1
|
Xu Z, Li R, Ding K, Wang Y, Zhuang Y. An insight into the in vivo antitumor therapeutic potential of indole-(fused) pyri(mi)dine hybrids. Future Med Chem 2025:1-19. [PMID: 40366787 DOI: 10.1080/17568919.2025.2504336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
Cancer can invade and destroy any part of the body, representing a grand social, public health, and economic challenge. Chemotherapy plays a crucial role in cancer treatment, and in recent decades, hundreds of anticancer chemotherapeutics have been introduced. Nevertheless, multidrug resistance and side effects are the main obstacles to successful cancer therapy, highlighting the pressing requirement for the development of new chemotherapeutics to address the above issues. Indole hybrids not only have the potential to surmount drug resistance and adverse effects caused by individual components but also can enhance efficacy and improve pharmacokinetic characteristics since hybrid molecules can concurrently regulate multiple targets within cancer cells. Moreover, numerous indole hybrids exemplified by mobocertinib (indole-pyrimidine hybrid) and osimertinib (indole-quinazoline hybrid) have already been utilized in clinical cancer treatment. Therefore, indole hybrids have emerged as valuable scaffolds for the treatment and eradication of cancer. This review aims to elucidate the current landscape of indole-(fused) pyri(mi)dine hybrids, including indole-quinolines/quinolinones, indole-pyridines, indole-pyrimidines, and indole-fused pyrimidines, with in vivo antitumor therapeutic potential, offering effective candidates for in-depth preclinical evaluations, encompassing articles published from 2021 onward.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, China
| | - Rongqiang Li
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Kexin Ding
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Yiling Wang
- Wisconsin Lutheran High School Milwaukee, WI, USA
| | - Yafei Zhuang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
2
|
Mehra A, Mittal A. Therapeutic Potential of Indole Derivatives: Analytical Perspectives on Their Role in Drug Discovery. Crit Rev Anal Chem 2025:1-21. [PMID: 40340607 DOI: 10.1080/10408347.2025.2500611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Indole was first identified around 1869, this being an indole ring system which is a fused benzene and pyrrole ring system. Research findings illustrate that indole derivatives have gained acceptance as therapeutic agents because they contain structural versatility and access different biological targets. Scientific research has established their strong pharmaceutical properties, especially for oncology medicines because they control essential cellular processes while interrupting defective enzymatic activities of topoisomerases, kinases, and histone deacetylases. Research proves that indole-based compounds display broad antibacterial, antifungal and antiparasitic effects in addition to their cancer-fighting properties. The indole nucleus creates targeted interactions with central nervous system receptors and enzymes for visualization in neurological therapeutic delivery. Research indicates that indole derivatives provide benefits for managing anti-inflammatory responses while lowering blood pressure and diabetes markers although benefiting cardiovascular health through their ability to affect specific disease pathways. The ongoing development of structural optimization methods with synthetic improvements leads to indole compounds which surpass present treatments according to clinical trials. Structural modifications to the indole core system have been explored in recent studies to improve its pharmacological versatility. Research from 2020 to 2024, featuring indole derivatives with their potency, mechanism of action, and strategies to overcome resistance, is highlighted, with a focus on different diseases. Finds from databases such as ScienceDirect, Google Scholar, PubMed, and EMBASE are included in the analysis.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Kouider Amar M, Moussa H, Hentabli M. Predicting the anticancer activity of indole derivatives: A novel GP-tree-based QSAR model optimized by ALO with insights from molecular docking and decision-making methods. Comput Biol Med 2025; 189:109988. [PMID: 40058079 DOI: 10.1016/j.compbiomed.2025.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Indole derivatives have demonstrated significant potential as anticancer agents; however, the complexity of their structure-activity relationships and the high dimensionality of molecular descriptors present challenges in the drug discovery process. This study addresses these challenges by introducing a modified GP-Tree feature selection algorithm specifically designed for regression tasks and high-dimensional feature spaces. The algorithm effectively identifies relevant descriptors for predicting LogIC50 values, the target variable. Furthermore, the GP-Tree method adeptly balances the selection of both positively and negatively contributing descriptors, enhancing the performance of DT, k-NN, and RF models. Additionally, the SMOGN technique was employed to address class imbalances, expanding the dataset to 1381 instances and enhancing the accuracy of IC50 predictions. Various machine learning models were optimized using probabilistic and nature-inspired algorithms, with the Ant Lion Optimizer (ALO) demonstrating the highest efficacy. The AdaBoost-ALO (ADB-ALO) model outperformed all other models, such as MLR, SVR, ANN, k-NN, DT, XGBoost, and RF, achieving an R2 of 0.9852 across the entire dataset, an RMSE of 0.1470, and a high CCC of 0.9925. SHAP analysis revealed critical descriptors, such as TopoPSA and electronic properties, which are essential for potent anticancer activity. Furthermore, molecular docking, in conjunction with the Weighted Sum Method (WSM), identified promising candidates, particularly N-amide derivatives of indole-benzimidazole-isoxazoles, which exhibit dual inhibition against topoisomerase I and topoisomerase II enzymes. Consequently, this research integrates computational predictions with experimental insights to accelerate the discovery of novel anticancer therapies through the accurate prediction and interpretation of the anti-prostate cancer activity of indole derivatives.
Collapse
Affiliation(s)
- Mohamed Kouider Amar
- Biomaterials and Transport Phenomena Laboratory, Faculty of Technology, University Yahia Fares of Medea, 26000, Medea, Algeria; Laboratory of Quality Control, Physico-Chemical Department, SAIDAL of Medea, Medea, Algeria.
| | - Hamza Moussa
- Département des Sciences Biologiques, Faculté des Sciences de La Nature et de La Vie et des Sciences de La Terre, Université de Bouira, 10000, Bouira, Algeria
| | - Mohamed Hentabli
- Biomaterials and Transport Phenomena Laboratory, Faculty of Technology, University Yahia Fares of Medea, 26000, Medea, Algeria; Laboratory of Quality Control, Physico-Chemical Department, SAIDAL of Medea, Medea, Algeria
| |
Collapse
|
4
|
Chaudhary U, Kumar P, Sharma P, Chikara A, Barua A, Mahiya K, Adhikari Subin J, Nath Yadav P, Raj Pokharel Y. Synthesis of 5-hydroxyisatin thiosemicarbazones, spectroscopic investigation, protein-ligand docking, and in vitro anticancer activity. Bioorg Chem 2024; 153:107872. [PMID: 39442462 DOI: 10.1016/j.bioorg.2024.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
A series of novel modifications were performed at the N(4) position of 5-hydroxyisatin thiosemicarbazone (TSC). The structure-activity approach is applied to design and synthesize derivatives by condensing thiosemicarbazides with 5-hydroxy isatin. The TSCs were characterized by various spectroscopic techniques viz. FTIR, 1H NMR, 13C NMR, UV-Vis, HRMS data, CHN elemental analysis, and single crystal X-ray diffraction. Biological evaluation of the synthesized compounds revealed the anticancer potency of the TSC analogues against breast cancer (MD-AMD-231, MCF-7), lung cancer (A549, NCI-H460), prostate cancer (PC3), and skin cancer (A431). The molecules, L2, L3, and L6 showed activity in the micromolar range (IC50; 0.19-2.19 μM). L6 exhibited the highest potency against skin cancer A431 cell line, with an IC50 of 0.19 μM compared to 1.8 μM with triapine and showed low toxicity against PNT-2 cells with an SI index of >100 μM. The mechanistic study revealed that L6 inhibited cancer cell proliferation, colony formation, and 3-dimensional spheroid formation by targeting the Ras/MAPK axis. It induced DNA damage and impaired DNA damage repair machinery, which led to the accumulation of DSB. Also, it lowered the ERK1/2 expression, which affected the caspase 3 activity and showed higher binding affinity compared to the FDA-approved drug Lenalidomide in molecular docking studies. Our findings demonstrated the possible future anticancer drug potency of L6 in the skin cancer A431 cells.
Collapse
Affiliation(s)
- Upendra Chaudhary
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Piyush Kumar
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Pratibha Sharma
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Anshul Chikara
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Ayanti Barua
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India
| | - Kuldeep Mahiya
- Department of Chemistry, F G M Government College, Adampur, Mandi Adampur, Hisar 125052, Haryana, India
| | - Jhashanath Adhikari Subin
- Scientific Research and Training Nepal P. Ltd., Bioinformatics and Cheminformatics Division, Kaushaltar, Bhaktapur, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, Rajpur Rd, Maidan Garhi, New Delhi 110068, India.
| |
Collapse
|
5
|
Kubo AI, Uzairu A, Babalola IT, Ibrahim MT, Umar AB. QSAR, molecular docking, and pharmacokinetic analysis of thiosemicarbazone-indole compounds targeting prostate cancer cells. J Taibah Univ Med Sci 2024; 19:823-834. [PMID: 39228962 PMCID: PMC11369465 DOI: 10.1016/j.jtumed.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 05/23/2024] [Accepted: 07/24/2024] [Indexed: 09/05/2024] Open
Abstract
Objectives By 2030, prostate cancer is estimated to account for 1.7 million new cases and 499,000 deaths. The objectives of this research were to create a model revealing the activity of thiosemicarbazone-indole compounds as anticancer agents against the PC3 cell line; perform docking analysis between the compounds and the target enzyme; and predict the pharmacokinetics and drug-likeness of the compounds under investigation. Methods The quantitative structureactivity relationship (QSAR) method was used to build the model; molecular docking between the compounds and the target enzyme was performed; and the drug-likeness and pharmacokinetics of the inhibiting compounds was examined. Results The genetic function algorithm-multilinear regression approach was used for building the QSAR model. Build model 1 had the best performance, with R2 (coefficient of determination) = 0.972517, Radj (adjusted R-squared) = 0.964665, (CRp2) = 0.780922, and LOF (leave-one-out cross-validation) = 0.076524, demonstrated strongly indicated by the molecular descriptors. SHBd, SsCH3, JGI2, and RDF60P were highly dependent on proliferative activity. Compounds ID 7 and 22 had the potential to act as androgen receptor inhibitors, as suggested by molecular docking studies between the drugs and their target enzymes. Compounds ID 7 and 22 exhibited binding scores of -8.5 kcal/mol and -8.8 kcal/mol, respectively. The approved maximum medication molecules for oral bioavailability included the molecules with IDs 7 and 22. Conclusion This research provides valuable insights into the relationships among molecular descriptors, potential inhibitors, and pharmacokinetic properties in the treatment of PC3. These findings may contribute to the understanding and potential development of new therapeutic options for prostate cancer patients.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim Kubo
- Department of Chemistry, Faculty of Science, Yobe State University, Damaturu, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Science, Adamawa State University, Mubi, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria, Nigeria
| | | | - Muhammad Tukur Ibrahim
- Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Abdullahi Bello Umar
- Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
6
|
Chaudhary M, Kumar S, Kaur P, Sahu SK, Mittal A. Comprehensive Review on Recent Strategies for Management of Prostate Cancer: Therapeutic Targets and SAR. Mini Rev Med Chem 2024; 24:721-747. [PMID: 37694781 DOI: 10.2174/1389557523666230911141339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023]
Abstract
Prostate cancer is a disease that is affecting a large population worldwide. Androgen deprivation therapy (ADT) has become a foundation for the treatment of advanced prostate cancer, as used in most clinical settings from neo-adjuvant to metastatic stage. In spite of the success of ADT in managing the disease in the majority of men, hormonal manipulation fails eventually. New molecules are developed for patients with various hormone-refractory diseases. Advancements in molecular oncology have increased understanding of numerous cellular mechanisms which control cell death in the prostate and these insights can lead to the development of more efficacious and tolerable therapies for carcinoma of the prostate. This review is focused on numerous therapies that might be a boon for prostate therapy like signaling inhibitors, vaccines, and inhibitors of androgen receptors. Along with these, various bioactive molecules and their derivatives are highlighted, which act as potential antiprostate cancer agents. This article also emphasized the recent advances in the field of medicinal chemistry of prostate cancer agents.
Collapse
Affiliation(s)
- Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Shubham Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144001, India
| | - Amit Mittal
- Faculty of Pharmaceutical Sciences, Desh Bhagat University, Amloh Road, Mandi Gobindgarh, Punjab, 147301, India
| |
Collapse
|
7
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
8
|
Fernández-Fariña S, Velo-Heleno I, Carballido R, Martínez-Calvo M, Barcia R, Palacios Ò, Capdevila M, González-Noya AM, Pedrido R. Exploring the Biological Properties of Zn(II) Bisthiosemicarbazone Helicates. Int J Mol Sci 2023; 24:ijms24032246. [PMID: 36768568 PMCID: PMC9916454 DOI: 10.3390/ijms24032246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The design of artificial helicoidal molecules derived from metal ions with biological properties is one of the objectives within metallosupramolecular chemistry. Herein, we report three zinc helicates derived from a family of bisthiosemicarbazone ligands with different terminal groups, Zn2(LMe)2∙2H2O 1, Zn2(LPh)2∙2H2O 2 and Zn2(LPhNO2)23, obtained by an electrochemical methodology. These helicates have been fully characterized by different techniques, including X-ray diffraction. Biological studies of the zinc(II) helicates such as toxicity assays with erythrocytes and interaction studies with proteins and oligonucleotides were performed, demonstrating in all cases low toxicity and an absence of covalent interaction with the proteins and oligonucleotides. The in vitro cytotoxicity of the helicates was tested against MCF-7 (human breast carcinoma), A2780 (human ovarian carcinoma cells), NCI-H460 (human lung carcinoma cells) and MRC-5 (normal human lung fibroblasts), comparing the IC50 values with cisplatin. We will try to demonstrate if the terminal substituent of the ligand precursor exerts any effect in toxicity or in the antitumor activity of the zinc helicates.
Collapse
Affiliation(s)
- Sandra Fernández-Fariña
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (S.F.-F.); (A.M.G.-N.)
| | - Isabel Velo-Heleno
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rocío Carballido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Martínez-Calvo
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ramiro Barcia
- Departamento de Bioquímica y Biología Molecular, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Òscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ana M. González-Noya
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (S.F.-F.); (A.M.G.-N.)
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Suliphuldevara Mathada B, Gunavanthrao Yernale N, Basha JN. The Multi‐Pharmacological Targeted Role of Indole and its Derivatives: A review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | - Jeelan N. Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru- 560043 Karnataka India
| |
Collapse
|
10
|
Sharma A, Anand P, Padwad YS, Maurya SK. Novel 3-Methyleneisoindolinones Diversified via Intramolecular Heck Cyclization Induce Oxidative Stress, Decrease Mitochondrial Membrane Potential, Disrupt Cell Cycle, and Induce Apoptosis in Head and Neck Squamous Cell Carcinoma Cells. ACS OMEGA 2022; 7:45036-45044. [PMID: 36530328 PMCID: PMC9753514 DOI: 10.1021/acsomega.2c05378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer in the world and the most prevalent cancer of developing countries. Increased disease burden and a smaller number of approved targeted therapies are a growing concern worldwide. Isoindolinone motifs have been a central part of many pharmacological compounds, and their derivatives possess substantial anticancer potential. However, their anticancer potential against HNSCC has not been well investigated. In the current study, a series of 3-methyleneisoindolinones have been designed and synthesized and their late-stage intramolecular Heck cyclization was achieved to evaluate their anticancer potential against HNSCC cells. Additionally, in silico ADME profiling of synthesized compounds revealed their drug-likeness properties as potential drug candidates. Among the synthesized compounds, 3-bromo-5-methylpyridin-2-yl-3-methyleneisoindolin-1-one, i.e., 3n, with a pyridyl unit exhibited the most significant cytotoxicity against HNSCC cells. The cytotoxic potential of synthesized compounds varied depending on the nature of substituents present and has been well established with structure-activity relationship studies. Further, flow cytometric analysis showed that 3f, 3h, and 3n triggered intracellular oxidative stress, disrupted mitochondrial membrane potential, and interrupted the cell cycle of HNSCC cells in the S-phase and sub-G1 phase. Further, 3f, 3h, and 3n also exhibited pro-apoptotic potential and induced cellular apoptosis in the HNSCC cells. Overall, the findings of this study attributed 3-methyleneisoindolinone chemistry and efficacy evaluation and corroborated their anticancer potential against HNSCC. It will pave the way to further design and optimize novel 3-methyleneisoindolinone as effective antitumor agents, which may provide effective treatment modalities against HNSCC.
Collapse
Affiliation(s)
- Arti Sharma
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prince Anand
- Pharmacology
and Toxicology Laboratory, CSIR-Institute
of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S. Padwad
- Pharmacology
and Toxicology Laboratory, CSIR-Institute
of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sushil K. Maurya
- Chemical
Technology Division, CSIR-Institute of Himalayan
Bioresource Technology (CSIR-IHBT), Palampur 176061, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Acharya PT, Bhavsar ZA, Jethava DJ, Rajani DP, Pithawala E, Patel HD. Synthesis, characterization, biological evaluation and computational study of benzimidazole hybrid thiosemicarbazide derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prachi T. Acharya
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Zeel A. Bhavsar
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Divya J. Jethava
- Department of Chemistry School of Sciences, Gujarat University Ahmedabad Gujarat India
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Center Surat Gujarat India
| | - Edwin Pithawala
- Department of Microbiology and Biotechnology, Khyati Institute of Science, Palodia Ahmedabad Gujarat India
| | | |
Collapse
|
12
|
Bismuth complex of quinoline thiosemicarbazone restores carbapenem sensitivity in NDM-1-positive Klebsiella pneumoniae. J Inorg Biochem 2022; 234:111887. [DOI: 10.1016/j.jinorgbio.2022.111887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
|
13
|
González-Cuesta M, Herrera-González I, García-Moreno MI, Ashmus RA, Vocadlo DJ, García Fernández JM, Nanba E, Higaki K, Ortiz Mellet C. sp 2-Iminosugars targeting human lysosomal β-hexosaminidase as pharmacological chaperone candidates for late-onset Tay-Sachs disease. J Enzyme Inhib Med Chem 2022; 37:1364-1374. [PMID: 35575117 PMCID: PMC9126592 DOI: 10.1080/14756366.2022.2073444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The late-onset form of Tay-Sachs disease displays when the activity levels of human β-hexosaminidase A (HexA) fall below 10% of normal, due to mutations that destabilise the native folded form of the enzyme and impair its trafficking to the lysosome. Competitive inhibitors of HexA can rescue disease-causative mutant HexA, bearing potential as pharmacological chaperones, but often also inhibit the enzyme O-glucosaminidase (GlcNAcase; OGA), a serious drawback for translation into the clinic. We have designed sp2-iminosugar glycomimetics related to GalNAc that feature a neutral piperidine-derived thiourea or a basic piperidine-thiazolidine bicyclic core and behave as selective nanomolar competitive inhibitors of human Hex A at pH 7 with a ten-fold lower inhibitory potency at pH 5, a good indication for pharmacological chaperoning. They increased the levels of lysosomal HexA activity in Tay-Sachs patient fibroblasts having the G269S mutation, the highest prevalent in late-onset Tay-Sachs disease.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Roger A Ashmus
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David J Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, Sevilla, Spain
| | - Eiji Nanba
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| |
Collapse
|
14
|
Ibáñez-Escribano A, Fonseca-Berzal C, Martínez-Montiel M, Álvarez-Márquez M, Gómez-Núñez M, Lacueva-Arnedo M, Espinosa-Buitrago T, Martín-Pérez T, Escario JA, Merino-Montiel P, Montiel-Smith S, Gómez-Barrio A, López Ó, Fernández-Bolaños JG. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J Enzyme Inhib Med Chem 2022; 37:781-791. [PMID: 35193444 PMCID: PMC8881069 DOI: 10.1080/14756366.2022.2041629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 μM (CL-B5 strain) and 33.65 μM (Y strain), IC50 (BZ)=25.31 μM (CL-B5) and 22.73 μM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.
Collapse
Affiliation(s)
- Alexandra Ibáñez-Escribano
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Cristina Fonseca-Berzal
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Mónica Martínez-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Manuel Álvarez-Márquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - María Gómez-Núñez
- Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Lacueva-Arnedo
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Teresa Espinosa-Buitrago
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - José Antonio Escario
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Alicia Gómez-Barrio
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
15
|
Zaib S, Munir R, Younas MT, Kausar N, Ibrar A, Aqsa S, Shahid N, Asif TT, Alsaab HO, Khan I. Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer's Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules 2021; 26:molecules26216573. [PMID: 34770983 PMCID: PMC8587653 DOI: 10.3390/molecules26216573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Rubina Munir
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
- Correspondence: (S.Z.); (R.M.); (I.K.)
| | - Muhammad Tayyab Younas
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan;
| | - Naghmana Kausar
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan;
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur 22620, Pakistan;
| | - Sehar Aqsa
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Noorma Shahid
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Tahira Tasneem Asif
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan; (S.A.); (N.S.); (T.T.A.)
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (S.Z.); (R.M.); (I.K.)
| |
Collapse
|
16
|
Sarkar D, Amin A, Qadir T, Sharma PK. Synthesis of Medicinally Important Indole Derivatives: A Review. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2021. [DOI: 10.2174/1874104502015010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Indoles constitute a widely occurring functional group in nature and are present in an extensive number of bioactive natural products and medicinally important compounds. As a result, exponential increases in the development of novel methods for the formation of indole core along with site-specific indoles have been established. Conventional methods for the synthesis of indoles are getting replaced with green methods involving ionic liquids, water as a solvent, solid acid catalyst, microwave irradiation and the use of nanoparticles under solvent-free conditions. In addition, there are immense applications of the substituted indoles in diverse fields.
Collapse
|
17
|
Zhang XH, Kang HQ, Tao YY, Li YH, Zhao JR, Ya-Gao, Ma LY, Liu HM. Identification of novel 1,3-diaryl-1,2,4-triazole-capped histone deacetylase 6 inhibitors with potential anti-gastric cancer activity. Eur J Med Chem 2021; 218:113392. [PMID: 33831778 DOI: 10.1016/j.ejmech.2021.113392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Histone deacetylase 6 (HDAC6) has emerged as a critical regulator of many cellular pathways in tumors due to its unique structure basis and abundant substrate types. Over the past few decades, the role played by HDAC6 inhibitors as anticancer agents has sparked great interest of biochemists worldwide. However, they were less reported for gastric cancer therapy. In this paper, with the help of bioisosteric replacement, in-house library screening, and lead optimization strategies, we designed, synthesized and verified a series of 1,3-diaryl-1,2,4-triazole-capped HDAC6 inhibitors with promising anti-gastric cancer activities. Amongst, compound 9r displayed the best inhibitory activity towards HDAC6 (IC50 = 30.6 nM), with 128-fold selectivity over HDAC1. Further BLI and CETSA assay proved the high affinity of 9r to HDAC6. In addition, 9r could dose-dependently upregulate the levels of acetylated α-tubulin, without significant effect on acetylated histone H3 in MGC803 cells. Besides, 9r exhibited potent antiproliferative effect on MGC803 cells, and promoted apoptosis and suppressed the metastasis without obvious toxicity, suggesting 9r would serve as a potential lead compound for the development of novel therapeutic agents of gastric cancer.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hui-Qin Kang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuan-Yuan Tao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jun-Ru Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ya-Gao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Ltd, Zhumadian, 463000, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
18
|
Sun J, Guo Y, Fan Y, Wang Q, Zhang Q, Lai D. Decreased expression of IDH1 by chronic unpredictable stress suppresses proliferation and accelerates senescence of granulosa cells through ROS activated MAPK signaling pathways. Free Radic Biol Med 2021; 169:122-136. [PMID: 33865962 DOI: 10.1016/j.freeradbiomed.2021.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/20/2022]
Abstract
Studies suggested that psychosocial stress was associated with female fertility decline, but the underlying mechanisms remained unclear. Granulosa cells (GCs) are important somatic cells to support follicular development and oocyte maturation. Herein, by using a mouse model of chronic unpredictable stress (CUS), we found that CUS induced oxidative stress damage in mouse ovaries, also inhibited GCs proliferation and accelerated GCs senescence. Isocitrate dehydrogenase-1 (IDH1), an antioxidant related gene by generating NADPH, was shown to be downregulated in GCs of CUS mice. Consistently, IDH1 knockdown inhibited cell proliferation and accelerated cellular senescence in KGN cells in vitro. In addition, IDH1 knockdown increased ROS content, induced autophagy activation and triggered cell cycle arrest in S and G2/M phases in KGN cells, which could be rescued by N-acetyl-l-cysteine (NAC), a ROS scavenger in these cells. Besides, IDH1 knockdown activated MAPK signaling pathways, including ERK, JNK and p38 signaling pathways in KGN cells, while NAC could suppress the activation. Through using inhibitors of MAPK signaling pathways, we showed that the activation of ERK pathway participated in autophagy related cell proliferation inhibition and cellular senescence, whereas JNK and p38 MAPK signaling pathways took part in regulation cell cycle arrest associated cell proliferation inhibitory and senescence in IDH1 knockdown KGN cells. Our findings suggested that downregulated expression of IDH1 induced by CUS has a physiological function in GCs proliferation and senescence through ROS activated MAPK signaling pathways, and improvement of IDH1 activity might be a beneficial therapeutic strategy for ovarian dysfunction.
Collapse
Affiliation(s)
- Junyan Sun
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Ying Guo
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Yihui Fan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China; Shanghai Municipal Key Clinical Speciality, Shanghai, 200030, China.
| |
Collapse
|
19
|
Calvo-Martín G, Plano D, Encío I, Sanmartín C. Novel N, N'-Disubstituted Selenoureas as Potential Antioxidant and Cytotoxic Agents. Antioxidants (Basel) 2021; 10:antiox10050777. [PMID: 34068900 PMCID: PMC8156206 DOI: 10.3390/antiox10050777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/28/2022] Open
Abstract
A series of 30 novel N,N disubstituted selenoureas were synthesized, characterized, and their antioxidant ability was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays. Additionally, their cytotoxic activity was tested in vitro in a panel of three different cancer (breast, lung and colon) and two normal cell lines. Each selenourea entity contains a para-substituted phenyl ring with different electron-withdrawing and electron-donating groups, and different aliphatic and aromatic nuclei. All of the synthesized selenoureas present antioxidant capacity at high concentrations in the DPPH assay, and three of them (2b, 2c and 2d) showed greater radical scavenging capacity than ascorbic acid at lower concentrations. These results were confirmed by the ABTS assay, where these novel selenoureas present even higher antioxidant capacity than the reference compound Trolox. On the other hand, 10 selenoureas present IC50 values below 10 µM in at least one cancer cell line, resulting in the adamantyl nucleus (6a–6e), the most interesting in terms of activity and selectivity. Outstanding results were found for selenourea 6c, tested in the NCI60 cell line panel and showing an average GI50 of 1.49 µM for the 60 cell lines, and LC50 values ranging from 9.33 µM to 4.27 µM against 10 of these cancer cell lines. To gain insight into its anticancer activity mechanism, we investigated the cell cycle progression of the promising compound 6c, as well as the type of programmed-cell death in a colon cancer cell line it provokes (HT-29). Compound 6c provoked S phase cell cycle arrest and the induction of cell death was independent of caspase activation, suggesting autophagy, though this assertion requires additional studies. Overall, we envision that this compound can be further developed for the potential treatment of colon cancer.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
| | - Ignacio Encío
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (G.C.-M.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain;
- Correspondence: ; Tel.: +34-948425600 (ext. 806388)
| |
Collapse
|