1
|
Bendi A, Devi P, Sharma H, Yadav G, Raghav N, Pundeer R, Afshari M. Innovative Pyrazole Hybrids: A New Era in Drug Discovery and Synthesis. Chem Biodivers 2025; 22:e202402370. [PMID: 39613478 DOI: 10.1002/cbdv.202402370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
Heterocyclic compounds that include nitrogen and their derivatives have long been regarded as excellent sources of medicinal substances. Pyrazole is a compound with two nitrogen atoms and an aromatic structure. It has several uses and intricate stereochemistry arranged in a five-membered ring. The knowledge of different pyrazole derivatives and their range of physiological and pharmacological actions has grown significantly in recent years. The scientific community has recently increasingly focused on exploring the chemistry of various pyrazole hybrids due to their enhanced biological activities. This review investigates the chemistry of these diverse pyrazole hybrids, emphasizing their synthesis and their antidiabetic, antibacterial, anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Articles published from 2014 onward with an emphasis on the last 5 years are included in this review. This review is anticipated to be useful for future investigations and innovative concepts in the pursuit of designs for creating more promising hybrids of pyrazoles.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Innovation and Translational Research Hub (iTRH) & Department of Chemistry, Presidency University, Bangalore, Karnataka, India
| | - Poonam Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Harsh Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Geetanjali Yadav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Rashmi Pundeer
- Department of Chemistry, Indira Gandhi University, Meerpur, Rewari, Haryana, India
| | - Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| |
Collapse
|
2
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Bakr RB. Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Mol Divers 2025; 29:1789-1820. [PMID: 39014146 DOI: 10.1007/s11030-024-10906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Pyrazole heterocycle is regarded as an extremely significant agent for the therapy of inflammation. Celecoxib, lonazolac, deracoxib, and phenylbutazone are examples of commercially approved pyrazole drugs with COX-2 inhibitory potential for curing inflammation. There have been recently many reviews for the biological significance of pyrazole derivatives. This review talks about pyrazole derivatives with anti-inflammatory activity and also sheds the light on the recent updates on pyrazole research with an emphasis on some synthetic pathways utilized to construct this privileged scaffold and structure activity relationship that accounts for the anti-inflammatory activity in an attempt to pave the opportunity for medicinal chemists to develop novel anti-inflammatory agents with better COX-2 selectivity.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt.
| |
Collapse
|
3
|
Elgohary MK, Elkotamy MS, Alkabbani MA, El Hassab MA, Al-Rashood ST, Binjubair FA, Alsulaimany M, Ghabbour HA, Eldehna WM, Abdel-Aziz HA. Sulfonamide-Pyrazole derivatives as next-generation Cyclooxygenase-2 enzyme inhibitors: From molecular design to in vivo efficacy. Int J Biol Macromol 2025; 293:139170. [PMID: 39736293 DOI: 10.1016/j.ijbiomac.2024.139170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
The current research focuses on the design and synthesis of celecoxib analogues incorporating sulphonamide and pyrazole moieties (4, 5, 6a-e, and 7a-f) with the aim of achieving a broad range of COX-2 selectivity in vitro. Among these, compounds 6b-d, 7a, 7e, and 7d exhibited potent inhibition, with IC50 values ranging between 0.05 and 0.08 μM, and were selected for in vivo evaluation using the formalin-induced paw edema model. To further assess the safety profile of compound 6d, a histopathological examination of paw tissue was conducted alongside routine blood analyses evaluating key liver and kidney function parameters, including creatinine, urea, AST, and ALT levels. The results indicated normal profiles, comparable to reference drugs celecoxib and indomethacin. Additionally, compound 6d was evaluated for its effect on inflammatory biomarkers using ELISA assays. Markedly, 6d elicited a remarkable reduction in TNF-α (71.43 %) and PGE2 (77.11 %) levels, surpassing the effects of both celecoxib and indomethacin, confirming its potent anti-inflammatory properties. In terms of analgesic activity, Importantly, cardiac toxicity assessment revealed no adverse effects associated with compound 6d. Finally, compound 6d underwent in silico analysis, including molecular docking and molecular dynamics simulations, which confirmed its selective interaction with the COX-2 active site and favorable free insertion into the selectivity side pocket.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud Abdelrahman Alkabbani
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Marwa Alsulaimany
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina 42353, Saudi Arabia
| | - Hazem A Ghabbour
- School of Health and Biomedical Sciences, RMIT University, Melbourne 3083, Australia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
4
|
Liu Q, Wang YX, Ge ZH, Zhu MZ, Ding J, Wang H, Liu SM, Liu RC, Li C, Yu MJ, Feng Y, Zhu XH, Liang JH. Discovery of glycosidated glycyrrhetinic acid derivatives: Natural product-based soluble epoxide hydrolase inhibitors. Eur J Med Chem 2024; 280:116937. [PMID: 39413443 DOI: 10.1016/j.ejmech.2024.116937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
There are few reports on soluble epoxide hydrolase (sEH) structure-activity relationship studies using natural product-based scaffolds. In this study, we discovered that C-30 urea derivatives of glycyrrhetinic acid such as 33, rather than C-20/C-3 urea derivatives, possess in vitro sEH inhibitory capabilities. Furthermore, we explored the impact of stereoconfigurations at C-3 and C-18 positions, and glycosidic bonds at the 3-OH on the compound's activity. Consequently, a glycoside of 33, specifically 49Cα containing alpha-oriented mannose, exhibited promising in vivo efficacy in alleviating carrageenan-induced paw edema and acetic acid-induced writhing. Meanwhile, 49Cα demonstrated potential in mitigating acute pancreatitis by modulating the ratios of anti-inflammatory epoxyeicosatrienoic acids (EETs) to pro-inflammatory dihydroxyeicosatrienoic acids (DHETs). The co-crystal structure of sEH in complex with 49Cα revealed that the N-tetrahydropyranylmethylene urea hydrogen bonded with the residues within the sEH tunnel, contrasting with the mannose component that extended beyond the tunnel's confines. Our findings highlight 49Cα (coded LQ-38) as a promising candidate for anti-inflammatory and analgesic effects, and pave the way for the future rational design of triterpenoid-based sEH inhibitors.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yi-Xin Wang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Zi-Hao Ge
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Rui-Chen Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chun Li
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou, 510330, China.
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
5
|
Elgohary MK, Abo-Ashour MF, Abd El Hadi SR, El Hassab MA, Abo-El Fetoh ME, Afify H, Abdel-Aziz HA, Abou-Seri SM. Novel anti-inflammatory agents featuring phenoxy acetic acid moiety as a pharmacophore for selective COX-2 inhibitors: Synthesis, biological evaluation, histopathological examination and molecular modeling investigation. Bioorg Chem 2024; 152:107727. [PMID: 39167872 DOI: 10.1016/j.bioorg.2024.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Inflammation management presents a critical challenge in modern medicine, with nonsteroidal anti-inflammatory drugs (NSAIDs) being a widely used therapeutic option. However, their efficacy is often accompanied by significant gastrointestinal adverse effects, necessitating the exploration of safer alternatives, particularly through the investigation of cyclooxygenase-2 (COX-2) inhibitors. This study endeavors to address this imperative through the synthesis and evaluation of pyrazoline-phenoxyacetic acid derivatives. Among the synthesized compounds, 6a and 6c emerged as promising candidates, demonstrating potent COX-2 inhibition with IC50 values of 0.03 µM for both and selectivity index = 365.4 and 196.9, respectively. Furthermore, these compounds exhibited efficacy in mitigating formalin-induced edema in male Wistar rats, accompanied by favorable safety profiles upon histological examination of vital organs. Comprehensive safety assessments, including evaluation of creatinine, AST, and ALT enzymatic as well as troponin T and creatine kinase-MB levels, further reinforce the promising attributes of the synthetic candidates. Molecular docking studies endorsed by molecular dynamic simulations corroborate the biological findings, elucidating significant protein-ligand interactions at COX-2 active sites indicative of therapeutic potential.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Mahmoud F Abo-Ashour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, El Saleheya El Gadida University, Egypt
| | - Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed E Abo-El Fetoh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hassan Afify
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo 11829, Egypt
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Sahar M Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo P.O. Box 11562, Egypt.
| |
Collapse
|
6
|
Yakoubi S. Synergistic integration of deep learning with protein docking in cardiovascular disease treatment strategies. IUBMB Life 2024; 76:666-696. [PMID: 38748776 DOI: 10.1002/iub.2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/13/2024] [Indexed: 08/31/2024]
Abstract
This research delves into the exploration of the potential of tocopherol-based nanoemulsion as a therapeutic agent for cardiovascular diseases (CVD) through an in-depth molecular docking analysis. The study focuses on elucidating the molecular interactions between tocopherol and seven key proteins (1O8a, 4YAY, 4DLI, 1HW9, 2YCW, 1BO9 and 1CX2) that play pivotal roles in CVD development. Through rigorous in silico docking investigations, assessment was conducted on the binding affinities, inhibitory potentials and interaction patterns of tocopherol with these target proteins. The findings revealed significant interactions, particularly with 4YAY, displaying a robust binding energy of -6.39 kcal/mol and a promising Ki value of 20.84 μM. Notable interactions were also observed with 1HW9, 4DLI, 2YCW and 1CX2, further indicating tocopherol's potential therapeutic relevance. In contrast, no interaction was observed with 1BO9. Furthermore, an examination of the common residues of 4YAY bound to tocopherol was carried out, highlighting key intermolecular hydrophobic bonds that contribute to the interaction's stability. Tocopherol complies with pharmacokinetics (Lipinski's and Veber's) rules for oral bioavailability and proves safety non-toxic and non-carcinogenic. Thus, deep learning-based protein language models ESM1-b and ProtT5 were leveraged for input encodings to predict interaction sites between the 4YAY protein and tocopherol. Hence, highly accurate predictions of these critical protein-ligand interactions were achieved. This study not only advances the understanding of these interactions but also highlights deep learning's immense potential in molecular biology and drug discovery. It underscores tocopherol's promise as a cardiovascular disease management candidate, shedding light on its molecular interactions and compatibility with biomolecule-like characteristics.
Collapse
Affiliation(s)
- Sana Yakoubi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Alliance for Research on the Mediterranean North Africa (ARENA), University of Tsukuba, Ibaraki, Japan
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Campelo MDS, Câmara Neto JF, Magalhães HCR, Alves Filho EG, Zocolo GJ, Leal LKAM, Ribeiro MENP. GC/MS and 2D NMR-based approach to evaluate the chemical profile of hydroalcoholic extract from Agaricus blazei Murill and its anti-inflammatory effect on human neutrophils. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117676. [PMID: 38159823 DOI: 10.1016/j.jep.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Agaricus blazei Murill (AbM) is one of the main mushrooms used for medicinal purposes. The use of AbM in the preparation of teas is widespread mainly in Asian countries, while in Brazil it is used as a functional food to combat inflammatory diseases and cancer. AIM OF THE STUDY The main focus of this study was the characterization of the chemical profile of the hydroalcoholic extract of Agaricus blazei Murill (AbE), as well as the evaluation of its cytotoxic and anti-inflammatory potential using human neutrophils. MATERIALS AND METHODS The extract was prepared by dynamic maceration using a mixture of ethanol and water (70/30, v v-1) as solvent. The chemical profile characterization was carried out by 2D NMR and GC-MS techniques. The cytotoxicity of AbE was evaluated through studies of hemolytic potential, cell viability and membrane integrity. The anti-inflammatory activity was analyzed by a PMA-induced neutrophil degranulation assay. RESULTS Chemical analysis of AbE revealed the presence of 28 metabolites in its composition, with mannitol as the major compound. AbE at 1-200 μg mL-1 and mannitol at 4-160 μg mL-1, showed low hemolytic and cytotoxic potential against human red blood cells and neutrophils. Furthermore, both were able to significantly reduce the release of myeloperoxidase. CONCLUSIONS These results indicate that AbE is a promising natural product to be incorporated into pharmaceutical dosage forms intended for the adjuvant treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil; Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal Do Ceará, Campus Porangabuçu, Fortaleza, CEP: 60430-160, Brazil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil
| | | | - Elenilson Godoy Alves Filho
- Departamento de Engenharia de Alimentos, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil
| | - Guilherme Julião Zocolo
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2270, Fortaleza, CEP: 60511-110, Brazil
| | - Luzia Kalyne Almeida Moreira Leal
- Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal Do Ceará, Campus Porangabuçu, Fortaleza, CEP: 60430-160, Brazil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Centro de Ciências, Departamento de Química Orgânica e Inorgânica, Universidade Federal Do Ceará, Campus Do Pici, Fortaleza, CEP: 60440-900, Brazil.
| |
Collapse
|
8
|
Zhang F, Zhu G, Li Y, Qi Y, Wang Z, Li W. Dual-target inhibitors based on COX-2: a review from medicinal chemistry perspectives. Future Med Chem 2023; 15:2209-2233. [PMID: 38095081 DOI: 10.4155/fmc-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/08/2023] [Indexed: 12/20/2023] Open
Abstract
Inhibitors of COX-2 constitute a class of anti-inflammatory analgesics, showing potential against certain types of cancer. However, such inhibitors are associated with cardiovascular toxicity. Moreover, although single-target molecules possess specificity for particular targets, they often lead to poor safety, low efficacy and drug resistance due to compensatory mechanisms. A new generation of dual-target drugs that simultaneously inhibit COX-2 and another target is showing strong potential to treat cancer or reduce adverse cardiac effects. The present perspective focuses on the structure and functions of COX-2, and its role as a therapeutic target. It also explores the current state and future possibilities for dual-target strategies from a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Fengmei Zhang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Guonian Zhu
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yangqian Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Yawen Qi
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Zhoufeng Wang
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| | - Weimin Li
- Department of Pulmonary & Critical Care Medicine, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- State Key Laboratory of Respiratory Health & Multimorbidity, West China Hospital, Chengdu, 610041, Sichuan, China
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- The Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, 610041, Sichuan, China
| |
Collapse
|
9
|
Abdelrahman KS, Hassan HA, Abdel-Aziz SA, Marzouk AA, Shams R, Osawa K, Abdel-Aziz M, Konno H. Development and Assessment of 1,5-Diarylpyrazole/Oxime Hybrids Targeting EGFR and JNK-2 as Antiproliferative Agents: A Comprehensive Study through Synthesis, Molecular Docking, and Evaluation. Molecules 2023; 28:6521. [PMID: 37764297 PMCID: PMC10537604 DOI: 10.3390/molecules28186521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
New 1,5-diarylpyrazole oxime hybrid derivatives (scaffolds A and B) were designed, synthesized, and then their purity was verified using a variety of spectroscopic methods. A panel of five cancer cell lines known to express EGFR and JNK-2, including human colorectal adenocarcinoma cell line DLD-1, human cervical cancer cell line Hela, human leukemia cell line K562, human pancreatic cell line SUIT-2, and human hepatocellular carcinoma cell line HepG2, were used to biologically evaluate for their in vitro cytotoxicity for all the synthesized compounds 7a-j, 8a-j, 9a-c, and 10a-c. The oxime containing compounds 8a-j and 10a-c were more active as antiproliferative agents than their non-oxime congeners 7a-j and 9a-c. Compounds 8d, 8g, 8i, and 10c inhibited EGFR with IC50 values ranging from 8 to 21 µM when compared with sorafenib. Compound 8i inhibited JNK-2 as effectively as sorafenib, with an IC50 of 1.0 µM. Furthermore, compound 8g showed cell cycle arrest at the G2/M phase in the cell cycle analysis of the Hela cell line, whereas compound 8i showed combined S phase and G2 phase arrest. According to docking studies, oxime hybrid compounds 8d, 8g, 8i, and 10c exhibited binding free energies ranging from -12.98 to 32.30 kcal/mol at the EGFR binding site whereas compounds 8d and 8i had binding free energies ranging from -9.16 to -12.00 kcal/mol at the JNK-2 binding site.
Collapse
Affiliation(s)
- Kamal S. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
| | - Heba A. Hassan
- Department of Medicinal Chemistry Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Salah A. Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt
| | - Adel A. Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Missippi, Oxford, MS 38677, USA
| | - Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Centre for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan;
| | - Keima Osawa
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan;
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan;
| |
Collapse
|
10
|
Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023; 14:1127704. [PMID: 36969193 PMCID: PMC10033545 DOI: 10.3389/fimmu.2023.1127704] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Modulation of a non-adequate, amplified immune response enables to attenuate the clinical course of a disease and restore homeostasis. The potential targets to modulate immunity are as multiple as the components of the immune system, thus creating various possibilities for intervention. However, immunomodulation faces new challenges to design safer and more efficacious therapeutic compounds. This review offers a cross-sectional picture of the currently used and newest pharmacological interventions, genomic editing, and tools for regenerative medicine involving immunomodulation. We reviewed currently available experimental and clinical evidence to prove the efficiency, safety, and feasibility of immunomodulation in vitro and in vivo. We also reviewed the advantages and limitations of the described techniques. Despite its limitations, immunomodulation is considered as therapy itself or as an adjunct with promising results and developing potential.
Collapse
|
11
|
El-Miligy MMM, Al-Kubeisi AK, Bekhit MG, El-Zemity SR, Nassra RA, Hazzaa AA. Towards safer anti-inflammatory therapy: synthesis of new thymol–pyrazole hybrids as dual COX-2/5-LOX inhibitors. J Enzyme Inhib Med Chem 2023; 38:294-308. [DOI: 10.1080/14756366.2022.2147164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mostafa M. M. El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Mohamed G. Bekhit
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Saad R. El-Zemity
- Department of Chemistry and Technology of Pesticides, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Rasha A. Nassra
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aly A. Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Novel urea-thiourea hybrids bearing 1,4-naphthoquinone moiety: Anti-inflammatory activity on mammalian macrophages by regulating intracellular PI3K pathway, and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Potential effect of novel thiadiazole derivatives against radiation induced inflammation with low cardiovascular risk in rats. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractThe aim of the present study is to explore new selective anti-inflammatory compounds with low cardiovascular risk. Twelve thiadiazole derivatives incorporating different amino acid moieties were newly synthesized (4–15) as potential anti-inflammatory agents with low cardiovascular risks through dual COX-2/MPO inhibition. Compounds were initially screened for their anti-inflammatory effect by assay of COX-2, the most potent (4–6, 8) were further tested for COX-1 inhibition, myeloperoxidase MPO activity as well as total nitric oxide content NO in heart of irradiated rats. Cardiac toxicity potential was evaluated by assay of creatine kinase-MB (CK-MB), troponin-I (Tn-I) and lactate dehydrogenase (LDH). Celcoxcib was used as reference drug. S-(5-((4-Methoxybenzylidene)amino)-2,3-dihydro-1,3,4-thiadiazol-2-yl)2-amino propanethioate (5) was the most potent anti-inflammatory with the least cardiotoxicity effect. It exhibited IC50 0.09 µM on COX-2 inhibition with very low activity on COX-1. Troponin I was elevated by 11% using compound 5 in non-irradiated rats. Moreover, compound (5) showed 73% reduction in MPO level. Results were supported by molecular docking into the active sites of COX-2 and MPO enzymes to have more insights about the possible dual inhibition of compound 5 of both enzymes.
Collapse
|
14
|
Novel quinoline-based derivatives: A new class of PDE4B inhibitors for adjuvant-induced arthritis. Eur J Med Chem 2022; 238:114497. [PMID: 35660249 DOI: 10.1016/j.ejmech.2022.114497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022]
Abstract
A total of 31 quinoline-based derivatives were designed and synthesized to develop novel anti-inflammatory drugs. After the toxicity of synthetic compounds to RAW264.7 cells were evaluated in vitro, their anti-inflammatory activity was assessed by inhibiting lipopolysaccharide (LPS)-induced NO production levels in the RAW264.7 cells. Among the derivatives, compound f4 had the best anti-inflammatory activity, which could reduce the production of pro-inflammatory cytokines NO, IL-1β, and TNF-α with corresponding IC50 values of 20.40 ± 0.94, 18.98 ± 0.21 and 23.48 ± 0.46 μM. Western blot showed that f4 could inhibit the expression of LPS-induced inflammatory mediators iNOS and COX-2. Molecular docking showed that f4 could also enter the PDE4B receptor binding pocket, and the cellular thermal shift assay method indicated that the PDE4B protein bound to f4 had increased stability. Meanwhile, the inhibitory effect of this compound on the PDE4B enzyme (IC50 = 0.94 ± 0.36 μM) was comparable to that of the positive drug rolipram (IC50 = 1.04 ± 0.28 μM). Finally, in vivo studies showed that f4 could improve the degree of foot swelling and knee joint pathology in adjuvant-induced arthritic rats and decrease the levels of serum inflammatory factors TNF-α and IL-1β in a dose-dependent manner. Therefore, the development and design of quinoline-based derivatives for anti-inflammatory applications could be considered opportunities and challenges.
Collapse
|
15
|
Ahmadi M, Bekeschus S, Weltmann KD, von Woedtke T, Wende K. Non-steroidal anti-inflammatory drugs: recent advances in the use of synthetic COX-2 inhibitors. RSC Med Chem 2022; 13:471-496. [PMID: 35685617 PMCID: PMC9132194 DOI: 10.1039/d1md00280e] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase (COX) enzymes comprise COX-1 and COX-2 isoforms and are responsible for prostaglandin production. Prostaglandins have critical roles in the inflammation pathway and must be controlled by administration of selective nonsteroidal anti-inflammatory drugs (NSAIDs). Selective COX-2 inhibitors have been among the most used NSAIDs during the ongoing coronavirus 2019 pandemic because they reduce pain and protect against inflammation-related diseases. In this framework, the mechanism of action of both COX isoforms (particularly COX-2) as inflammation mediators must be reviewed. Moreover, proinflammatory cytokines such as tumor necrosis factor-α and interleukin (IL)-6, IL-1β, and IL-8 must be highlighted due to their major participation in upregulation of the inflammatory reaction. Structural and functional analyses of selective COX-2 inhibitors within the active-site cavity of COXs could enable introduction of lead structures with higher selectivity and potency against inflammation with fewer adverse effects. This review focuses on the biological activity of recently discovered synthetic COX-2, dual COX-2/lipoxygenase, and COX-2/soluble epoxide hydrolase hybrid inhibitors based primarily on the active motifs of related US Food and Drug Administration-approved drugs. These new agents could provide several advantages with regard to anti-inflammatory activity, gastrointestinal protection, and a safer profile compared with those of the NSAIDs celecoxib, valdecoxib, and rofecoxib.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- Leibniz Institute for Plasma Science and Technology (INP Greifswald) Felix-Hausdorff-Straße 2 17489 Greifswald Germany
- University Medicine Greifswald, Institute for Hygiene and Environmental Medicine Walther-Rathenau-Straße 49A 17489 Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP Greifswald), Center for Innovation Competence (ZIK) plasmatis Felix-Hausdorff-Straße 2 17489 Greifswald Germany
| |
Collapse
|
16
|
Singh H, Agrawal DK. Recent advances in the development of active hybrid molecules in the treatment of cardiovascular diseases. Bioorg Med Chem 2022; 62:116706. [PMID: 35364524 PMCID: PMC9018605 DOI: 10.1016/j.bmc.2022.116706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 11/02/2022]
Abstract
Multifactorial nature of the underlying pathophysiology of chronic disorders hinders in the effective treatment and management of many complex diseases. The conventional targeted therapies have limited applications due to highly complicated disease etiology. Cardiovascular diseases (CVDs) are the group of disorders of the heart and blood vessels. Currently, there is limited knowledge on the underlying cellular and molecular mechanisms of many of the CVDs due to their complex pathophysiology and co-morbidities. Their management with conventional medications results in failure due to adverse drug reactions and clinical specificity of solo-targeting drug therapy. Therefore, it is critical to introduce an alternative strategy to treat multi-factorial diseases. In the past few years, discovery and use of multi-targeted drug therapy with hybrid molecules have shown promising results with minimal side effects, and thus considered a most effective approach. In this review article, prominent hybrid molecules combining with different active moieties are reported to synergistically and simultaneously block different pathways involved in CVDs. Here, we provide a critical evaluation and discussion on their pharmacology with mechanistic insights and the structure activity relationship. The timely information provided in this article reveals the recent trends of molecular hybridization to the scientific community interested in CVDs and help them in designing the next generation of multi-targeting drug therapeutics.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
17
|
Abdel‐Aziz SA, Taher ES, Lan P, El‐Koussi NA, Salem OIA, Gomaa HAM, Youssif BGM. New pyrimidine/thiazole hybrids endowed with analgesic, anti‐inflammatory, and lower cardiotoxic activities: Design, synthesis, and COX‐2/sEH dual inhibition. Arch Pharm (Weinheim) 2022; 355:e2200024. [DOI: 10.1002/ardp.202200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Salah A. Abdel‐Aziz
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy Al‐Azhar University Assiut Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Deraya University Minia Egypt
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Al‐Azhar University Assiut Egypt
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis Jinan University Guangzhou China
| | - Nawal A. El‐Koussi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Deraya University Minia Egypt
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Ola I. A. Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Assiut University Assiut Egypt
| | - Hesham A. M. Gomaa
- Pharmacology Department, College of Pharmacy Jouf University Sakaka Saudi Arabia
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Assiut University Assiut Egypt
| |
Collapse
|
18
|
Abdellatif KR, Abdelall EK, Elshemy HA, Philoppes JN, Hassanein EH, Kahk NM. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on celecoxib scaffold supported with in vivo anti-inflammatory activity, ulcerogenic liability, ADME profiling and docking study. Bioorg Chem 2022; 120:105627. [DOI: 10.1016/j.bioorg.2022.105627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
19
|
Priya D, Gopinath P, Dhivya LS, Vijaybabu A, Haritha M, Palaniappan S, Kathiravan MK. Structural Insights into Pyrazoles as Agents against Anti‐inflammatory and Related Disorders. ChemistrySelect 2022. [DOI: 10.1002/slct.202104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Deivasigamani Priya
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | | | - Anandan Vijaybabu
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | - Manoharan Haritha
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| | | | - Muthu K. Kathiravan
- Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
- Dr APJ Abdul Kalam Research Lab Department of Pharmaceutical Chemistry SRM College of Pharmacy SRMIST Kattankulathur India
| |
Collapse
|
20
|
Wilt S, Kodani S, Valencia L, Hudson PK, Sanchez S, Quintana T, Morisseau C, Hammock BD, Kandasamy R, Pecic S. Further exploration of the structure-activity relationship of dual soluble epoxide hydrolase/fatty acid amide hydrolase inhibitors. Bioorg Med Chem 2021; 51:116507. [PMID: 34794001 DOI: 10.1016/j.bmc.2021.116507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022]
Abstract
Fatty acid amide hydrolase (FAAH) is a membrane protein that hydrolyzes endocannabinoids, and its inhibition produces analgesic and anti-inflammatory effects. The soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids. EETs have anti-inflammatory and inflammation resolving properties, thus inhibition of sEH consequently reduces inflammation. Concurrent inhibition of both enzymes may represent a novel approach in the treatment of chronic pain. Drugs with multiple targets can provide a superior therapeutic effect and a decrease in side effects compared to ligands with single targets. Previously, microwave-assisted methodologies were employed to synthesize libraries of benzothiazole analogs from which high affinity dual inhibitors (e.g. 3, sEH IC50 = 9.6 nM; FAAH IC50 = 7 nM) were identified. Here, our structure-activity relationship studies revealed that the 4-phenylthiazole moiety is well tolerated by both enzymes, producing excellent inhibition potencies in the low nanomolar range (e.g. 6o, sEH IC50 = 2.5 nM; FAAH IC50 = 9.8 nM). Docking experiments show that the new class of dual inhibitors bind within the catalytic sites of both enzymes. Prediction of several pharmacokinetic/pharmacodynamic properties suggest that these new dual inhibitors are good candidates for further in vivo evaluation. Finally, dual inhibitor 3 was tested in the Formalin Test, a rat model of acute inflammatory pain. The data indicate that 3 produces antinociception against the inflammatory phase of the Formalin Test in vivo and is metabolically stable following intraperitoneal administration in male rats. Further, antinociception produced by 3 is comparable to that of ketoprofen, a traditional nonsteroidal anti-inflammatory drug. The results presented here will help toward the long-term goal of developing novel non-opioid therapeutics for pain management.
Collapse
Affiliation(s)
- Stephanie Wilt
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Sean Kodani
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Leah Valencia
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Paula K Hudson
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Stephanie Sanchez
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Taylor Quintana
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| | - Ram Kandasamy
- Department of Psychology, California State University, East Bay, 25800 Carlos Bee Blvd. Science S229, Hayward, CA 94542, United States.
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States.
| |
Collapse
|
21
|
Bian M, Ma QQ, Wu Y, Du HH, Guo-Hua G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: a review. J Enzyme Inhib Med Chem 2021; 36:2139-2159. [PMID: 34628990 PMCID: PMC8516162 DOI: 10.1080/14756366.2021.1984903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inflammation and disease are closely related. Inflammation can induce various diseases, and diseases can promote inflammatory response, and two possibly induces each other in a bidirectional loop. Inflammation is usually treated using synthetic anti-inflammatory drugs which are associated with several adverse effects hence are not safe for long-term use. Therefore, there is need for anti-inflammatory drugs which are not only effective but also safe. Several researchers have devoted to the research and development of effective anti-inflammatory drugs with little or no side effects. In this review, we studied some small molecules with reported anti-inflammatory activities and hence potential sources of anti-inflammatory agents. The information was retrieved from relevant studies published between January 2019 and May, 2021 for review. This review study was aimed to provide relevant information towards the design and development of effective and safe anti-inflammation agents.
Collapse
Affiliation(s)
- Ming Bian
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Qian-Qian Ma
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yun Wu
- First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Huan-Huan Du
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Gong Guo-Hua
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia, China.,Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China.,First Clinical Medical of Inner, Mongolia Minzu University, Tongliao, Inner Mongolia, China
| |
Collapse
|
22
|
Amin NH, Hamed MIA, Abdel-Fattah MM, Abusabaa AHA, El-Saadi MT. Design, synthesis and mechanistic study of novel diarylpyrazole derivatives as anti-inflammatory agents with reduced cardiovascular side effects. Bioorg Chem 2021; 116:105394. [PMID: 34619468 DOI: 10.1016/j.bioorg.2021.105394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
Abstract
Novel diarylpyrazole (5a-d, 6a-e, 12, 13, 14, 15a-c and 11a-g) derivatives were designed, synthesized and evaluated for their dual COX-2/sEH inhibitory activities via recombinant enzyme assays to explore their anti-inflammatory activities and cardiovascular safety profiles. Comprehensively, the structures of the synthesized compounds were established via spectral and elemental analyses, followed by the assessment of both their in vitro COX inhibitory and in vivo anti-inflammatory activities. The most active compounds as COX inhibitors were further evaluated for their in vitro 5-LOX and sEH inhibitory activities, alongside with their in vivo analgesic and ulcerogenic effects. Compounds 6d and 11f showed excellent inhibitory activities against both COX-2 and sEH (COX-2 IC50 = 0.043 and 0.048 µM; sEH IC50 = 83.58 and 83.52 μM, respectively). Moreover, the compounds demonstrated promising results as anti-inflammatory and analgesic agents with considerable ED50 values and gastric safety profiles. Remarkably, the most active COX inhibitors 6d and 11f possessed improved cardiovascular safety profiles, if compared to celecoxib, as shown by the laboratory evaluation of both essential cardiac biochemical parameters (troponin-1, prostacyclin, tumor necrosis factor-α, lactate dehydrogenase, reduced glutathione and creatine kinase-M) and histopathological studies. On the other hand, docking simulations confirmed that the newly synthesized compounds displayed sufficient structural features required for binding to the target COX-2 and sEH enzymes. Also, in silico ADME studies prediction and drug-like properties of the compounds revealed favorable oral bioavailability results. Collectively, the present work could be featured as a promising future approach towards novel selective COX-2 inhibitors with declined cardiovascular risks.
Collapse
Affiliation(s)
- Noha H Amin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed H A Abusabaa
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, 63514, Egypt
| | - Mohammed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch, Egypt
| |
Collapse
|
23
|
Hendawy OM, Gomaa HAM, Alzarea SI, Alshammari MS, Mohamed FAM, Mostafa YA, Abdelazeem AH, Abdelrahman MH, Trembleau L, Youssif BGM. Novel 1,5-diaryl pyrazole-3-carboxamides as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxicity effects. Bioorg Chem 2021; 116:105302. [PMID: 34464816 DOI: 10.1016/j.bioorg.2021.105302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022]
Abstract
COX-2 selective drugs have been withdrawn from the market due to cardiovascular side effects, just a few years after their discovery. As a result, a new series of 1,5-diaryl pyrazole carboxamides 19-31 was synthesized as selective COX-2/sEH inhibitors with analgesic, anti-inflammatory, and lower cardiotoxic properties. The target compounds were synthesized and tested in vitro against COX-1, COX-2, and sEH enzymes. Compounds 20, 22 and 29 exhibited the most substantial COX-2 inhibitory activity (IC50 values: 0.82-1.12 µM) and had SIs of 13, 18, and 16, respectively, (c.f. celecoxib; SI = 8). Moreover, compounds 20, 22, and 29 were the most potent dual COX-2/sEH inhibitors, with IC50 values of 0.95, 0.80, and 0.85 nM against sEH, respectively, and were more potent than the standard AUDA (IC50 = 1.2 nM). Furthermore, in vivo studies revealed that these compounds were the most active as analgesic/anti-inflammatory derivatives with a good cardioprotective profile against cardiac biomarkers and inflammatory cytokines. Finally, the most active dual inhibitors were docked inside COX-2/sEH active sites to explain their binding modes.
Collapse
Affiliation(s)
- O M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mutariah S Alshammari
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Fatma A M Mohamed
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Jouf University, Aljouf 72341, Saudi Arabia; Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University, Riyadh 11681, Saudi Arabia
| | - Mostafa H Abdelrahman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Laurent Trembleau
- School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, United Kingdom.
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
24
|
Abdelazeem AH, El-Din AGS, Arab HH, El-Saadi MT, El-Moghazy SM, Amin NH. Design, synthesis and anti-inflammatory/analgesic evaluation of novel di-substituted urea derivatives bearing diaryl-1,2,4-triazole with dual COX-2/sEH inhibitory activities. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Tantawy AH, Meng XG, Marzouk AA, Fouad A, Abdelazeem AH, Youssif BGM, Jiang H, Wang MQ. Structure-based design, synthesis, and biological evaluation of novel piperine-resveratrol hybrids as antiproliferative agents targeting SIRT-2. RSC Adv 2021; 11:25738-25751. [PMID: 35478872 PMCID: PMC9037111 DOI: 10.1039/d1ra04061h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR. Antiproliferative activities of 5a–h were evaluated by NCI against sixty cancer cell lines. Compound 5b, possessing resveratrol pharmacophoric phenolic moieties, showed a complete cell death against leukemia HL-60 (TB) and Breast cancer MDA-MB-468 with growth inhibition percentage of −0.49 and −2.83, respectively. In addition, 5b recorded significant activity against the other cancer cell lines with growth inhibition percentage between 80 to 95. New 5a–h hybrids were evaluated for their inhibitory activities against Sirt-1 and Sirt-2 as molecular targets for their antiproliferative action. Results showed that compounds 5a–h were more potent inhibitors of Sirt-2 than Sirt-1 at 5 μm and 50 μm. Compound 5b showed the strongest inhibition of Sirt-2 (78 ± 3% and 26 ± 3% inhibition at 50 μM and 5 μM, respectively). Investigation of intermolecular interaction via Hirschfeld surface analysis indicates that these close contacts are mainly ascribed to the O–H⋯O hydrogen bonding. To get insights into the Sirt-2 inhibitory mechanism, a docking study was performed where 5b was found to fit nicely inside both extended C-pocket and selectivity pocket and could compete with the substrate acyl-Lys. Another possible binding pattern showed that 5b could act by partial occlusion of the NAD+ C-pocket. Collectively, these findings would contribute significantly to better understanding the Sirt-2 inhibitory mechanism in order to develop a new generation of refined and selective Sirt-2 inhibitors. A series of novel piperine–resveratrol hybrids 5a–h was designed, synthesized, and structurally elucidated by IR, and 1H, 13C, and 19F NMR.![]()
Collapse
Affiliation(s)
- Ahmed H Tantawy
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China .,Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China .,Department of Chemistry, College of Science, Benha University Benha 13518 Egypt
| | - Xiang-Gao Meng
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, School of Chemistry, Central China Normal University Wuhan 430079 China
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ali Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt
| | - Ahmed H Abdelazeem
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Riyadh Elm University Riyadh 11681 Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
| | - Hong Jiang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan 430070 China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan 430070 People's Republic of China
| |
Collapse
|
26
|
Amin NH, El-Saadi MT, Ibrahim AA, Abdel-Rahman HM. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents. Bioorg Chem 2021; 111:104841. [PMID: 33798851 DOI: 10.1016/j.bioorg.2021.104841] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
Novel 5-amino-1,2,4-triazole derivatives and their cyclized 1,2,4-triazolo[1,5-a]pyrimidine analogues were designed, synthesized and evaluated for their antimicrobial activities. They were tested against five bacterial strains (Methicillin Resistant S. aureus (MRSA), E. coli, K. pneumoniae, A. baumannii and P. aeruginosa) using ciprofloxacin as a positive control and against two fungal strains (C. albicans and C. neoformans) using fluconazole and amphotericin B as positive controls. Compounds 9, 13a and 13b showed high to moderate antifungal activities against candida albicans (MIC values = 4-32 µg/ml), with considerable safety profiles; where no cytotoxicity against human embryonic kidney or red blood cells were detected at concentrations up to 32 µg/mL. Furthermore, compound 9 showed significant inhibitory activity against lansterol 14α-demethylase (IC50 = 0.27 µM), compared to the reference drug fluconazole (IC50 = 0.25 µM). Molecular docking of compound 9 into the active site of the cytochrome P450 enzyme revealed comparable binding modes and docking scores to those of fluconazole. Finally, in silico ADME studies prediction and drug-like properties of these compounds revealed favorable oral bioavailability results.
Collapse
Affiliation(s)
- Noha H Amin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohamed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch, Egypt
| | - Ahmed A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hamdy M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
27
|
Das Mahapatra A, Choubey R, Datta B. Small Molecule Soluble Epoxide Hydrolase Inhibitors in Multitarget and Combination Therapies for Inflammation and Cancer. Molecules 2020; 25:molecules25235488. [PMID: 33255197 PMCID: PMC7727688 DOI: 10.3390/molecules25235488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
The enzyme soluble epoxide hydrolase (sEH) plays a central role in metabolism of bioactive lipid signaling molecules. The substrate-specific hydrolase activity of sEH converts epoxyeicosatrienoic acids (EETs) to less bioactive dihydroxyeicosatrienoic acids. EETs exhibit anti-inflammatory, analgesic, antihypertensive, cardio-protective and organ-protective properties. Accordingly, sEH inhibition is a promising therapeutic strategy for addressing a variety of diseases. In this review, we describe small molecule architectures that have been commonly deployed as sEH inhibitors with respect to angiogenesis, inflammation and cancer. We juxtapose commonly used synthetic scaffolds and natural products within the paradigm of a multitarget approach for addressing inflammation and inflammation induced carcinogenesis. Structural insights from the inhibitor complexes and novel strategies for development of sEH-based multitarget inhibitors are also presented. While sEH inhibition is likely to suppress inflammation-induced carcinogenesis, it can also lead to enhanced angiogenesis via increased EET concentrations. In this regard, sEH inhibitors in combination chemotherapy are described. Urea and amide-based architectures feature prominently across multitarget inhibition and combination chemotherapy applications of sEH inhibitors.
Collapse
Affiliation(s)
- Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Rinku Choubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Correspondence: ; Tel.: +079-2395-2073; Fax: +079-2397-2622
| |
Collapse
|