1
|
Liu X, Zhou B, Chen Y, Lin J, Shao C, Chen L, Ruan B, Zhang X, Qian Y. Design and synthesis of 2-phenyl-1 H-benzo[ d]imidazole derivatives as 17β-HSD10 inhibitors for the treatment of Alzheimer's disease. RSC Med Chem 2025:d4md00861h. [PMID: 40162198 PMCID: PMC11947984 DOI: 10.1039/d4md00861h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
It has been reported that 17β-HSD10 plays a key role in Alzheimer's disease. Here, a total of 44 2-phenyl-1H-benzo[d]imidazole derivatives were designed and synthesized as novel 17β-HSD10 inhibitors based on rational design and SAR studies. Among them, compound 33 (N-(4-(1,4,6-trimethyl-1H-benzo[d] imidazol-2-yl)phenyl)cyclohexanecarboxamide) showed high inhibitory efficacy (17β-HSD10 IC50 = 1.65 ± 0.55 μM) and low toxicity (HepaRG IC50 >100 μM). The Morris water maze experiment revealed that compound 33 could alleviate cognitive impairment induced by scopolamine in mice. This study facilitates the further development of more potent 17β-HSD10 inhibitors for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiaohan Liu
- School of Biology, Food and Environment, Hefei University Hefei 230601 P. R. China
| | - Bin Zhou
- School of Biology, Food and Environment, Hefei University Hefei 230601 P. R. China
| | - Yan Chen
- Wuxi School of Medicine, Jiangnan University Wuxi 214000 P. R. China
| | - Jinyuan Lin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Chenwen Shao
- Wuxi School of Medicine, Jiangnan University Wuxi 214000 P. R. China
| | - Liuzeng Chen
- School of Biology, Food and Environment, Hefei University Hefei 230601 P. R. China
| | - Banfeng Ruan
- School of Biology, Food and Environment, Hefei University Hefei 230601 P. R. China
| | - Xingxing Zhang
- School of Biology, Food and Environment, Hefei University Hefei 230601 P. R. China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| |
Collapse
|
2
|
Poirier D. Recent advances in the development of 17beta-hydroxysteroid dehydrogenase inhibitors. Steroids 2025; 213:109529. [PMID: 39532224 DOI: 10.1016/j.steroids.2024.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The family of 17β-hydroxysteroid dehydrogenases (17β-HSDs) occupies a prominent place due to its number of isoforms, which carry out a bidirectional transformation (reduction of a steroid carbonyl to alcohol and oxidation of a steroid alcohol to ketone) depending on the nature of the cofactor present. Involved in the activation or inactivation of key estrogens and androgens, 17β-HSDs are therefore therapeutic targets whose selective inhibition would make it possible to be considered for the treatment of several diseases, such as breast cancer, prostate cancer, endometriosis, Alzheimer's disease and osteoporosis. This review article is a continuation of those having reported the great diversity of inhibitors developed over the last years but focusses on inhibitors recently developed. Work to obtain more effective inhibitors that target the first known isoforms (types 1, 2, 3, 5 and 7) has continued, among others, but new inhibitors that target the isoforms more recently reported in the literature (types 10, 12, 13 and 14) are now being reported. Dual inhibitors of two enzymes (17β-HSD1 and steroid sulfatase) were also reported. These inhibitors were grouped according to the 17β-HSD type inhibited and their backbone (steroidal or non-steroidal) when necessary. They were also reported in chronological order and according to the research group.
Collapse
Affiliation(s)
- Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Nephrology Unit, CHU de Québec Research Center-Université Laval, Québec, QC G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Hanzlova M, Slavikova B, Morozovova M, Musilek K, Rotterova A, Zemanová L, Kudova E. C-3 Steroidal Hemiesters as Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 10. ACS OMEGA 2024; 9:12116-12124. [PMID: 38496976 PMCID: PMC10938439 DOI: 10.1021/acsomega.3c10148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
17β-HSD10 is a mitochondrial enzyme that catalyzes the steroidal oxidation of a hydroxy group to a keto group and, thus, is involved in maintaining steroid homeostasis. The druggability of 17β-HSD10 is related to potential treatment for neurodegenerative diseases, for example, Alzheimer's disease or cancer. Herein, steroidal derivatives with an acidic hemiester substituent at position C-3 on the skeleton were designed, synthesized, and evaluated by using pure recombinant 17β-HSD10 converting 17β-estradiol to estrone. Compounds 22 (IC50 = 6.95 ± 0.35 μM) and 23 (IC50 = 5.59 ± 0.25 μM) were identified as the most potent inhibitors from the series. Compound 23 inhibited 17β-HSD10 activity regardless of the substrate. It was found not cytotoxic toward the HEK-293 cell line and able to inhibit 17β-HSD10 activity also in the cellular environment. Together, these findings support steroidal compounds as promising candidates for further development as 17β-HSD10 inhibitors.
Collapse
Affiliation(s)
- Michaela Hanzlova
- Faculty
of Science, Department of Chemistry, University
of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Barbora Slavikova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, Prague 6 166 10, Czech Republic
| | - Marina Morozovova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, Prague 6 166 10, Czech Republic
| | - Kamil Musilek
- Faculty
of Science, Department of Chemistry, University
of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Aneta Rotterova
- Faculty
of Science, Department of Chemistry, University
of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lucie Zemanová
- Faculty
of Science, Department of Chemistry, University
of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Eva Kudova
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo namesti 2, Prague 6 166 10, Czech Republic
| |
Collapse
|
4
|
Hanzlova M, Miskerikova MS, Rotterova A, Chalupova K, Jurkova K, Hamsikova M, Andrys R, Haleckova A, Svobodova J, Schmidt M, Benek O, Musilek K. Nanomolar Benzothiazole-Based Inhibitors of 17β-HSD10 with Cellular Bioactivity. ACS Med Chem Lett 2023; 14:1724-1732. [PMID: 38116418 PMCID: PMC10726454 DOI: 10.1021/acsmedchemlett.3c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Multifunctional mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) is a potential drug target for the treatment of various pathologies. The most discussed is the pathology associated with Alzheimer's disease (AD), where 17β-HSD10 overexpression and its interaction with amyloid-β peptide contribute to mitochondrial dysfunction and neuronal stress. In this work, a series of new benzothiazole-derived 17β-HSD10 inhibitors were designed based on the structure-activity relationship analysis of formerly published inhibitors. A set of enzyme-based and cell-based methods were used to evaluate the inhibitory potency of new compounds, their interaction with the enzyme, and their cytotoxicity. Most compounds exhibited significantly a higher inhibitory potential compared to published benzothiazolyl ureas and good target engagement in a cellular environment accompanied by low cytotoxicity. The best hits displayed mixed-type inhibition with half maximal inhibitory concentration (IC50) values in the nanomolar range for the purified enzyme (3-7, 15) and/or low micromolar IC50 values in the cell-based assay (6, 13-16).
Collapse
Affiliation(s)
| | | | | | - Katarina Chalupova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Katarina Jurkova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Marie Hamsikova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Annamaria Haleckova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jana Svobodova
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Monika Schmidt
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Faculty of Science, Department
of Chemistry, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Schmidt M, Vaskova M, Rotterova A, Fiandova P, Miskerikova M, Zemanova L, Benek O, Musilek K. Physiologically relevant fluorescent assay for identification of 17β-hydroxysteroid dehydrogenase type 10 inhibitors. J Neurochem 2023; 167:154-167. [PMID: 37458164 DOI: 10.1111/jnc.15917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial enzyme 17β-hydroxysteroid dehydrogenase type 10 (HSD10) is a potential molecular target for treatment of mitochondrial-related disorders such as Alzheimer's disease (AD). Its over-expression in AD brains is one of the critical factors disturbing the homeostasis of neuroprotective steroids and exacerbating amyloid beta (Aβ)-mediated mitochondrial toxicity and neuronal stress. This study was focused on revalidation of the most potent HSD10 inhibitors derived from benzothiazolyl urea scaffold using fluorescent-based enzymatic assay with physiologically relevant substrates of 17β-oestradiol and allopregnanolone. The oestradiol-based assay led to the identification of two nanomolar inhibitors (IC50 70 and 346 nM) differing from HSD10 hits revealed from the formerly used assay. Both identified inhibitors were found to be effective also in allopregnanolone-based assay with non-competitive or uncompetitive mode of action. In addition, both inhibitors were confirmed to penetrate the HEK293 cells and they were able to inhibit the HSD10 enzyme in the cellular environment. Both molecules seem to be potential lead structures for further research and development of HDS10 inhibitors.
Collapse
Affiliation(s)
- Monika Schmidt
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Michaela Vaskova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Aneta Rotterova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Pavlina Fiandova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marketa Miskerikova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lucie Zemanova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Benek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Benek O, Vaskova M, Miskerikova M, Schmidt M, Andrys R, Rotterova A, Skarka A, Hatlapatkova J, Karasova JZ, Medvecky M, Hroch L, Vinklarova L, Fisar Z, Hroudova J, Handl J, Capek J, Rousar T, Kobrlova T, Dolezal R, Soukup O, Aitken L, Gunn-Moore F, Musilek K. Development of submicromolar 17β-HSD10 inhibitors and their in vitro and in vivo evaluation. Eur J Med Chem 2023; 258:115593. [PMID: 37390508 DOI: 10.1016/j.ejmech.2023.115593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/13/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 μM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17β-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).
Collapse
Affiliation(s)
- Ondrej Benek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Michaela Vaskova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Marketa Miskerikova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Monika Schmidt
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Aneta Rotterova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Adam Skarka
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Jana Hatlapatkova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- University of Defence, Faculty of Military Health Sciences, Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Matej Medvecky
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University of Warwick, Bioinformatics Research Technology Platform, Coventry, CV4 7AL, United Kingdom
| | - Lukas Hroch
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Vinklarova
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
| | - Zdenek Fisar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jana Hroudova
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Ke Karlovu 11, 120 00, Prague 2, Czech Republic
| | - Jiri Handl
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Jan Capek
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Tomas Rousar
- University of Pardubice, Faculty of Chemical Technology, Department of Biological and Biochemical Sciences, Studentska 573, Pardubice, 53210, Czech Republic
| | - Tereza Kobrlova
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Laura Aitken
- University of St. Andrews, School of Biology, Biomedical Science Research Complex, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Frank Gunn-Moore
- University of St. Andrews, School of Biology, Biomedical Science Research Complex, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic; University Hospital Hradec Kralove, Biomedical Research Centre, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
7
|
Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Huo H, Li G, Shi B, Li J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg Med Chem 2022; 69:116882. [PMID: 35749841 DOI: 10.1016/j.bmc.2022.116882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/15/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Steroids modification for improving their biological activities is one of the most efficient and fruitful methods to develop novel medicines. Steroids with aza-heterocycles attaching to the C-17 owing various biological activities have received great attentions and some of the compounds are developed successfully as drugs. In this review, the research of the syntheses and biological activities of steroids bearing various aza-heterocycles published in the last 8 years is assembled, and some important structure-activity relationships (SARs) of active compounds are presented. According to the analysis of the literatures and our experiences in this field, the potential of aza-heterocyclic steroids as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China
| | - Guixia Li
- Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi 046011, Shanxi, China.
| |
Collapse
|
9
|
Huo H, Jiang W, Sun F, Li J, Shi B. Synthesis and biological evaluation of novel steroidal pyrazole amides as highly potent anticancer agents. Steroids 2021; 176:108931. [PMID: 34655595 DOI: 10.1016/j.steroids.2021.108931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022]
Abstract
A series of thirty-six steroidal pyrazole amides, divided into two categories based on their main skeletons were designed and synthesized via a five-step synthetic route. The final product is obtained through Pinnick oxidation of pyrazole aldehydes to yield the corresponding acids, which then underwent amidation to afford the target products efficiently under mild reaction conditions. Structures of the desired compounds were confirmed by 1H NMR, 13C NMR, high resolution mass spectrometry; X-ray structural characterization of compound 16n was also obtained. The synthesized compounds were screened for their antiproliferative activity against four cancer cell lines (Pc-3 A549, Hela, HepG2) using the SRB method. Amides 10n, 16n, and 16p-16t exhibited moderate to high cytotoxic activities with IC50 values ranging from 2.05 to 8.73 μM. Of note, the hydrochloride derivative 16p displayed the highest activity towards PC-3 cells with IC50 values of 2.05 μM. Analysis of structure-activity relationships indicated that the presence of the diamine moiety and the aqueous solubility of the derivatives were vital factors for antiproliferative potency. Furthermore, molecule 16p induced PC-3 cells apoptosis and arrested cell cycle at G1 phase in a dose-dependent manner.
Collapse
Affiliation(s)
- Haibo Huo
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Science, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Weiqi Jiang
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Feifei Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Li
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Baojun Shi
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Further SAR studies on natural template based neuroprotective molecules for the treatment of Alzheimer's disease. Bioorg Med Chem 2021; 46:116385. [PMID: 34481338 DOI: 10.1016/j.bmc.2021.116385] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
In our earlier paper, we described ferulic acid (FA) template based novel series of multifunctional cholinesterase (ChE) inhibitors for the management of AD. This report has further extended the structure-activity relationship (SAR) studies of this series of molecules in a calibrated manner to improve upon the ChEs inhibition and antioxidant property to identify the novel potent multifunctional molecules. To investigate the effect of replacement of phenylpiperazine ring with benzylpiperazine, increase in the linker length between FA and substituted phenyl ring, and replacement of indole moiety with tryptamine on this molecular template, three series of novel molecules were developed. All synthesized compounds were tested for their acetyl and butyryl cholinestrases (AChE and BChE) inhibitory properties. Enzyme inhibition and PAS binding studies identified compound 13b as a lead molecule with potent inhibitor property towards AChE/BChE (AChE IC50 = 0.96 ± 0.14 µM, BChE IC50 = 1.23 ± 0.23 µM) compared to earlier identified lead molecule EJMC-G (AChE IC50 = 5.74 ± 0.13 μM, BChE IC50 = 14.05 ± 0.10 μM, respectively). Molecular docking and dynamics studies revealed that 13b fits well into the active sites of AChE and BChE, forming stable and strong interactions with key residues Trp86, Ser125, Glu202, Trp 286, Phe295, Tyr 337 in AChE, and with Trp 82, Gly115, Tyr128, and Ser287 in BChE. The compound, 13b was found to be three times more potent antioxidant in a DPPH assay (IC50 = 20.25 ± 0.26 µM) over the earlier identified EJMC-B (IC50 = 61.98 ± 0.30 µM) and it also was able to chelate iron. Co-treatment of 13b with H2O2, significantly attenuated and reversed H2O2-induced toxicity in the SH-SY5Y cells. The parallel artificial membrane permeability assay-blood brain barrier (PAMPA-BBB) revealed that 13b could cross BBB efficiently. Finally, the in-vivo efficacy of 13b at dose of 10 mg/kg in scopolamine AD model has been demonstrated. The present study strongly suggests that the naturally inspired multifunctional molecule 13b may behave as a potential novel therapeutic agent for AD management.
Collapse
|