1
|
Ciniero G, Pedro TM, Dumontet C, Elmenoufy AH, West FG, Weinfeld M, Gentile F, Tuszynski JA, Cros-Perrial E, Jordheim LP. The synergy between alkylating agents and ERCC1-XPF inhibitors is p53 dependent. Fundam Clin Pharmacol 2025; 39:e13043. [PMID: 39520092 DOI: 10.1111/fcp.13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND DNA repair plays a major role in maintaining genomic stability, thus limiting the transformation of normal cells into cancer cells. However, in cancer patients treated with DNA-targeting drugs, DNA repair can decrease efficacy by removing the damage generated by such molecules that is needed to induce pharmacological activity. Inhibiting DNA repair thus represents an interesting approach to potentiating the activity of chemotherapy in this setting. OBJECTIVES Here, we continue the characterization of an inhibitor of the interaction between Excision Repair Cross-Complementing Rrodent repair deficiency complementation group 1 (ERCC1) and Xeroderma Pigmentousum group F (XPF) (B9), two key proteins of nucleotide excision repair. METHODS We used various cell lines and co-incubation studies for the determination of cell survival and DNA repair capacities. RESULTS We show that it is synergistic with other platinum derivatives than previously described, and that synergy is lacking in cells not expressing ERCC1 or XPF. Finally, a series of experiments show that potentiation is observed only in cells expressing wild-type p53. CONCLUSION Our results confirm the mechanism of action of our ERCC1-XPF inhibitor and give important additional data on this approach to enhance the activity of already existing cancer drugs.
Collapse
Affiliation(s)
- Gloria Ciniero
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Centre de Recherche en Cancérologie de Lyon, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Tiago Marques Pedro
- Centre de Recherche en Cancérologie de Lyon, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Charles Dumontet
- Centre de Recherche en Cancérologie de Lyon, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Ahmed H Elmenoufy
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Pharmaceutical Chemistry, College of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Francesco Gentile
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Jack A Tuszynski
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Emeline Cros-Perrial
- Centre de Recherche en Cancérologie de Lyon, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Lars Petter Jordheim
- Centre de Recherche en Cancérologie de Lyon, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Zeng H, Zhang S, Nie H, Li J, Yang J, Zhuang Y, Huang Y, Zeng M. Identification of FTY720 and COH29 as novel topoisomerase I catalytic inhibitors by experimental and computational studies. Bioorg Chem 2024; 147:107412. [PMID: 38696845 DOI: 10.1016/j.bioorg.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.
Collapse
Affiliation(s)
- Huang Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China.
| | - Shengyuan Zhang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Hua Nie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, SE-75121 Uppsala, Sweden
| | - Jiunlong Yang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yuanbei Zhuang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yingjie Huang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Miao Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| |
Collapse
|
3
|
Obermann R, Yemane B, Jarvis C, Franco FM, Kyriukha Y, Nolan W, Gohara B, Krezel AM, Wildman SA, Janetka JW. Small Molecule Antagonists of the DNA Repair ERCC1/XPA Protein-Protein Interaction. ChemMedChem 2024; 19:e202300648. [PMID: 38300970 PMCID: PMC11031295 DOI: 10.1002/cmdc.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024]
Abstract
The DNA excision repair protein ERCC1 and the DNA damage sensor protein, XPA are highly overexpressed in patient samples of cisplatin-resistant solid tumors including lung, bladder, ovarian, and testicular cancer. The repair of cisplatin-DNA crosslinks is dependent upon nucleotide excision repair (NER) that is modulated by protein-protein binding interactions of ERCC1, the endonuclease, XPF, and XPA. Thus, inhibition of their function is a potential therapeutic strategy for the selective sensitization of tumors to DNA-damaging platinum-based cancer therapy. Here, we report on new small-molecule antagonists of the ERCC1/XPA protein-protein interaction (PPI) discovered using a high-throughput competitive fluorescence polarization binding assay. We discovered a unique structural class of thiopyridine-3-carbonitrile PPI antagonists that block a truncated XPA polypeptide from binding to ERCC1. Preliminary hit-to-lead studies from compound 1 reveal structure-activity relationships (SAR) and identify lead compound 27 o with an EC50 of 4.7 μM. Furthermore, chemical shift perturbation mapping by NMR confirms that 1 binds within the same site as the truncated XPA67-80 peptide. These novel ERCC1 antagonists are useful chemical biology tools for investigating DNA damage repair pathways and provide a good starting point for medicinal chemistry optimization as therapeutics for sensitizing tumors to DNA damaging agents and overcoming resistance to platinum-based chemotherapy.
Collapse
Affiliation(s)
| | | | - Cassie Jarvis
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Francisco M. Franco
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Yevhenii Kyriukha
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - William Nolan
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Beth Gohara
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Andrzej M. Krezel
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - Scott A. Wildman
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| | - James W. Janetka
- Washington University School of Medicine, Department of Biochemistry and Molecular Biophysics, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110 USA
| |
Collapse
|
4
|
Manguinhas R, Serra PA, Soares RB, Rosell R, Gil N, Oliveira NG, Guedes RC. Unveiling Novel ERCC1-XPF Complex Inhibitors: Bridging the Gap from In Silico Exploration to Experimental Design. Int J Mol Sci 2024; 25:1246. [PMID: 38279246 PMCID: PMC10816628 DOI: 10.3390/ijms25021246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
Modifications in DNA repair pathways are recognized as prognostic markers and potential therapeutic targets in various cancers, including non-small cell lung cancer (NSCLC). Overexpression of ERCC1 correlates with poorer prognosis and response to platinum-based chemotherapy. As a result, there is a pressing need to discover new inhibitors of the ERCC1-XPF complex that can potentiate the efficacy of cisplatin in NSCLC. In this study, we developed a structure-based virtual screening strategy targeting the inhibition of ERCC1 and XPF interaction. Analysis of crystal structures and a library of small molecules known to act against the complex highlighted the pivotal role of Phe293 (ERCC1) in maintaining complex stability. This residue was chosen as the primary binding site for virtual screening. Using an optimized docking protocol, we screened compounds from various databases, ultimately identifying more than one hundred potential inhibitors. Their capability to amplify cisplatin-induced cytotoxicity was assessed in NSCLC H1299 cells, which exhibited the highest ERCC1 expression of all the cell lines tested. Of these, 22 compounds emerged as promising enhancers of cisplatin efficacy. Our results underscore the value of pinpointing crucial molecular characteristics in the pursuit of novel modulators of the ERCC1-XPF interaction, which could be combined with cisplatin to treat NSCLC more effectively.
Collapse
Affiliation(s)
- Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
| | - Patrícia A. Serra
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
- Egas Moniz Interdisciplinary Research Center, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal
| | - Rita B. Soares
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
| | - Rafael Rosell
- Dr. Rosell Oncology Institute, 08028 Barcelona, Spain;
- Catalan Institute of Oncology, 08916 Barcelona, Spain
| | - Nuno Gil
- Lung Unit, Champalimaud Clinical Centre (CCC), Champalimaud Foundation, 1400-038 Lisboa, Portugal;
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (R.M.); (P.A.S.); (R.B.S.)
| |
Collapse
|
5
|
Repurposing Antimalarial Pyronaridine as a DNA Repair Inhibitor to Exploit the Full Potential of Gold-Nanoparticle-Mediated Radiation Response. Pharmaceutics 2022; 14:pharmaceutics14122795. [PMID: 36559288 PMCID: PMC9783290 DOI: 10.3390/pharmaceutics14122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Radiation therapy (RT) is frequently used to locally treat tumors. One of the major issues in RT is normal tissue toxicity; thus, it is necessary to limit dose escalation for enhanced local control in patients that have locally advanced tumors. Integrating radiosensitizing agents such as gold nanoparticles (GNPs) into RT has been shown to greatly increase the cure rate of solid tumors. The objective of this study was to explore the repurposing of an antimalarial drug, pyronaridine (PYD), as a DNA repair inhibitor to further enhance RT/GNP-induced DNA damage in cancerous cell lines. We were able to achieve inhibitory effects of DNA repair due to PYD at 500 nM concentration. Our results show a significant enhancement in DNA double-strand breaks of 42% in HeLa cells treated with PYD/GNP/RT in comparison to GNP/RT alone when irradiated with a dose of 2 Gy. Furthermore, there was a significant reduction in cellular proliferation for both HeLa and HCT-116 irradiated cells with the combined treatment of PYD/GNP/RT. Therefore, the emergence of promising novel concepts introduced in this study could lay the foundation for the transition of this treatment modality into clinical environments.
Collapse
|
6
|
Kelm JM, Samarbakhsh A, Pillai A, VanderVere-Carozza PS, Aruri H, Pandey DS, Pawelczak KS, Turchi JJ, Gavande NS. Recent Advances in the Development of Non-PIKKs Targeting Small Molecule Inhibitors of DNA Double-Strand Break Repair. Front Oncol 2022; 12:850883. [PMID: 35463312 PMCID: PMC9020266 DOI: 10.3389/fonc.2022.850883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The vast majority of cancer patients receive DNA-damaging drugs or ionizing radiation (IR) during their course of treatment, yet the efficacy of these therapies is tempered by DNA repair and DNA damage response (DDR) pathways. Aberrations in DNA repair and the DDR are observed in many cancer subtypes and can promote de novo carcinogenesis, genomic instability, and ensuing resistance to current cancer therapy. Additionally, stalled or collapsed DNA replication forks present a unique challenge to the double-strand DNA break (DSB) repair system. Of the various inducible DNA lesions, DSBs are the most lethal and thus desirable in the setting of cancer treatment. In mammalian cells, DSBs are typically repaired by the error prone non-homologous end joining pathway (NHEJ) or the high-fidelity homology directed repair (HDR) pathway. Targeting DSB repair pathways using small molecular inhibitors offers a promising mechanism to synergize DNA-damaging drugs and IR while selective inhibition of the NHEJ pathway can induce synthetic lethality in HDR-deficient cancer subtypes. Selective inhibitors of the NHEJ pathway and alternative DSB-repair pathways may also see future use in precision genome editing to direct repair of resulting DSBs created by the HDR pathway. In this review, we highlight the recent advances in the development of inhibitors of the non-phosphatidylinositol 3-kinase-related kinases (non-PIKKs) members of the NHEJ, HDR and minor backup SSA and alt-NHEJ DSB-repair pathways. The inhibitors described within this review target the non-PIKKs mediators of DSB repair including Ku70/80, Artemis, DNA Ligase IV, XRCC4, MRN complex, RPA, RAD51, RAD52, ERCC1-XPF, helicases, and DNA polymerase θ. While the DDR PIKKs remain intensely pursued as therapeutic targets, small molecule inhibition of non-PIKKs represents an emerging opportunity in drug discovery that offers considerable potential to impact cancer treatment.
Collapse
Affiliation(s)
- Jeremy M. Kelm
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Athira Pillai
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - Hariprasad Aruri
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Deepti S. Pandey
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | | | - John J. Turchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,NERx Biosciences, Indianapolis, IN, United States,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, United States,*Correspondence: Navnath S. Gavande, ; orcid.org/0000-0002-2413-0235
| |
Collapse
|
7
|
Weilbeer C, Jay D, Donnelly JC, Gentile F, Karimi-Busheri F, Yang X, Mani RS, Yu Y, Elmenoufy AH, Barakat KH, Tuszynski JA, Weinfeld M, West FG. Modulation of ERCC1-XPF Heterodimerization Inhibition via Structural Modification of Small Molecule Inhibitor Side-Chains. Front Oncol 2022; 12:819172. [PMID: 35372043 PMCID: PMC8968952 DOI: 10.3389/fonc.2022.819172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
Inhibition of DNA repair enzymes is an attractive target for increasing the efficacy of DNA damaging chemotherapies. The ERCC1-XPF heterodimer is a key endonuclease in numerous single and double strand break repair processes, and inhibition of the heterodimerization has previously been shown to sensitize cancer cells to DNA damage. In this work, the previously reported ERCC1-XPF inhibitor 4 was used as the starting point for an in silico study of further modifications of the piperazine side-chain. A selection of the best scoring hits from the in silico screen were synthesized using a late stage functionalization strategy which should allow for further iterations of this class of inhibitors to be readily synthesized. Of the synthesized compounds, compound 6 performed the best in the in vitro fluorescence based endonuclease assay. The success of compound 6 in inhibiting ERCC1-XPF endonuclease activity in vitro translated well to cell-based assays investigating the inhibition of nucleotide excision repair and disruption of heterodimerization. Subsequently compound 6 was shown to sensitize HCT-116 cancer cells to treatment with UVC, cyclophosphamide, and ionizing radiation. This work serves as an important step towards the synergistic use of DNA repair inhibitors with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Claudia Weilbeer
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - David Jay
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - James C. Donnelly
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | | | - Xiaoyan Yang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Rajam S. Mani
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Yaping Yu
- Centre for Genome Engineering, University of Calgary, Calgary, AB, Canada
| | - Ahmed H. Elmenoufy
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Department of Pharmaceutical Chemistry, College of Pharmacy, Misr University for Science and Technology, 6th of October City, Egypt
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Jack A. Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Michael Weinfeld
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Michael Weinfeld, ; Frederick G. West,
| | - Frederick G. West
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Michael Weinfeld, ; Frederick G. West,
| |
Collapse
|
8
|
Enhancing the activity of platinum-based drugs by improved inhibitors of ERCC1-XPF-mediated DNA repair. Cancer Chemother Pharmacol 2021; 87:259-267. [PMID: 33399940 DOI: 10.1007/s00280-020-04213-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The ERCC1-XPF 5'-3' DNA endonuclease complex is involved in the nucleotide excision repair pathway and in the DNA inter-strand crosslink repair pathway, two key mechanisms modulating the activity of chemotherapeutic alkylating agents in cancer cells. Inhibitors of the interaction between ERCC1 and XPF can be used to sensitize cancer cells to such drugs. METHODS We tested recently synthesized new generation inhibitors of this interaction and evaluated their capacity to sensitize cancer cells to the genotoxic activity of agents in synergy studies, as well as their capacity to inhibit the protein-protein interaction in cancer cells using proximity ligation assay. RESULTS Compound B9 showed the best activity being synergistic with cisplatin and mitomycin C in both colon and lung cancer cells. Also, B9 abolished the interaction between ERCC1 and XPF in cancer cells as shown by proximity ligation assay. Results of different compounds correlated with values from our previously obtained in silico predictions. CONCLUSION Our results confirm the feasibility of the approach of targeting the protein-protein interaction between ERCC1 and XPF to sensitize cancer cells to alkylating agents, thanks to the improved binding affinity of the newly synthesized compounds.
Collapse
|