1
|
Sokolova AS, Okhina AA, Shtro AA, Klabukov AM, Galochkina AV, Nikolaeva YV, Petukhova GD, Yarovaya OI, Rogachev AD, Baev DS, Fatyanova AV, Tolstikova TG, Salakhutdinov NF. Biostability, in vivo antiviral activity against respiratory syncytial virus, and pharmacokinetic profiles of (-)-borneol esters. Eur J Pharmacol 2025; 996:177567. [PMID: 40189082 DOI: 10.1016/j.ejphar.2025.177567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infections, particularly in vulnerable populations such as infants and the elderly. In this study, we evaluated the metabolic stability, in vivo antiviral activity, and pharmacokinetic profiles of (-)-borneol esters, which were identified as potent RSV inhibitors through screening of a compound library. Two hit compounds, ST-2 and AS-645, caused a reduction in viral titers in RSV-infected mice. Intranasal administration of ST-2 proved more effective than oral one and showed enhanced antiviral activity and improved pharmacokinetic properties. Additionally, ST-2 manifested superior metabolic stability in human blood compared to murine and rat blood, suggesting that carboxylesterase activity is a key factor in the hydrolysis resistance. Given that carboxylesterase activity is higher in mouse blood than in human blood, this difference likely contributes to the observed stability of ST-2 in human blood. Molecular modeling confirmed the role of carboxylesterase in the hydrolysis of (-)-borneol esters. These findings suggest that ST-2 has potential for further development of drugs for RSV and other viral infections.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Akad. Lavrentiev Ave. 9, Novosibirsk, 630090, Russian Federation.
| | - Alina A Okhina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Akad. Lavrentiev Ave. 9, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russian Federation
| | - Anna A Shtro
- Smorodintsev Research Institute of Influenza, Prof. Popov Str. 15/17, Saint Petersburg, 197376, Russian Federation
| | - Artem M Klabukov
- Smorodintsev Research Institute of Influenza, Prof. Popov Str. 15/17, Saint Petersburg, 197376, Russian Federation
| | - Anastasia V Galochkina
- Smorodintsev Research Institute of Influenza, Prof. Popov Str. 15/17, Saint Petersburg, 197376, Russian Federation
| | - Yulia V Nikolaeva
- Smorodintsev Research Institute of Influenza, Prof. Popov Str. 15/17, Saint Petersburg, 197376, Russian Federation
| | - Galina D Petukhova
- Smorodintsev Research Institute of Influenza, Prof. Popov Str. 15/17, Saint Petersburg, 197376, Russian Federation
| | - Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Akad. Lavrentiev Ave. 9, Novosibirsk, 630090, Russian Federation
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Akad. Lavrentiev Ave. 9, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russian Federation
| | - Dmitriy S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Akad. Lavrentiev Ave. 9, Novosibirsk, 630090, Russian Federation; SRF SKIF, Koltsovo, Novosibirsk region, 630559, Russian Federation
| | - Alina V Fatyanova
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, 630090, Russian Federation
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Akad. Lavrentiev Ave. 9, Novosibirsk, 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Akad. Lavrentiev Ave. 9, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
2
|
Sokolova AS, Baev DS, Mordvinova ED, Yarovaya OI, Volkova NV, Shcherbakov DN, Okhina AA, Rogachev AD, Shnaider TA, Chvileva AS, Nikitina TV, Tolstikova TG, Salakhutdinov NF. (+)-fenchol and (-)-isopinocampheol derivatives targeting the entry process of filoviruses. Eur J Med Chem 2024; 275:116596. [PMID: 38889610 DOI: 10.1016/j.ejmech.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
The increasing frequency of filovirus outbreaks in African countries has led to a pressing need for the development of effective antifilovirus agents. In continuation of our previous research on the antifilovirus activity of monoterpenoid derivatives, we synthesized a series of (+)-fenchol and (-)-isopinocampheol derivatives by varying the type of heterocycle and linker length. Derivatives with an N-alkylpiperazine cycle proved to be the most potent antiviral compounds, with half-maximal inhibitory concentration (IC50) 1.4-20 μМ against Lenti-EboV-GP infection and 11.3-47 μМ against Lenti-MarV-GP infection. Mechanism-of-action experiments revealed that the compounds may exert their action by binding to surface glycoproteins (GPs). It was demonstrated that the binding of the synthesized compounds to the Marburg virus GP is less efficient as compared to the Ebola virus GP. Furthermore, it was shown that the compounds possess lysosomotropic properties. Thus, the antiviral activity may be due to dual effects. This study offers new antiviral agents that are worthy of further exploration.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation.
| | - Dmitriy S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation; SRF SKIF, Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Ekaterina D Mordvinova
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Natalia V Volkova
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Dmitriy N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Alina A Okhina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Tatiana A Shnaider
- Institute of Cytology and Genetics (ICG), SB RAS, Novosibirsk, 630090, Russian Federation
| | | | - Tatiana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russian Federation
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| |
Collapse
|
3
|
Sokolova AS, Yarovaya OI, Artyushin OI, Sharova EV, Baev DS, Mordvinova ED, Shcherbakov DN, Shnaider TA, Nikitina TV, Esaulkova IL, Ilyina PA, Zarubaev VV, Brel VK, Tolstikova TG, Salakhutdinov NF. Design, synthesis and antiviral evaluation of novel conjugates of the 1,7,7-trimethylbicyclo[2.2.1]heptane scaffold and saturated N-heterocycles via 1,2,3-triazole linker. Arch Pharm (Weinheim) 2024; 357:e2300549. [PMID: 38036303 DOI: 10.1002/ardp.202300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
A new series of heterocyclic derivatives with a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment was designed, synthesised and biologically evaluated. Synthesis of the target compounds was performed using the Cu(I) catalysed cycloaddition reaction. The key starting substances in the click reaction were an alkyne containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment and a series of azides with saturated nitrogen-containing heterocycles. Some of the derivatives were found to exhibit strong antiviral activity against Marburg and Ebola pseudotype viruses. Lysosomal trapping assays revealed the derivatives to possess lysosomotropic properties. The molecular modelling study demonstrated the binding affinity between the compounds investigated and the possible active site to be mainly due to hydrophobic interactions. Thus, combining a natural hydrophobic structural fragment and a lysosome-targetable heterocycle may be an effective strategy for designing antiviral agents.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Oleg I Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena V Sharova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitriy S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, Koltsovo, Russian Federation
| | - Ekaterina D Mordvinova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russian Federation
| | - Dmitriy N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russian Federation
| | - Tatiana A Shnaider
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Tatiana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Iana L Esaulkova
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Polina A Ilyina
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Valery K Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
4
|
da Rocha JM, Campos DMDO, Esmaile SC, Menezes GDL, Bezerra KS, da Silva RA, Junior EDDS, Tayyeb JZ, Akash S, Fulco UL, Alqahtani T, Oliveira JIN. Quantum biochemical analysis of the binding interactions between a potential inhibitory drug and the Ebola viral glycoprotein. J Biomol Struct Dyn 2024:1-17. [PMID: 38258414 DOI: 10.1080/07391102.2024.2305314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Ebola virus disease (EVD) causes outbreaks and epidemics in West Africa that persist until today. The envelope glycoprotein of Ebola virus (GP) consists of two subunits, GP1 and GP2, and plays a key role in anchoring or fusing the virus to the host cell in its active form on the virion surface. Toremifene (TOR) is a ligand that mainly acts as an estrogen receptor antagonist; however, a recent study showed a strong and efficient interaction with GP. In this context, we aimed to evaluate the energetic affinity features involved in the interaction between GP and toremifene by computer simulation techniques using the Molecular Fractionation Method with Conjugate Caps (MFCC) scheme and quantum-mechanical (QM) calculations, as well as missense mutations to assess protein stability. We identified ASP522, GLU100, TYR517, THR519, LEU186, LEU515 as the most attractive residues in the EBOV glycoprotein structure that form the binding pocket. We divided toremifene into three regions and evaluated that region i was more important than region iii and region ii for the formation of the TOR-GP1/GP2 complex, which might control the molecular remodeling process of TOR. The mutations that caused more destabilization were ARG134, LEU515, TYR517 and ARG559, while those that caused stabilization were GLU523 and ASP522. TYR517 is a critical residue for the binding of TOR, and is highly conserved among EBOV species. Our results may help to elucidate the mechanism of drug action on the GP protein of the Ebola virus and subsequently develop new pharmacological approaches against EVD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jaerdyson M da Rocha
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daniel M de O Campos
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Stephany C Esmaile
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Gabriela de L Menezes
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Katyanna S Bezerra
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Roosevelt A da Silva
- Core Collaboratives of BioSistemas, Special Unit of Exact Sciences, Federal University of Jataí, Jataí, GO, Brazil
| | - Edilson D da S Junior
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Jehad Zuhair Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, Bangladesh
| | - Umberto L Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Jonas I N Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
5
|
Shchegravina ES, Usova SD, Baev DS, Mozhaitsev ES, Shcherbakov DN, Belenkaya SV, Volosnikova EA, Chirkova VY, Sharlaeva EA, Svirshchevskaya EV, Fonareva IP, Sitdikova AR, Salakhutdinov NF, Yarovaya OI, Fedorov AY. Synthesis of conjugates of (a R,7 S)-colchicine with monoterpenoids and investigation of their biological activity. Russ Chem Bull 2023; 72:248-262. [PMID: 36817557 PMCID: PMC9926439 DOI: 10.1007/s11172-023-3730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/16/2023]
Abstract
Conjugates of the natural alkaloid (aR,7S)-colchicine with bicyclic monoterpenoids and their derivatives were synthesized for the first time. Molecular docking of the synthesized agents in the active site of the main viral protease of the SARS-CoV-2 virus was carried out. The cytotoxic properties of the agents against different cell lines and the ability to inhibit the main viral protease 3CLPro were studied.
Collapse
Affiliation(s)
- E. S. Shchegravina
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - S. D. Usova
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - D. S. Baev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - E. S. Mozhaitsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - D. N. Shcherbakov
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
| | - S. V. Belenkaya
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
- Novosibirsk State University, 1 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - E. A. Volosnikova
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
| | - V. Yu. Chirkova
- Altai State University, 61 Leninsky prosp., 656049 Barnaul, Russian Federation
| | - E. A. Sharlaeva
- Altai State University, 61 Leninsky prosp., 656049 Barnaul, Russian Federation
| | - E. V. Svirshchevskaya
- Department of Immunology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 ul. Miklukho-Maklaya, 117997 Moscow, Russian Federation
| | - I. P. Fonareva
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - A. R. Sitdikova
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - N. F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - O. I. Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. Yu. Fedorov
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| |
Collapse
|
6
|
Yarovaya OI, Baranova DV, Sokolova AS, Nemolochnova AG, Sal’nikova OP, Fat’anova AV, Rogachev AD, Volobueva AS, Zarubaev VV, Pokrovsky AG, Salakhutdinov NF. Synthesis of N-heterocyclic amides based on (+)-camphoric acid and study of their antiviral activity and pharmacokinetics. Russ Chem Bull 2023; 72:807-818. [PMID: 37089866 PMCID: PMC10105540 DOI: 10.1007/s11172-023-3845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 04/25/2023]
Abstract
Efficient conditions for the synthesis of nitrogen-containing heterocyclic derivatives of (1R,3S)(+)-camphoric acid were selected. A series of heterocyclic compounds based on (+)-camphoric acid bearing pharmacophoric fragments was synthesized using the developed methodology. The compounds were tested for their antiviral activity against SARS-CoV-2 and H1N1 influenza viruses, and efficient inhibitors were identified that are of significant interest for further studies. The stability of the compounds and pharmaco-kinetics of the leader compound were studied when administered intragastrically and intramuscularly to mice at a dose of 200 mg kg-1 using the HPLC-MS/MS method.
Collapse
Affiliation(s)
- O. I. Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - D. V. Baranova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. S. Sokolova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. G. Nemolochnova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - O. P. Sal’nikova
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. V. Fat’anova
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. D. Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. S. Volobueva
- Pasteur Institute of Epidemiology and Microbiology, 14 ul. Mira, 197101 St. Petersburg, Russian Federation
| | - V. V. Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 ul. Mira, 197101 St. Petersburg, Russian Federation
| | - A. G. Pokrovsky
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - N. F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| |
Collapse
|
7
|
Filimonov AS, Yarovaya OI, Zaykovskaya AV, Rudometova NB, Shcherbakov DN, Chirkova VY, Baev DS, Borisevich SS, Luzina OA, Pyankov OV, Maksyutov RA, Salakhutdinov NF. (+)-Usnic Acid and Its Derivatives as Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022; 14:2154. [PMID: 36298709 PMCID: PMC9611092 DOI: 10.3390/v14102154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2023] Open
Abstract
In order to test the antiviral activity, a series of usnic acid derivatives were synthesized, including new, previously undescribed compounds. The activity of the derivatives against three strains of SARS-CoV-2 virus was studied. To understand the mechanism of antiviral action, the inhibitory activity of the main protease of SARS-CoV-2 virus was studied using the developed model as well as the antiviral activity against the pseudoviral system with glycoprotein S of SARS-CoV-2 virus on its surface. It was shown that usnic acid exhibits activity against three strains of SARS-CoV-2 virus: Wuhan, Delta, and Omicron. Compounds 10 and 13 also showed high activity against the three strains. The performed biological studies and molecular modeling allowed us to assume that the derivatives of usnic acid bind in the N-terminal domain of the surface glycoprotein S at the binding site of the hemoglobin decay metabolite.
Collapse
Affiliation(s)
- Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nadezda B. Rudometova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Varvara Yu. Chirkova
- Department of Physical-Chemistry Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia
| | - Dmitry S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Oreshko VV, Kovaleva KS, Mordvinova ED, Yarovaya OI, Gatilov YV, Shcherbakov DN, Bormotov NI, Serova OA, Shishkina LN, Salakhutdinov NF. Synthesis and Antiviral Properties of Camphor-Derived Iminothiazolidine-4-Ones and 2,3-Dihydrothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154761. [PMID: 35897931 PMCID: PMC9331314 DOI: 10.3390/molecules27154761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
A set of heterocyclic products was synthesized from natural (+)-camphor and semi-synthetic (−)-camphor. Then, 2-Imino-4-thiazolidinones and 2,3-dihydrothiazoles were obtained using a three-step procedure. For the synthesized compounds, their antiviral activity against the vaccinia virus and Marburg virus was studied. New promising agents active against both viruses were found among the tested compounds.
Collapse
Affiliation(s)
- Vladislav V. Oreshko
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
| | - Kseniya S. Kovaleva
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| | - Ekaterina D. Mordvinova
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +7-383-330-88-70
| | - Yuri V. Gatilov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Nikolai I. Bormotov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Olga A. Serova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Larisa N. Shishkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| |
Collapse
|
9
|
Han S, Li H, Chen W, Yang L, Tong X, Zuo J, Hu Y. Discovery of potent ebola entry inhibitors with (3S,4aS,8aS)-2-(3-amino-2-hydroxypropyl) decahydroisoquinoline-3-carboxamide scaffold. Eur J Med Chem 2022; 240:114608. [PMID: 35872393 DOI: 10.1016/j.ejmech.2022.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/15/2022]
Abstract
Ebola virus (EBOV), one member of the family Filoviridae, can causes hemorrhagic fever and other severe diseases in humans with a high mortality rate (25-90%). Until recently, there were no approved drugs and very limited treatment method for Ebola virus disease. In this study, we discovered a series of potent Ebola entry inhibitors with the (3S,4aS,8aS)-2-(3-amino-2-hydroxypropyl)decahydroisoquinoline-3-carboxamide scaffold from high-throughput screening in reported pseudotyped virus system. Further optimization resulted a most potent compound 28 (IC50= 0.05 μM, SI = 98), which displayed 3-fold potency compared to the known inhibitor Toremifene (IC50= 0.17 μM, SI = 55). Moreover, compound 28 exhibited the remarkable selectivity between EBOV-GP and VSV-G (Spec. Index = 58), thus could exclude nonspecific effects. Structure-activity relationship and molecular docking analysis of the new chemical scaffold provided more information on the binding modes and the spare volume at the binding cavity, thus can guide the design of the further potent compounds.
Collapse
Affiliation(s)
- Sheng Han
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Heng Li
- Immunological Disease Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixiong Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Yang
- Immunological Disease Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiankun Tong
- Immunological Disease Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jianping Zuo
- Immunological Disease Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Youhong Hu
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, 1 Xiangshanzhi Road, Hangzhou, 310024, China.
| |
Collapse
|
10
|
Yarovaya OI, Shcherbakov DN, Borisevich SS, Sokolova AS, Gureev MA, Khamitov EM, Rudometova NB, Zybkina AV, Mordvinova ED, Zaykovskaya AV, Rogachev AD, Pyankov OV, Maksyutov RA, Salakhutdinov NF. Borneol Ester Derivatives as Entry Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022; 14:v14061295. [PMID: 35746766 PMCID: PMC9228966 DOI: 10.3390/v14061295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
In the present work we studied the antiviral activity of the home library of monoterpenoid derivatives using the pseudoviral systems of our development, which have glycoproteins of the SARS-CoV-2 virus strains Wuhan and Delta on their surface. We found that borneol derivatives with a tertiary nitrogen atom can exhibit activity at the early stages of viral replication. In order to search for potential binding sites of ligands with glycoprotein, we carried out additional biological tests to study the inhibition of the re-receptor-binding domain of protein S. For the compounds that showed activity on the pseudoviral system, a study using three strains of the infectious SARS-CoV-2 virus was carried out. As a result, two leader compounds were found that showed activity on the Wuhan, Delta, and Omicron strains. Based on the biological results, we searched for the potential binding site of the leader compounds using molecular dynamics and molecular docking methods. We suggested that the compounds can bind in conserved regions of the central helices and/or heptad repeats of glycoprotein S of SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave., 9, 630090 Novosibirsk, Russia; (A.S.S.); (E.D.M.); (A.D.R.); (N.F.S.)
- Correspondence:
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.B.R.); (A.V.Z.); (A.V.Z.); (O.V.P.); (R.A.M.)
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics Ufa Institute of Chemistry, Ufa Federal Research Center, RAS, Octyabrya pr., 71, 450054 Ufa, Russia; (S.S.B.); (E.M.K.)
| | - Anastasiya S. Sokolova
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave., 9, 630090 Novosibirsk, Russia; (A.S.S.); (E.D.M.); (A.D.R.); (N.F.S.)
| | - Maxim A. Gureev
- Research Center “Digital Biodesign and Personalized Healthcare”, I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8/2, 119991 Moscow, Russia;
- Department of Computational Biology, Sirius University of Science and Technology, Olympic Ave., 1, 354340 Sochi, Russia
| | - Edward M. Khamitov
- Laboratory of Chemical Physics Ufa Institute of Chemistry, Ufa Federal Research Center, RAS, Octyabrya pr., 71, 450054 Ufa, Russia; (S.S.B.); (E.M.K.)
| | - Nadezda B. Rudometova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.B.R.); (A.V.Z.); (A.V.Z.); (O.V.P.); (R.A.M.)
| | - Anastasiya V. Zybkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.B.R.); (A.V.Z.); (A.V.Z.); (O.V.P.); (R.A.M.)
| | - Ekaterina D. Mordvinova
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave., 9, 630090 Novosibirsk, Russia; (A.S.S.); (E.D.M.); (A.D.R.); (N.F.S.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.B.R.); (A.V.Z.); (A.V.Z.); (O.V.P.); (R.A.M.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.B.R.); (A.V.Z.); (A.V.Z.); (O.V.P.); (R.A.M.)
| | - Artem D. Rogachev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave., 9, 630090 Novosibirsk, Russia; (A.S.S.); (E.D.M.); (A.D.R.); (N.F.S.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.B.R.); (A.V.Z.); (A.V.Z.); (O.V.P.); (R.A.M.)
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.B.R.); (A.V.Z.); (A.V.Z.); (O.V.P.); (R.A.M.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrentiev ave., 9, 630090 Novosibirsk, Russia; (A.S.S.); (E.D.M.); (A.D.R.); (N.F.S.)
| |
Collapse
|
11
|
Synthesis and evaluation of the antioxidant properties for some novel aminomethyl derivatives of 2,6-diisobornylphenol bearing a pinane moiety. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Discovery of New Ginsenol-Like Compounds with High Antiviral Activity. Molecules 2021; 26:molecules26226794. [PMID: 34833886 PMCID: PMC8619001 DOI: 10.3390/molecules26226794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
A number of framework amides with a ginsenol backbone have been synthesized using the Ritter reaction. We named the acetamide as Ginsamide. A method was developed for the synthesis of the corresponding amine and thioacetamide. The new compounds revealed a high activity against H1N1 influenza, which was confirmed using an animal model. Biological experiments were performed to determine the mechanism of action of the new agents, a ginsamide-resistant strain of influenza virus was obtained, and the pathogenicity of the resistant strain and the control strain was studied. It was shown that the emergence of resistance to Ginsamide was accompanied by a reduction in the pathogenicity of the influenza virus.
Collapse
|
13
|
Yarovaya OI, Kovaleva KS, Zaykovskaya AA, Yashina LN, Scherbakova NS, Scherbakov DN, Borisevich SS, Zubkov FI, Antonova AS, Peshkov RY, Eltsov IV, Pyankov OV, Maksyutov RA, Salakhutdinov NF. New class of hantaan virus inhibitors based on conjugation of the isoindole fragment to (+)-camphor or (-)-fenchone hydrazonesv. Bioorg Med Chem Lett 2021; 40:127926. [PMID: 33705902 DOI: 10.1016/j.bmcl.2021.127926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 11/20/2022]
Abstract
This work presents the design and synthesis of camphor, fenchone, and norcamphor N-acylhydrazone derivatives as a new class of inhibitors of the Hantaan virus, which causes haemorrhagic fever with renal syndrome (HFRS). A cytopathic model was developed for testing chemotherapeutics against the Hantaan virus, strain 76-118. In addition, a study of the antiviral activity was carried out using a pseudoviral system. It was found that the hit compound possesses significant activity (IC50 = 7.6 ± 2 µM) along with low toxicity (CC50 > 1000 µM). Using molecular docking procedures, the binding with Hantavirus nucleoprotein was evaluated and the correlation between the structure of the synthesised compounds and the antiviral activity was established.
Collapse
Affiliation(s)
- Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| | - Kseniya S Kovaleva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| | - Anna A Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Liudmila N Yashina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Nadezda S Scherbakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Dmitry N Scherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry, Ufa Federal Research Center, RAS, Octyabrya pr., 71, Ufa 450054, Russia
| | - Fedor I Zubkov
- Organic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Alexandra S Antonova
- Organic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Roman Yu Peshkov
- Novosibirsk State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Ilia V Eltsov
- Novosibirsk State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| |
Collapse
|
14
|
Quaternary ammonium salts based on (-)-borneol as effective inhibitors of influenza virus. Arch Virol 2021; 166:1965-1976. [PMID: 33983502 PMCID: PMC8116641 DOI: 10.1007/s00705-021-05102-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/27/2021] [Indexed: 01/25/2023]
Abstract
A series of compounds containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment were evaluated for their antiviral activity against influenza A virus strain A/Puerto Rico/8/34 (H1N1) in vitro. The most potent antiviral compound proved to be a quaternary ammonium salt based on (-)-borneol, 10a. In in vitro experiments, compound 10a inhibited influenza A viruses (H1, H1pdm09, and H3 subtypes), with an IC50 value of 2.4-16.8 µM (depending on the virus), and demonstrated low toxicity (CC50 = 1311 µM). Mechanism-of-action studies for compound 10a revealed it to be most effective when added at the early stages of the viral life cycle. In direct haemolysis inhibition tests, compound 10a was shown to decrease the membrane-disrupting activity of influenza A virus strain A/Puerto Rico/8/34. According to molecular modelling results, the lead compound 10a can bind to different sites in the stem region of the viral hemagglutinin.
Collapse
|
15
|
Synthesis and Antiviral Activity of N-Heterocyclic Hydrazine Derivatives of Camphor and Fenchone. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02923-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Sokolova AS, Putilova VP, Yarovaya OI, Zybkina AV, Mordvinova ED, Zaykovskaya AV, Shcherbakov DN, Orshanskaya IR, Sinegubova EO, Esaulkova IL, Borisevich SS, Bormotov NI, Shishkina LN, Zarubaev VV, Pyankov OV, Maksyutov RA, Salakhutdinov NF. Synthesis and Antiviral Activity of Camphene Derivatives against Different Types of Viruses. Molecules 2021; 26:2235. [PMID: 33924393 PMCID: PMC8070564 DOI: 10.3390/molecules26082235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus. The lead-compound 2a, with pyrrolidine cycle in its structure, displayed antiviral activity against influenza virus (IC50 = 45.3 µM), Ebola pseudotype viruses (IC50 = 0.12 µM), and authentic EBOV (IC50 = 18.3 µM), as well as against pseudoviruses with Hantaan virus Gn-Gc glycoprotein (IC50 = 9.1 µM). The results of antiviral activity studies using pseudotype viruses and molecular modeling suggest that surface proteins of the viruses required for the fusion process between viral and cellular membranes are the likely target of compound 2a. The key structural fragments responsible for efficient binding are the bicyclic natural framework and the nitrogen atom. These data encourage us to conduct further investigations using bicyclic monoterpenoids as a scaffold for the rational design of membrane-fusion targeting inhibitors.
Collapse
Affiliation(s)
- Anastasiya S. Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
| | - Valentina P. Putilova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
| | - Olga I. Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
| | - Anastasiya V. Zybkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Ekaterina D. Mordvinova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Iana R. Orshanskaya
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101 St. Petersburg, Russia; (I.R.O.); (E.O.S.); (I.L.E.); (V.V.Z.)
| | - Ekaterina O. Sinegubova
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101 St. Petersburg, Russia; (I.R.O.); (E.O.S.); (I.L.E.); (V.V.Z.)
| | - Iana L. Esaulkova
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101 St. Petersburg, Russia; (I.R.O.); (E.O.S.); (I.L.E.); (V.V.Z.)
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 71 Pr. Oktyabrya, 450078 Ufa, Russia;
| | - Nikolay I. Bormotov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Larisa N. Shishkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Vladimir V. Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira str., 197101 St. Petersburg, Russia; (I.R.O.); (E.O.S.); (I.L.E.); (V.V.Z.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Novosibirsk, Russia; (A.V.Z.); (A.V.Z.); (D.N.S.); (N.I.B.); (L.N.S.); (O.V.P.); (R.A.M.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent’ev av., 9, 630090 Novosibirsk, Russia; (V.P.P.); (O.I.Y.); (E.D.M.); (N.F.S.)
| |
Collapse
|
17
|
Rogachev AD, Putilova VP, Zaykovskaya AV, Yarovaya OI, Sokolova AS, Fomenko VV, Pyankov OV, Maksyutov RA, Pokrovsky AG, Salakhutdinov NF. Biostability study, quantitation method and preliminary pharmacokinetics of a new antifilovirus agent based on borneol and 3-(piperidin-1-yl)propanoic acid. J Pharm Biomed Anal 2021; 199:114062. [PMID: 33862506 DOI: 10.1016/j.jpba.2021.114062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
The stability of the new antifiloviral agent AS-358, which is a derivative of borneol and 3-(piperidin-1-yl)propanoic acid, was studied in the blood and blood plasma of rats in vitro. It was found that both in the blood and in the plasma stabilized by EDTA or heparin, the compound is rapidly hydrolyzed at the ester bond. When sodium fluoride was added to the whole blood, the decomposition of the compound was significantly slowed down, which made it possible to develop and validate a method for the quantitative determination of the agent in this matrix. The method was validated in terms of selectivity, calibration dependence, LLOQ, accuracy and precision, stability in an autosampler, recovery, and carry-over. A 8:2 v/v mixture of methanol containing 2-adamantylamine hydrochloride (internal standard, IS) with 0.2 M aqueous zinc sulfate was used for blood sample treatment and protein precipitation. Analysis was performed by HPLC-MS/MS using reversed phase chromatography. MS/MS detection was performed on a triple quadrupole mass spectrometer 6500 QTRAP (SCIEX) in multiple reaction monitoring (MRM) mode. The transitions 294.5→158.2/98.1 and 152.2→107.2/93.1 were monitored for AS-358 and the IS, respectively. The calibration curve was built in the concentration range of 1-500 ng/mL, the intra-day and inter-day accuracy and precision, carry-over and recovery were within the acceptable limits. The developed method was used for a preliminary study of the pharmacokinetics of the agent AS-358 after its oral administration to rats. It was shown that when the substance was administered at a dose of 200 mg/kg, its concentration in the blood of animals reached 550 ng/mL after 1 h, despite its instability in blood.
Collapse
Affiliation(s)
- Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia.
| | - Valentina P Putilova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia
| | - Anna V Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Novosibirsk region, Russia
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia
| | - Anastasiya S Sokolova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia
| | - Vladislav V Fomenko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Novosibirsk region, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Novosibirsk region, Russia
| | - Andrey G Pokrovsky
- Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia
| |
Collapse
|
18
|
Sokolova AS, Kovaleva KS, Yarovaya OI, Bormotov NI, Shishkina LN, Serova OA, Sergeev AA, Agafonov AP, Maksuytov RA, Salakhutdinov NF. (+)-Camphor and (-)-borneol derivatives as potential anti-orthopoxvirus agents. Arch Pharm (Weinheim) 2021; 354:e2100038. [PMID: 33605479 DOI: 10.1002/ardp.202100038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 11/11/2022]
Abstract
Although the World Health Organisation had announced that smallpox was eradicated over 40 years ago, the disease and other related pathogenic poxviruses such as monkeypox remain potential bioterrorist weapons and could also re-emerge as natural infections. We have previously reported (+)-camphor and (-)-borneol derivatives with an antiviral activity against the vaccinia virus. This virus is similar to the variola virus (VARV), the causative agent of smallpox, but can be studied at BSL-2 facilities. In the present study, we evaluated the antiviral activity of the most potent compounds against VARV, cowpox virus, and ectromelia virus (ECTV). Among the compounds tested, 4-bromo-N'-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)benzohydrazide 18 is the most effective compound against various orthopoxviruses, including VARV, with an EC50 value of 13.9 μM and a selectivity index of 206. Also, (+)-camphor thiosemicarbazone 9 was found to be active against VARV and ECTV.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Kseniya S Kovaleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nikolay I Bormotov
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Larisa N Shishkina
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Olga A Serova
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Alexander A Sergeev
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Alexander P Agafonov
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Rinat A Maksuytov
- State Research Centre of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|