1
|
Shaheen MA, Darwish KM, Kishk SM, El-Sayed MAA, Salama I. Development of 1,2,3-triazole hybrids as multi-faced anticancer agents co-targeting EGFR/mTOR pathway and tubulin depolymerization. Bioorg Chem 2025; 156:108153. [PMID: 39855112 DOI: 10.1016/j.bioorg.2025.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Novel 1,2,3-triazole hybrids bearing various substituents have been synthesized as potential anticancer agents. Ligand-based approach has been adopted to design these compounds relying on the hybridization of 1,2,3-triazole with α,β-unsaturated carbonyl, 5- and 6-membered heterocyclic scaffolds. All synthesized members were investigated for their cytotoxic potency against nine types comprising 60 panels of human cancerous cells by the US National Cancer Institute: Development Therapeutic Program (US_NCI_DTP). Among the tested members, 4b, 4e, and 4h showed prominent cytotoxic effects (> 80 % growth inhibition: GI) on a wide panel of tested cancer cell lines, mainly melanoma and colorectal cancer redeeming their selection for five dose testing. Presenting low nanomolar GI50 concentrations, two representative potent anticancer compounds 4b and 4e were subjected to cytotoxicity testing on colon normal cell (FHC) to investigate their safety window and they showed less toxicity to normal cells at the concentration required to produce anticancer effect. Furthermore, 4b and 4e were exposed to additional mechanistic studies in colorectal cancer cell HCT-116 suggesting multifaceted mechanisms of action. A study into the effects of cytotoxic chemicals 4b and 4e on cell cycle progression regulation showed triggered the arrest of cell cycles during the G1 and S phases. Moreover, 4b and 4e caused cell death mainly through apoptosis the thing that has been reinforced by the elevated Bax: Bcl2 ratio, as well as concentrations of caspases 3 and 9 within HCT-116. Further, both compounds showed prominent inhibition profiles against tubulin polymerization as well as EGFR catalytic activity reaching down to low-digit micromolar and sub-micromolar concentrations, respectively, as compared to positive reference controls. Compounds' impacts on gene expression of cancer-associated and EGFR-downstream signaling markers including TNFα, IL-6, and mTOR, were explored in HCT-116 highlighted significant downregulations versus the untreated cells. Docking studies demonstrated the specific fit of 4b and 4e into EGFR and the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Mennatallah A Shaheen
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, Egypt.
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, Galala University, New Galala 43511 Egypt.
| | - Safaa M Kishk
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt.
| | - Magda A-A El-Sayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Ismail Salama
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt.
| |
Collapse
|
2
|
Al-Karmalawy AA, Zeidan MA, Elmaaty AA, Sharaky M, Yassen ASA, Khaleel EF, Eldehna WM, Ashour HF. Design and synthesis of new 1,2,3-triazole derivatives as VEGFR-2/telomerase downregulatory candidates endowed with apoptotic potential for cancer treatment. Bioorg Chem 2025; 156:108159. [PMID: 39823817 DOI: 10.1016/j.bioorg.2025.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
In this current work, we dedicated efforts to designing and synthesizing new 1,2,3-triazole-analogues (5a-d), (6a-d), and (7a-c) to act as dual VEGFR-2 and telomerase inhibitors with promising apoptotic potential. The synthesized analogues were examined against eleven diverse types of cancer cells and two normal cells to assess their ability to inhibit cell growth (GI%). Obviously, compound 7b showed the best average GI% (75.69 %) surpassing the average GI% of Dox (65.79 %). Compound 5d showed the lowest IC50 values (25.86 and 51.91 µM) against HNO-97 and FaDu cancer cells, respectively. Besides, compound 5a exhibited the lowest IC50 value (15.46 µM) against HCT116, whereas compound 6b revealed the lowest IC50 value (31.14 µM) against HuH7. Besides, candidates 5a, 5b, 5d, and 7a showed prominent inhibitory results towards VEGFR-2 protein with decreasing its expression by 0.33, 0.42, 0.38 and 0.26-fold change, respectively. However, compounds 5a, 5b, 5d, and 7a showed promising inhibitory results towards telomerase protein and decreased its expression by 0.60, 0.50, 0.52, and 0.44-fold change, respectively. Additionally, it was clear that compound 5a was able to upregulate the expression of Caspases 3, 8, and 9 proteins by 2.19, 1.83, and 1.62-fold change, respectively. Besides, 5a was able to downregulate the expression of CDK-2, CDK-4, and CDK-6 proteins by 0.50, 0.43, and 0.13-fold change, respectively. Obviously, compound 5a halted the cell cycle at the G1, S, and G2-M phases in HCT116 cells. Subsequently, the synthesized 1,2,3-triazole analogues can be treated as lead VEGFR-2 and telomerase inhibitors with potential apoptotic activity for future optimization and cancer treatment.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad 10023, Iraq; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| | - Mohamed A Zeidan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt; Medicinal Chemistry Department, Clinical Pharmacy Program, East Port Said National University, Port Said 42526, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Asmaa S A Yassen
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt
| | - Heba F Ashour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt
| |
Collapse
|
3
|
Dolkar R, Paudwal G, Singh D, Behera C, Malik SB, Ali SM, Kaur H, Nargotra A, Shankar R, Singh SK, Gupta PN. Mechanistic Approach into 1,2,3-triazoles-based IIIM(S)-RS98 Mediated Apoptosis in Lung Cancer Cells. AAPS J 2025; 27:35. [PMID: 39900819 DOI: 10.1208/s12248-025-01018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025] Open
Abstract
Lung cancer is a major public health problem across the globe, since it is the second most frequent cancer and the leading cause of cancer fatalities. This necessitates careful assessment of current therapies for lung cancer and discovery of novel drug candidates. 1,2,3 triazole compounds have emerged as an important class of prospective chemotherapeutic drugs for the treatment of lung cancer, with promising anti-lung cancer activity shown via a variety of pathways. They may interact with a various enzymes and receptors in cancer cells, causing cell cycle arrest and the activation of apoptosis. The present study aims to investigate the cytotoxic potential of institutional molecule based on 1,2,3 triazole [IIIM(S)-RS98] on multiple cancer cell lines. The compound was found to be most active on A549 cells and displayed the selectivity index as 8.16 in normal cells (e.g. HEK293). The in vitro findings revealed that IIIM(S)-RS98 induced apoptosis, loss of mitochondrial membrane potential, enhanced ROS and nitric oxide levels, and arrest cells in the G1 phase of the cell cycle. It inhibits the cell migration and clonogenic potential of A549 cells. Additionally, the downregulation of PI3K and p-Akt pathway leads to the activation of pro-apoptotic proteins Bax, downregulation of bcl2, activation of caspase 9, cleaved caspase 3, and cleaved parp1 expression and finally contribute towards apoptosis. Furthermore, molecular docking analysis indicated the interactions of IIIM(S)-RS98 with the apoptotic target proteins. The results demonstrated the potential of IIIM(S)-RS98 in the therapy of lung cancer.
Collapse
Affiliation(s)
- Rigzin Dolkar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gourav Paudwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chittaranjan Behera
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sumera Banoo Malik
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Syed Mudassir Ali
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Harjot Kaur
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Amit Nargotra
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank K Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Zeidan MA, Ashour HF, Yassen ASA, Abo Elmaaty A, Farag AB, Sharaky M, Abdullah Alzahrani AY, Mughram MHA, Al-Karmalawy AA. Dual EGFR and telomerase inhibitory potential of new triazole tethered Schiff bases endowed with apoptosis: design, synthesis, and biological assessments. RSC Med Chem 2024:d4md00750f. [PMID: 39790121 PMCID: PMC11708207 DOI: 10.1039/d4md00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy via inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells. Based on the fact that multi-target design rationale can afford candidates with greater treatment effectiveness. Besides, it was evidenced that inhibition of human telomerase enhances the effect of some tyrosine kinase inhibitors. So, in the current work, we aimed to design and synthesize novel 1,2,3-triazole-tethered Schiff bases (5a-l) to act as dual EGFR and telomerase inhibitors. Growth inhibition (GI)% was conducted for the synthesized compounds using a panel of eleven cancer cell lines as well as two normal cell lines. Interestingly, compound 5e displayed the highest mean GI% (76.78%) among the investigated compounds surpassing the mean GI% of the reference drug doxorubicin (65.79%). In addition, compound 5g displayed notably the lowest IC50 values (13.31, 13.31, 12.62, and 31.19 μM) for the four utilized cancer cell lines HNO97, HCT116, A375, and HEPG2, respectively. Interestingly, the investigated compounds exhibited significant inhibitory potential to EGFR and telomerase protein expression; in particular, compound 5g recorded inhibitory potentials of 3.45 and 1.31 ng mL-1, respectively. Hence, protein expression of the apoptosis-related proteins was carried out for compound 5g. Pro-apoptotic proteins (caspases 3, 8, and 9) were upregulated by 1.35, 1.55, and 1.51-fold change, respectively. Meanwhile, the anti-apoptotic proteins (CDK-2, CDK-4, and CDK-6) were downregulated by 2.91, 2.01, and 9.15-fold change, respectively, ensuring the apoptotic potential of compound 5g. Accordingly, compound 5g was selected for further investigation of its effects on cell cycle progression in A375 cancer cells. Obviously, compound 5g prompted cell cycle arrest at the G0-G1 phase. Additionally, the investigated compounds showed eligible pharmacokinetic profiles with feasible oral bioavailability. Consequently, the synthesized compounds can be treated as lead multi-target anticancer ligands for future optimization.
Collapse
Affiliation(s)
- Mohamed A Zeidan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| | - Heba F Ashour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala New Galala 43713 Egypt
| | - Asmaa S A Yassen
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala New Galala 43713 Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42526 Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, East Port said National University Port Said 42526 Egypt
| | - Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
| | | | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
5
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Triazole hybrid compounds: A new frontier in malaria treatment. Eur J Med Chem 2023; 259:115694. [PMID: 37556947 DOI: 10.1016/j.ejmech.2023.115694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Reviewing the advancements in malaria treatment, the emergence of triazole hybrid compounds stands out as a groundbreaking development. Combining the advantages of triazole and other moieties, these hybrid compounds offer a new frontier in the battle against malaria. Their potential as effective antimalarial agents has captured the attention of researchers and holds promise for overcoming the challenges posed by drug-resistant malaria strains. We focused on their broad spectrum of antimalarial activity of diverse hybridized 1,2,3-triazoles and 1,2,4-triazoles, structure-activity relationship (SAR), drug-likeness, bioavailability and pharmacokinetic properties reported since 2018 targeting multiple stages of the Plasmodium life cycle. This versatility makes them highly effective against both drug-sensitive and drug-resistant strains of P. falciparum, making them invaluable tools in regions where resistance is prevalent. The synergistic effects of combining the triazole moiety with other pharmacophores have resulted in even greater antimalarial potency. This approach has the potential to circumvent existing resistance mechanisms and provide a more sustainable solution to malaria treatment. While triazole hybrid compounds show great promise, further research and clinical trials are warranted to fully evaluate their safety, efficacy and long-term effects. As research progresses, these compounds can potentially revolutionize the field and contribute to global efforts to eradicate malaria, ultimately saving countless lives worldwide.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
6
|
Akolkar SV, Shaikh MH, Bhalmode MK, Pawar PU, Sangshetti JN, Damale MG, Shingate BB. Click chemistry inspired syntheses of new amide linked 1,2,3-triazoles from naphthols: biological evaluation and in silico computational study. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [PMCID: PMC10062688 DOI: 10.1007/s11164-023-05008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
In search of new active molecules, a small focused library of new 1,2,3-triazoles derived from naphthols were efficiently prepared via the click chemistry approach. The synthesized triazole derivatives were evaluated for their antifungal, antioxidant and antitubercular activities. Furthermore, to rationalize the observed biological activity data, the molecular docking study has also been carried out against the active site of cytochrome P450 lanosterol 14α-demethylase of C. albicans to understand the binding affinity and binding interactions of enzyme and synthesized derivatives, which revealed a significant correlation between the binding score and biological activity for these compounds. The results of the in vitro and In Silico study suggest that the 1,2,3-triazole derivatives may possess the ideal structural requirements for the further development of novel therapeutic agents.
Collapse
Affiliation(s)
- Satish V. Akolkar
- grid.412084.b0000 0001 0700 1709Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004 India
| | - Mubarak H. Shaikh
- grid.412084.b0000 0001 0700 1709Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004 India
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, Maharashtra 414001 India
| | - Mininath K. Bhalmode
- grid.412084.b0000 0001 0700 1709Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004 India
| | - Prabhakar U. Pawar
- grid.417959.70000 0004 1764 2413Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra 411008 India
| | | | - Manoj G. Damale
- Department of Pharmaceutical Chemistry, Srinath College of Pharmacy, Aurangabad, Maharashtra 431136 India
| | - Bapurao B. Shingate
- grid.412084.b0000 0001 0700 1709Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004 India
| |
Collapse
|
7
|
Kumar G, Thapa S, Tali JA, Singh D, Sharma BK, Panda KN, Singh SK, Shankar R. Site-Selective Synthesis of C-17 Ester Derivatives of Natural Andrographolide for Evaluation as a Potential Anticancer Agent. ACS OMEGA 2023; 8:6099-6123. [PMID: 36816646 PMCID: PMC9933479 DOI: 10.1021/acsomega.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A library of 57 compounds of natural andrographolide was designed, synthesized, and screened for in vitro studies against four human cancer cell lines: A594, PC-3, MCF-7, and HCT-116. Most of the synthesized compounds displayed better cytotoxic profile against all tested cells compared to the parent andrographolide (1). The tested semisynthetic derivatives of andrographolide were found to be more sensitive toward lung carcinoma (A594) and prostate carcinoma (PC-3) cell lines. Among the synthesized compounds, the C-17 p-methoxy phenyl ester analog 8s inhibited cell proliferation effectively in A549 (IC50: 6.6 μM) and PC-3 (IC50: 5.9 μM) cell variants, and compound 9s exhibited the most potent activity against the A594 cell line, with an IC50 value of 3.5 μM. Further anticancer mechanistic investigation demonstrated that compound 9s displayed nuclear morphological changes and increased reactive oxygen species (ROS) with disturbed mitochondrial membrane potential (MMP) that can lead to apoptosis. To know the exact structure confirmation of intermediate compounds 4 and 5, single X-ray crystallography was performed, which supported the complete reaction design of this work.
Collapse
Affiliation(s)
- Gulshan Kumar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sonia Thapa
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Javeed Ahmad Tali
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Davinder Singh
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bhupesh Kumar Sharma
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Kamakshya Nath Panda
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand247667, India
| | - Shashank K. Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Ravi Shankar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
8
|
Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole 'all-in-one' ring system in drug discovery: a good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin Drug Discov 2022; 17:1209-1236. [PMID: 36164263 DOI: 10.1080/17460441.2022.2129613] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].
Collapse
Affiliation(s)
- Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Kübra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Khan A, Naaz F, Basit R, Das D, Bisht P, Shaikh M, Lone BA, Pokharel YR, Ahmed QN, Parveen S, Ali I, Singh SK, Chashoo G, Shafi S. 1,2,3-Triazole Tethered Hybrid Capsaicinoids as Antiproliferative Agents Active against Lung Cancer Cells (A549). ACS OMEGA 2022; 7:32078-32100. [PMID: 36119972 PMCID: PMC9476207 DOI: 10.1021/acsomega.2c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
A series of novel 1,2,3-triazole derivatives of capsaicin and its structural isomer (new natural product hybrid capsaicinoid) were synthesized by exploiting one-/two-point modification of capsaicin without altering the amide linkage (neck). The newly synthesized compounds were screened for their antiproliferative activity against an NCI panel of 60 cancer cell lines at a single dose of 10 μM. Most of the compounds have demonstrated reduced growth between 55 and 95%, whereas capsaicin (10) has shown reduced growth between 0 and 24%. Compounds showing more than 50% growth inhibition were further evaluated for the IC50 value. Among the cell lines tested, lung cancer cell lines (A549, NCI-H460) were found to be more susceptible toward most of the synthesized compounds. Compounds 14g and 14j demonstrated good antiproliferative activity in NCI-H460 with IC50 values of 6.65 and 5.55 μM, respectively, while compounds 18b, 18c, 18f, and 18m demonstrated potential antiproliferative activity in A549 cell lines with IC50 values ranging between 2.9 and 10.5 μM. Among the compounds, compound 18f was found to demonstrate the best activity with an IC50 value of 2.91 μM against A549. Furthermore, 18f induces cell cycle arrest at the S-phase and disrupts the mitochondrial membrane potential, reducing cell migration potential by inducing cellular apoptosis and higher ROS generation along with a decrease in mitochondrial membrane potential in addition to surface and nuclear morphological alterations such as a reduction in the number and shrinkage of cells coupled with nuclear blabbing indicating the sign of apoptosis of A549 non-small cell lung cancer cell lines. Compound 18f has emerged as a lead molecule and may serve as a template for further discovery of capsaicinoid scaffolds.
Collapse
Affiliation(s)
- Arif Khan
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Fatima Naaz
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Rafia Basit
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Deepak Das
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Piyush Bisht
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Majeed Shaikh
- Natural
product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Bilal Ahmad Lone
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Yuba Raj Pokharel
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Qazi Naveed Ahmed
- Natural
product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Shazia Parveen
- Faculty
of Science, Chemistry Department, Taibah
University, Yanbu Branch, Yanbu 46423, Saudi
Arabia
| | - Intzar Ali
- Department
of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shashank Kumar Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Gousia Chashoo
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Syed Shafi
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
10
|
Haider T, Soni V. “Response surface methodology and artificial neural network-based modeling and optimization of phosphatidylserine targeted nanocarriers for effective treatment of cancer: In vitro and in silico studies”. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Nisin and nisin-loaded nanoparticles: a cytotoxicity investigation. Drug Dev Ind Pharm 2022; 48:310-321. [PMID: 35938875 DOI: 10.1080/03639045.2022.2111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Nisin is an antibacterial peptide with anticancer properties, but the main drawback is its rapid enzymatic degradation and limited permeation across the cell membrane. This research aims to to overcome these drawbacks by developing nisin-loaded nanoparticles with improved cytotoxic effects. SIGNIFICANCE PLGA nanoparticles are one of the most effective biodegradable and biocompatible drug delivery carriers. In the present study, nisin-loaded nanoparticles showed enhanced anticancer effects. METHODS NPN was prepared by a double emulsion solvent evaporation method and characterized for different parameters. The cytotoxic investigation of NPN was carried out on various cell lines, including A549, SW-620, HT-29, PC-3, MDA-MB-231, MCF-7, MiaPaca-2, and fR2 by sulforhodamine B (SRB) assay. Mechanistic investigation of cellular cytotoxicity was performed by using bright-field microscopy, DAPI staining, intracellular reactive oxygen species (ROS), changes in mitochondrial membrane potential (ΔΨm), and western blotting. A comparative cytotoxicity study of nisin and NPN was performed on normal breast epithelial cells (fR-2). RESULTS NPN showed spherical shape, 289.09 ± 3.63 nm particle size, and 63.37 ± 3.12% entrapment efficiency. NPN was more cytotoxic to the MDA-MB-231 cell line, showing higher nuclear fragmentation, ROS generation, and depletion of ΔΨm like apoptosis signs compared to nisin and with no cytotoxicity on normal cells. CONCLUSIONS The findings suggest that nisin delivery via PLGA nanoparticles can be used to treat cancer without significant effects on healthy cells.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| | - Chittaranjan Behera
- Formulation & Drug Delivery Division CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, India-180001
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prem N Gupta
- Formulation & Drug Delivery Division CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, India-180001
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh, India-470003
| |
Collapse
|
12
|
Synthesis of 3-N-/O-/S-methyl-imidazo[1,2-a] pyridine derivatives for caspase-3 mediated apoptosis induced anticancer activity. Bioorg Chem 2022; 125:105882. [DOI: 10.1016/j.bioorg.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
|
13
|
Tumor micro-environment targeted collagenase-modified albumin nanoparticles for improved drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Liang JJ, Yu WL, Yang L, Xie BH, Qin KM, Yin YP, Yan JJ, Gong S, Liu TY, Zhou HB, Hong K. Design and synthesis of marine sesterterpene analogues as novel estrogen receptor α degraders for breast cancer treatment. Eur J Med Chem 2022; 229:114081. [PMID: 34992039 DOI: 10.1016/j.ejmech.2021.114081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Targeted protein degradation using small molecules is an intriguing strategy for drug development. The marine sesterterpene compound MHO7 had been reported to be a potential ERα degradation agent. In order to further improve its biological activity, two series of novel MHO7 derivatives with long side chains were designed and identified as novel selective estrogen receptor down-regulators (SERDs). The growth inhibition activity of the novel SERD compounds were significantly affected by the type and length of the side chain. Most of the derivatives were significantly more potent than MHO7 against both drug-sensitive and drug-resistant breast cancer cells. Among them, compound 16a, with IC50 values of 0.41 μM against MCF-7 cell lines and 9.6-fold stronger than MHO7, was the most potential molecule. A whole-genome transcriptomic analysis of MCF-7 cells revealed that the mechanism of 16a against MCF-7 cell was similar with that of MHO7. The estrogen signaling pathway was the most affected among the disturbed genes, but the ERα degradation activity of 16a was observed higher than that of MHO7. Other effects of 16a were confirmed similar with MHO7, which means that the basic mechanisms of the derivatives are the same with the ophiobolin backbone, i.e. the degradation of ERα is mediated via proteasome-mediated process, the induction of apoptosis and the cell cycle arrest at the G1 phase. Meanwhile, a decrease of mitochondrial membrane potential and an increase of cellular ROS were also detected. Based on these results, as a novel modified ophiobolin derived compound, 16a may warrant further exploitation as a promising SERD candidate agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jian-Jia Liang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Wu-Lin Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Liang Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Bao-Hua Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Kong-Ming Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yu-Ping Yin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jing-Jing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Shuang Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Ten-Yue Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Hai-Bing Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
15
|
Synthesis, Structure and Acetylcholinesterase Inhibition Activity of New Diarylpyrazoles. Bioorg Chem 2022; 121:105658. [DOI: 10.1016/j.bioorg.2022.105658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
|
16
|
Pingaew R, Choomuenwai V, Leechaisit R, Prachayasittikul V, Prachayasittikul S, Prachayasittikul V. 1,2,3-Triazole Scaffold in Recent Medicinal Applications: Synthesis and Anticancer Potentials. HETEROCYCLES 2022. [DOI: 10.3987/rev-22-sr(r)4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Kumar L, Lal K, Kumar A, Paul AK, Kumar A. Pyrazoline tethered 1,2,3-triazoles: Synthesis, antimicrobial evaluation and in silico studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Wang C, Li Q, Wang S, Zhu G, Zhu A, Li L. Copper-catalyzed in situ oxidative-coupling for one-pot synthesis of 5-aryl-1,4-disubstituted 1,2,3-triazoles under mild conditions. RSC Adv 2021; 11:38108-38114. [PMID: 35498067 PMCID: PMC9043963 DOI: 10.1039/d1ra06827j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022] Open
Abstract
A new reaction system with CuCl as catalyst, TEA as base and O2/chloramine-T as oxidant was developed for one-pot in situ oxidative-coupling to synthesize 5-aryl-1,4-disubstituted 1,2,3-triazoles in this paper. A variety of 5-arylated-1,2,3-triazole compounds could be efficiently prepared directly from the readily accessible organic azides, terminal alkynes and arylboronic acids. Advantages of the method include use of low-cost catalyst, clean oxidant, less-toxic additive, and low reaction temperature. Importantly, due to avoiding harsh strong basic reagents and high temperatures, the presented method can offer mild conditions for multi-component synthesis of 5-aryl-1,2,3-triazoles from the designed structurally complicated alkynyl or azide donors bearing natural product motifs and sensitive functional groups.
Collapse
Affiliation(s)
- Chao Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Qianqian Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Shilei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Gongming Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
19
|
Kumar G, Shankar R. 2-Isoxazolines: A Synthetic and Medicinal Overview. ChemMedChem 2020; 16:430-447. [PMID: 33029886 DOI: 10.1002/cmdc.202000575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/26/2020] [Indexed: 02/03/2023]
Abstract
Isoxazolines are nitrogen- and oxygen-containing five-membered heterocyclic scaffolds with extensive biological activities. This framework can be readily obtained in good to excellent yields through 1,3-dipolar cycloaddition between nitrones with alkynes or allenes, aryl/alkyl halides, alkynes, and oxaziridines under mild conditions. This scaffold has been an emerging area of interest for many researchers given their wide range of bioactivities. Herein we review synthetic strategies toward isoxazolines and the role these efforts have had in enhancing the biological activity of natural products and synthetic compounds such as antitubercular agents, COX-1 inhibitors, COX-2 inhibitors (e. g., valdecoxib), nicotinic receptor modulators, and MIF inhibitors. With a focus on efforts from 2010 onward, this review provides in-depth coverage of the design and biological evaluation of isoxazoline systems and their impact on various pathologies.
Collapse
Affiliation(s)
- Gulshan Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu Campus, Jammu, 180001, India.,Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Campus, Jammu, 180001, India
| | - Ravi Shankar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu Campus, Jammu, 180001, India.,Bio-organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Campus, Jammu, 180001, India
| |
Collapse
|