1
|
Jin S, Kumar S, Kim MH. Structure-Based QSAR Modeling of RET Kinase Inhibitors from 49 Different 5,6-Fused Bicyclic Heteroaromatic Cores to Patent-Driven Validation. ACS OMEGA 2024; 9:49662-49673. [PMID: 39713648 PMCID: PMC11656239 DOI: 10.1021/acsomega.4c07843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024]
Abstract
RET receptor tyrosine kinase is crucial for nerve and tissue development but can be an important oncogenic driver. This study focuses on exploring the design principles of potent RET inhibitors through molecular docking and 3D-QSAR modeling of 5,6-fused bicyclic heteroaromatic derivatives. First of all, RET inhibitors of 49 different bicyclic substructures were collected from five different data sources and selected through molecular docking simulations. QSAR models were built from the 3399 conformers of 952 RET inhibitors using the partial least-squares method and statistically evaluated. The optimal QSAR model exhibited high predictive performance, with R 2 (of training data) and Q 2 (of test data) values of 0.801 and 0.794, respectively, effectively predicting known inhibitors. The optimal model was doubly verified by patent-filed RET inhibitors as the out-of-set data to demonstrate acceptable residual analysis results. Moreover, feature importance analysis of the QSAR model outlined the impact of substituent characteristics on the inhibitory activity within the 5,6-fused bicyclic heteroaromatic core structures. Furthermore, the relationship between structure and inhibitory activity was successfully applied to the RET screening of known clinical and nonclinical kinase inhibitors to afford accurate off-target prediction.
Collapse
Affiliation(s)
- Sumin Jin
- College
of Pharmacy, Gachon University, Medical Campus, Pharmacy, Hambakmoero
191, Yeonsu-gu, Incheon City 21936, Republic of Korea
| | - Surendra Kumar
- College
of Pharmacy, Gachon University, Medical Campus, Pharmacy, Hambakmoero
191, Yeonsu-gu, Incheon City 21936, Republic of Korea
| | - Mi-hyun Kim
- College
of Pharmacy, Gachon University, Medical Campus, Pharmacy, Hambakmoero
191, Yeonsu-gu, Incheon City 21936, Republic of Korea
- Gachon
Institute of Pharmaceutical Sciences, Hambakmoero 191, Yeonsu-gu, Incheon 21936, Republic
of Korea
| |
Collapse
|
2
|
Wu J, Mo H, An Z, Tang Z, Deng X, Zhou H, Gong Y, Zheng C, Zhuo L, Tan S. Discovery of 7-(1-methyl-1H-pyrazol-4-yl)-1,6-naphthyridine derivatives as potent inhibitors of rearranged during transfection (RET) and RET solvent-front mutants for overcoming selpercatinib resistance. Eur J Med Chem 2024; 279:116891. [PMID: 39316846 DOI: 10.1016/j.ejmech.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Rearranged during transfection kinase (RET) inhibition has been considered a promising therapeutic approach for treatment of a variety of cancers. However, the clinical therapeutic benefits of the second-generation RET inhibitor selpercatinib are greatly compromised by acquired resistance mediated by solvent-front mutations (e.g., RETG810 R/S/C). Herein, we report a class of 7-(1-methyl-1H-pyrazol-4-yl)-1,6-naphthyridine derivatives as potent RET and RET solvent-front mutant inhibitors for overcoming selpercatinib resistance. The representative compound 20p exhibited excellent in vitro inhibitory activities against solvent-front mutations (RETG810R, RETG810S, and RETG810C) with low nanomolar range (IC50 of 5.7-8.3 nM), which was 15-29-fold more potent than selpercatinib (IC50 of 95.3-244.1 nM). Additionally, 20p exhibited acceptable pharmacokinetic properties with oral bioavailability of 30.4 %. Importantly, 20p exhibited highly impressive antitumor potency in both a Ba/F3-KIF5B-RETWT-derived xenograft mouse model and a selpercatinib-resistant Ba/F3-KIF5B-RETG810R-positive mutant xenograft mouse model. Overall, 20p represents a novel and promising drug lead for overcoming RET solvent-front mutation-based resistance to selpercatinib.
Collapse
Affiliation(s)
- Junbo Wu
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Hanxuan Mo
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhigang An
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zishu Tang
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinyu Deng
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huifang Zhou
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China
| | - Yi Gong
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, 430079, China
| | - Chenggong Zheng
- Pulmonary Hospital, Changsha Central Hospital, Changsha, Hunan, 410004, China
| | - Linsheng Zhuo
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Shuguang Tan
- Department of Colorectal Surgery, Affiliated Hengyang Hospital of Hunan Normal University & Hengyang Central Hospital, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Xu Z, Wang L, Hu H. Current scenario of fused pyrimidines with in vivo anticancer therapeutic potential. Arch Pharm (Weinheim) 2024; 357:e2400202. [PMID: 38752780 DOI: 10.1002/ardp.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/06/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and metastasis, is responsible for nearly one in six deaths and represents a severe threat to public health worldwide. Chemotherapy can substantially improve the quality of life and survival of patients with cancer, but anticancer chemotherapeutics are associated with a range of adverse effects. Moreover, almost all currently available anticancer chemotherapeutics could develop drug resistance over a period of time of application in cancer patients and ultimately lead to cancer relapse and death in 90% of patients, creating an urgent need to develop new anticancer agents. Fused pyrimidines trait the inextricable part of DNA and RNA and are vital in numerous biological processes. Fused pyrimidines can act on various biological cancer targets and have the potential to address drug resistance. In addition, more than 20 fused pyrimidines have already been approved for clinical treatment of different cancers and occupy a prominent place in the current therapeutic arsenal, revealing that fused pyrimidines are privileged scaffolds for the development of novel anticancer chemotherapeutics. The purpose of this review is to summarize the current scenario of fused pyrimidines with in vivo anticancer therapeutic potential along with their acute toxicity, metabolic profiles as well as pharmacokinetic properties, toxicity and mechanisms of action developed from 2020 to the present to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Li Wang
- Zhumadian Agriculture International Cooperation and Exchange Center, Zhumadian, Henan, People's Republic of China
| | - Hongyan Hu
- Zhumadian Aquatic Technology Promotion Station, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
4
|
Wang ZX, Li QQ, Cai J, Wu JZ, Wang JJ, Zhang MY, Wang QX, Tong ZJ, Yang J, Wei TH, Zhou Y, Dai WC, Ding N, Leng XJ, Sun SL, Xue X, Yu YC, Yang Y, Li NG, Shi ZH. Unraveling the Promise of RET Inhibitors in Precision Cancer Therapy by Targeting RET Mutations. J Med Chem 2024; 67:4346-4375. [PMID: 38484122 DOI: 10.1021/acs.jmedchem.3c02319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
5
|
Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother 2023; 169:115891. [PMID: 37979378 DOI: 10.1016/j.biopha.2023.115891] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Lung cancer accounts for a relatively high proportion of malignant tumors. As the most prevalent type of lung cancer, non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality. Presently, the arsenal of treatment strategies encompasses surgical resection, chemotherapy, targeted therapy and radiotherapy. However, despite these options, the prognosis remains distressingly poor with a low 5-year survival rate. Therefore, it is urgent to pursue a paradigm shift in treatment methodologies. In recent years, the advent of sophisticated biotechnologies and interdisciplinary integration has provided innovative approaches for the treatment of lung cancer. This article reviews the cutting-edge developments in the nano drug delivery system, molecular targeted treatment system, photothermal treatment strategy, and immunotherapy for lung cancer. Overall, by systematically summarizing and critically analyzing the latest progress and current challenges in these treatment strategies of lung cancer, we aim to provide a theoretical basis for the development of novel drugs for lung cancer treatment, and thus improve the therapeutic outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
6
|
Wu K, He R, Li Z, Qiu K, Xiao G, Peng L, Meng X, Zheng C, Zhang Z, Cai Q. Discovery of 3,5-diaryl-1H-pyrazol-based ureas as potent RET inhibitors. Eur J Med Chem 2023; 251:115237. [PMID: 36905915 DOI: 10.1016/j.ejmech.2023.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Rearranged during transfection (RET) is a promising target for antitumor drug development. Multikinase inhibitors (MKI) have been developed for RET-driven cancers but displayed limited efficacy in disease control. Two selective RET inhibitors were approved by FDA in 2020 and proved potent clinical efficacy. However, the discovery of novel RET inhibitors with high target selectivity and improved safety is still highly desirable. Herein, we reported a class of 3,5-diaryl-1H-pyrazol-based ureas as new RET inhibitors. The representative compounds 17a/b displayed high selectivity to other kinases, and potently inhibited isogenic BaF3-CCDC6-RET cells harboring wild-type, or gatekeeper mutation (V804M). They also displayed moderate potency against BaF3-CCDC6-RET-G810C with solvent-front mutation. Compound 17b showed better pharmacokinetics properties and demonstrated promising oral in vivo antitumor efficacy in a BaF3-CCDC6-RET-V804M xenograft model. It may be utilized as a new lead compound for further development.
Collapse
Affiliation(s)
- Kaifu Wu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Rui He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Kongxi Qiu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Guorong Xiao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Lijie Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Xiangbao Meng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Canhui Zheng
- School of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, 200433, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China; Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Structure-based discovery of 1-(3-fluoro-5-(5-(3-(methylsulfonyl)phenyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)phenyl)-3-(pyrimidin-5-yl)urea as a potent and selective nanomolar type-II PLK4 inhibitor. Eur J Med Chem 2022; 243:114714. [DOI: 10.1016/j.ejmech.2022.114714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023]
|
8
|
Zhang Y, Chan S, He R, Liu Y, Song X, Tu ZC, Ren X, Zhou Y, Zhang Z, Wang Z, Zhou F, Ding K. 1-Methyl-3-((4-(quinolin-4-yloxy)phenyl)amino)-1H-pyrazole-4-carboxamide derivatives as new rearranged during Transfection (RET) kinase inhibitors capable of suppressing resistant mutants in solvent-front regions. Eur J Med Chem 2022; 244:114862. [DOI: 10.1016/j.ejmech.2022.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022]
|
9
|
Design, synthesis and biological characteristics of pyrazolo[3,4- d]pyrimidine derivatives as potential VEGFR-2 inhibitors. Future Med Chem 2022; 14:1649-1662. [PMID: 36317642 DOI: 10.4155/fmc-2022-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Aim: Several VEGFR-2 inhibitors with the structure of [3,4-d]pyrimidine and based on sorafenib were designed and synthesized. Materials & methods: Cytotoxic activity was evaluated by MTT, wound healing and clone formation assays. Cell cycle and apoptosis were analyzed by flow cytometry. Molecular simulation and western blot were also applied. Results: Among them, II-1 significantly inhibited tumor cellular activity (IC50 = 5.90 ± 0.05 μM on HepG2 cells) compared with sorafenib (IC50 = 9.05 ± 0.54 μM on HepG2 cells). Molecular docking demonstrated that II-1 and sorafenib have the same hydrogen binding. Finally, the protein expression of phosphorylated VEGFR-2 was substantially reduced after II-1 treatment. Conclusion: Compound II-1 can inhibit VEFGR-2 activation and is an effective antitumor agent in liver cancer cells.
Collapse
|
10
|
Sun Y, Sun Y, Wang L, Wu T, Yin W, Wang J, Xue Y, Qin Q, Sun Y, Yang H, Zhao D, Cheng M. Design, synthesis, and biological evaluation of novel pyrazolo [3,4-d]pyrimidine derivatives as potent PLK4 inhibitors for the treatment of TRIM37-amplified breast cancer. Eur J Med Chem 2022; 238:114424. [DOI: 10.1016/j.ejmech.2022.114424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
|
11
|
Dorababu A. Pyrazolopyrimidines as attractive pharmacophores in efficient drug design: A recent update. Arch Pharm (Weinheim) 2022; 355:e2200154. [PMID: 35698212 DOI: 10.1002/ardp.202200154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Among the menacing diseases, cancer needs the most attention as millions of people are affected by it worldwide. Genetic and environmental factors play a pivotal role in causing cancer. Although a wide range of underlying mechanisms of cancer has been discovered, efficient treatments have not been discovered to date. Additionally, diseases caused by microbes such as viruses, bacteria, protozoa, and so forth, persistently result in several deaths. Also, inflammation is a major factor that leads to several health issues. For decades, drug design has become a major part of drug discovery and development for curing various diseases. Among the large number of pharmacological agents that have been synthesized, only very few have emerged as efficient drug molecules. Most of them are heterocyclic compounds, which are promising candidates for the design of efficient drug molecules. Furthermore, fused heterocycles showed comparatively stronger pharmacological activities than monocyclic heterocycles. The literature reveals that pyrazolopyrimidines have outstanding biological activity. Hence, here, the diverse pharmacological activities shown by pyrazolopyrimidine derivatives reported in the last 5 years are collated and reviewed systematically. This review is classified into various sections focusing on anticancer, antimicrobial, anti-inflammatory, and enzyme inhibitors. Structure-activity relationships are discussed in brief, which will help researchers design potent pharmacological agents.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|