves Lima CM, Rashid S, Nafady MH, Emran TB, Wybraniec S. Acridine as an Anti-Tumour Agent: A Critical Review. Molecules 2022; 28:193. [PMID: 36615391 PMCID: PMC9822522 DOI: 10.3390/molecules28010193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
This review summarized the current breakthroughs in the chemistry of acridines as anti-cancer agents, including new structural and biologically active acridine attributes. Acridine derivatives are a class of compounds that are being extensively researched as potential anti-cancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-UGT's. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and azacridine are reported as anti-cancer agents, which have been reported in the previous decade and were addressed in this review article.
Collapse
Affiliation(s)
- Potlapati Varakumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Baliwada Aparna
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Kannan Raman
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty 643001, India
| | | | - Salma Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| |
Collapse
|
14
|
Potęga A. Glutathione-Mediated Conjugation of Anticancer Drugs: An Overview of Reaction Mechanisms and Biological Significance for Drug Detoxification and Bioactivation. Molecules 2022; 27:molecules27165252. [PMID: 36014491 PMCID: PMC9412641 DOI: 10.3390/molecules27165252] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
The effectiveness of many anticancer drugs depends on the creation of specific metabolites that may alter their therapeutic or toxic properties. One significant route of biotransformation is a conjugation of electrophilic compounds with reduced glutathione, which can be non-enzymatic and/or catalyzed by glutathione-dependent enzymes. Glutathione usually combines with anticancer drugs and/or their metabolites to form more polar and water-soluble glutathione S-conjugates, readily excreted outside the body. In this regard, glutathione plays a role in detoxification, decreasing the likelihood that a xenobiotic will react with cellular targets. However, some drugs once transformed into thioethers are more active or toxic than the parent compound. Thus, glutathione conjugation may also lead to pharmacological or toxicological effects through bioactivation reactions. My purpose here is to provide a broad overview of the mechanisms of glutathione-mediated conjugation of anticancer drugs. Additionally, I discuss the biological importance of glutathione conjugation to anticancer drug detoxification and bioactivation pathways. I also consider the potential role of glutathione in the metabolism of unsymmetrical bisacridines, a novel prosperous class of anticancer compounds developed in our laboratory. The knowledge on glutathione-mediated conjugation of anticancer drugs presented in this review may be noteworthy for improving cancer therapy and preventing drug resistance in cancers.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
15
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
16
|
Kosno M, Laskowski T, Frackowiak JE, Potęga A, Kurdyn A, Andrałojć W, Borzyszkowska-Bukowska J, Szwarc-Karabyka K, Mazerska Z. Acid–Base Equilibrium and Self-Association in Relation to High Antitumor Activity of Selected Unsymmetrical Bisacridines Established by Extensive Chemometric Analysis. Molecules 2022; 27:molecules27133995. [PMID: 35807234 PMCID: PMC9268451 DOI: 10.3390/molecules27133995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/20/2022] Open
Abstract
Unsymmetrical bisacridines (UAs) represent a novel class of anticancer agents previously synthesized by our group. Our recent studies have demonstrated their high antitumor potential against multiple cancer cell lines and human tumor xenografts in nude mice. At the cellular level, these compounds affected 3D cancer spheroid growth and their cellular uptake was selectively modulated by quantum dots. UAs were shown to undergo metabolic transformations in vitro and in tumor cells. However, the physicochemical properties of UAs, which could possibly affect their interactions with molecular targets, remain unknown. Therefore, we selected four highly active UAs for the assessment of physicochemical parameters under various pH conditions. We determined the compounds’ pKa dissociation constants as well as their potential to self-associate. Both parameters were determined by detailed and complex chemometric analysis of UV-Vis spectra supported by nuclear magnetic resonance (NMR) spectroscopy. The obtained results indicate that general molecular properties of UAs in aqueous media, including their protonation state, self-association ratio, and solubility, are strongly pH-dependent, particularly in the physiological pH range of 6 to 8. In conclusion, we describe the detailed physicochemical characteristics of UAs, which might contribute to their selectivity towards tumour cells as opposed to their effect on normal cells.
Collapse
Affiliation(s)
- Michał Kosno
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
- Correspondence: (T.L.); (Z.M.); Tel.: +48-58-347-20-79 (T.L.); +48-58-347-24-07 (Z.M.)
| | - Joanna E. Frackowiak
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Agnieszka Kurdyn
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego Str. 12/14, 61-704 Poznań, Poland;
| | - Julia Borzyszkowska-Bukowska
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
| | - Katarzyna Szwarc-Karabyka
- Nuclear Magnetic Resonance Laboratory, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland;
| | - Zofia Mazerska
- Department of Pharmaceutical Technology and Biochemistry and BioMedTech Centre, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (M.K.); (J.E.F.); (A.P.); (A.K.); (J.B.-B.)
- Correspondence: (T.L.); (Z.M.); Tel.: +48-58-347-20-79 (T.L.); +48-58-347-24-07 (Z.M.)
| |
Collapse
|
17
|
c-Myc Protein Level Affected by Unsymmetrical Bisacridines Influences Apoptosis and Senescence Induced in HCT116 Colorectal and H460 Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23063061. [PMID: 35328482 PMCID: PMC8955938 DOI: 10.3390/ijms23063061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/04/2022] Open
Abstract
Unsymmetrical bisacridines (UAs) are highly active antitumor compounds. They contain in their structure the drugs previously synthesized in our Department: C-1311 and C-1748. UAs exhibit different properties than their monomer components. They do not intercalate to dsDNA but stabilize the G-quadruplex structures, particularly those of the MYC and KRAS genes. Since MYC and KRAS are often mutated and constitutively expressed in cancer cells, they can be used as therapeutic targets. Herein, we investigate whether UAs can affect the expression and protein level of c-Myc and K-Ras in HCT116 and H460 cancer cells, and if so, what are the consequences for the UAs-induced cellular response. UAs did not affect K-Ras, but they strongly influenced the expression and translation of the c-Myc protein, and in H460 cells, they caused its full inhibition. UAs treatment resulted in apoptosis, as confirmed by the morphological changes, the presence of sub-G1 population and active caspase-3, cleaved PARP, annexin-V/PI staining and a decrease in mitochondrial potential. Importantly, apoptosis was induced earlier and to a greater extent in H460 compared to HCT116 cells. Moreover, accelerated senescence occurred only in H460 cells. In conclusion, the strong inhibition of c-Myc by UAs in H460 cells may participate in the final cellular response (apoptosis, senescence).
Collapse
|
18
|
Pilch J, Kowalik P, Kowalczyk A, Bujak P, Kasprzak A, Paluszkiewicz E, Augustin E, Nowicka AM. Foliate-Targeting Quantum Dots- β-Cyclodextrin Nanocarrier for Efficient Delivery of Unsymmetrical Bisacridines to Lung and Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms23031261. [PMID: 35163186 PMCID: PMC8835877 DOI: 10.3390/ijms23031261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 01/29/2023] Open
Abstract
Targeted drug delivery by nanocarriers molecules can increase the efficiency of cancer treatment. One of the targeting ligands is folic acid (FA), which has a high affinity for the folic acid receptors, which are overexpressed in many cancers. Herein, we describe the preparation of the nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) with foliate-targeting properties for the delivery of anticancer compound C-2028. C-2028 was bound to the nanoconjugate via an inclusion complex with β-CD. The effect of using FA in QDs-β-CD(C-2028)-FA nanoconjugates on cytotoxicity, cellular uptake, and the mechanism of internalization in cancer (H460, Du-145, and LNCaP) and normal (MRC-5 and PNT1A) cells was investigated. The QDs-β-CD(C-2028)-FA were characterized using DLS (dynamic light scattering), ZP (zeta potential), quartz crystal microbalance with dissipation (QCM-D), and UV-vis spectroscopy. The conjugation of C-2028 with non-toxic QDs or QDs-β-CD-FA did not change the cytotoxicity of this compound. Confocal microscopy studies proved that the use of FA in nanoconjugates significantly increased the amount of delivered compound, especially to cancer cells. QDgreen-β-CD(C-2028)-FA enters the cells through multiple endocytosis pathways in different levels, depending on the cell line. To conclude, the use of FA is a good self-navigating molecule in the QDs platform for drug delivery to cancer cells.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| | - Patrycja Kowalik
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Street 3, 00-664 Warsaw, Poland; (P.B.); (A.K.)
| | - Ewa Paluszkiewicz
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland; (E.P.); (E.A.)
| | - Anna M. Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Street 1, 02-093 Warsaw, Poland; (P.K.); (A.K.)
- Correspondence: (J.P.); (A.M.N.); Tel.: +48-58-347-12-97 (J.P.); +48-22-552-63-61 (A.M.N.)
| |
Collapse
|
19
|
Potęga A, Kosno M, Mazerska Z. Novel insights into conjugation of antitumor-active unsymmetrical bisacridine C-2028 with glutathione: Characteristics of non-enzymatic and glutathione S-transferase-mediated reactions. J Pharm Anal 2022; 11:791-798. [PMID: 35028185 PMCID: PMC8740389 DOI: 10.1016/j.jpha.2021.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/28/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Unsymmetrical bisacridines (UAs) are a novel potent class of antitumor-active therapeutics. A significant route of phase II drug metabolism is conjugation with glutathione (GSH), which can be non-enzymatic and/or catalyzed by GSH-dependent enzymes. The aim of this work was to investigate the GSH-mediated metabolic pathway of a representative UA, C-2028. GSH-supplemented incubations of C-2028 with rat, but not with human, liver cytosol led to the formation of a single GSH-related metabolite. Interestingly, it was also revealed with rat liver microsomes. Its formation was NADPH-independent and was not inhibited by co-incubation with the cytochrome P450 (CYP450) inhibitor 1-aminobenzotriazole. Therefore, the direct conjugation pathway occurred without the prior CYP450-catalyzed bioactivation of the substrate. In turn, incubations of C-2028 and GSH with human recombinant glutathione S-transferase (GST) P1-1 or with heat-/ethacrynic acid-inactivated liver cytosolic enzymes resulted in the presence or lack of GSH conjugated form, respectively. These findings proved the necessary participation of GST in the initial activation of the GSH thiol group to enable a nucleophilic attack on the substrate molecule. Another C-2028-GSH S-conjugate was also formed during non-enzymatic reaction. Both GSH S-conjugates were characterized by combined liquid chromatography/tandem mass spectrometry. Mechanisms for their formation were proposed. The ability of C-2028 to GST-mediated and/or direct GSH conjugation is suspected to be clinically important. This may affect the patient's drug clearance due to GST activity, loss of GSH, or the interactions with GSH-conjugated drugs. Moreover, GST-mediated depletion of cellular GSH may increase tumor cell exposure to reactive products of UA metabolic transformations. We investigated the GSH-mediated metabolic pathway of antitumor bisacridine C-2028. Non-enzymatic and GST-catalyzed GSH conjugation of C-2028 was observed. The action of human recombinant GSTP1-1 in C-2028 metabolism was proved. GSH conjugation occurred without the prior CYP450-mediated activation of C-2028. GSH conjugation of C-2028 molecule took place on the system containing nitro group.
Collapse
|
20
|
Hu X, Bian Q, Wang ZL, Guo LJ, Xu YZ, Wang G, Xu DZ. Four-Component Reaction Access to Nitrile-Substituted All-Carbon Quaternary Centers. J Org Chem 2021; 87:66-75. [PMID: 34905367 DOI: 10.1021/acs.joc.1c01863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A four-component reaction strategy for access to acyclic nitrile-substituted all-carbon quaternary centers is disclosed. In the presence of a DABCO-based ionic liquid catalyst, the reactions proceed smoothly with a wide range of substrates efficiently to deliver nitrile-substituted all-carbon quaternary centers under mild reaction conditions. This protocol is further demonstrated as an efficient method for the construction of contiguous all-carbon quaternary centers. All the reactions are easily operated in a green manner, producing water as the only byproduct. Some of the products show excellent activity against specific fungi.
Collapse
Affiliation(s)
- Xin Hu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qiang Bian
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng-Lin Wang
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lin-Jie Guo
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Ze Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ge Wang
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Da-Zhen Xu
- National Engineering Research Center of Pesticide (Tianjin), State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Kulesza J, Pawłowska M, Augustin E. The Influence of Antitumor Unsymmetrical Bisacridines on 3D Cancer Spheroids Growth and Viability. Molecules 2021; 26:molecules26206262. [PMID: 34684841 PMCID: PMC8538688 DOI: 10.3390/molecules26206262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The culture of 3D spheroids is a promising tool in drug development and testing. Recently, we synthesized a new group of compounds, unsymmetrical bisacridines (UAs), which exhibit high cytotoxicity against various human cell lines and antitumor potency against several xenografts. Here, we describe the ability of four UAs—C-2028, C-2041, C-2045, and C-2053—to influence the growth of HCT116 and H460 spheres and the viability of HCT116 cells in 3D culture compared with that in 2D standard monolayer culture. Spheroids were generated using ultra-low-attachment plates. The morphology and diameters of the obtained spheroids and those treated with UAs were observed and measured under the microscope. The viability of cells exposed to UAs at different concentrations and for different incubation times in 2D and 3D cultures was assessed using 7-AAD staining. All UAs managed to significantly inhibit the growth of HCT116 and H460 spheroids. C-2045 and C-2053 caused the death of the largest population of HCT116 spheroid cells. Although C-2041 seemed to be the most effective in the 2D monolayer experiments, in 3D conditions, it turned out to be the weakest compound. The 3D spheroid culture seems to be a suitable method to examine the efficiency of new antitumor compounds, such as unsymmetrical bisacridines.
Collapse
|
22
|
Metabolic Profiles of New Unsymmetrical Bisacridine Antitumor Agents in Electrochemical and Enzymatic Noncellular Systems and in Tumor Cells. Pharmaceuticals (Basel) 2021; 14:ph14040317. [PMID: 33915981 PMCID: PMC8066102 DOI: 10.3390/ph14040317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
New unsymmetrical bisacridines (UAs) demonstrated high activity not only against a set of tumor cell lines but also against human tumor xenografts in nude mice. Representative UA compounds, named C-2028, C-2045 and C-2053, were characterized in respect to their physicochemical properties and the following studies aimed to elucidate the role of metabolic transformations in UAs action. We demonstrated with phase I and phase II enzymes in vitro and in tumors cells that: (i) metabolic products generated by cytochrome P450 (P450), flavin monooxygenase (FMO) and UDP-glucuronosyltransferase (UGT) isoenzymes in noncellular systems retained the compound’s dimeric structures, (ii) the main transformation pathway is the nitro group reduction with P450 isoenzymes and the metabolism to N-oxide derivative with FMO1, (iii), the selected UGT1 isoenzymes participated in the glucuronidation of one compound, C-2045, the hydroxy derivative. Metabolism in tumor cells, HCT-116 and HT-29, of normal and higher UGT1A10 expression, respectively, also resulted in the glucuronidation of only C-2045 and the specific distribution of all compounds between the cell medium and cell extract was demonstrated. Moreover, P4503A4 activity was inhibited by C-2045 and C-2053, whereas C-2028 affected UGT1A and UGT2B action. The above conclusions indicate the optimal strategy for the balance among antitumor therapeutic efficacy and drug resistance in the future antitumor therapy.
Collapse
|
23
|
Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol Cancer 2021; 20:40. [PMID: 33632214 PMCID: PMC7905668 DOI: 10.1186/s12943-021-01328-4] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Nils Kosiol
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
24
|
Pilch J, Kowalik P, Bujak P, Nowicka AM, Augustin E. Quantum Dots as a Good Carriers of Unsymmetrical Bisacridines for Modulating Cellular Uptake and the Biological Response in Lung and Colon Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:462. [PMID: 33670297 PMCID: PMC7917955 DOI: 10.3390/nano11020462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
Nanotechnology-based drug delivery provides a promising area for improving the efficacy of cancer treatments. Therefore, we investigate the potential of using quantum dots (QDs) as drug carriers for antitumor unsymmetrical bisacridine derivatives (UAs) to cancer cells. We examine the influence of QD-UA hybrids on the cellular uptake, internalization (Confocal Laser Scanning Microscope), and the biological response (flow cytometry and light microscopy) in lung H460 and colon HCT116 cancer cells. We show the time-dependent cellular uptake of QD-UA hybrids, which were more efficiently retained inside the cells compared to UAs alone, especially in H460 cells, which could be due to multiple endocytosis pathways. In contrast, in HCT116 cells, the hybrids were taken up only by one endocytosis mechanism. Both UAs and their hybrids induced apoptosis in H460 and HCT116 cells (to a greater extent in H460). Cells which did not die underwent senescence more efficiently following QDs-UAs treatment, compared to UAs alone. Cellular senescence was not observed in HCT116 cells following treatment with both UAs and their hybrids. Importantly, QDgreen/red themselves did not provoke toxic responses in cancer or normal cells. In conclusion, QDs are good candidates for targeted UA delivery carriers to cancer cells while protecting normal cells from toxic drug activities.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Patrycja Kowalik
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland; (P.K.); (A.M.N.)
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland;
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland;
| | - Anna M. Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland; (P.K.); (A.M.N.)
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|