1
|
Akgün E, Demirayak M, Yurttaş L, Gül ÜD, Demirayak Ş. Novel Metronidazole Conjugates as Antimicrobial Agents. Drug Dev Res 2025; 86:e70114. [PMID: 40492433 DOI: 10.1002/ddr.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/19/2025] [Accepted: 05/31/2025] [Indexed: 06/12/2025]
Abstract
Metronidazole (MTZ) is one of the oldest and still used anti-infective nitroimidazole group drug. Although it is effective against anaerobic bacteria, protozoa, and parasites in clinical settings, it lacks efficacy against aerobic microorganisms. Due to its efficient molecular structure and synthetic usability due to the alcohol group in its framework, medicinal chemists aimed to reach new more effective molecules such as MTZ-hybrids. In this study, 2-[(benzimidazole/benzoxazole/benzothiazol-2-yl)thio]-N-[2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl]acetamide (5a-5j) derivatives were synthesized and their antimicrobial and antifungal effects on aerobic bacteria and Candida spp. were investigated. Notably, most of newly designed conjugates displayed higher potency than MTZ itself, especially against Gram-positive strains. Furthermore, chlorinated heterocyclic moieties provided the strongest effects. Docking studies using E. coli nitroreductase (PDB: 1IDT) revealed potential interactions with the flavin mononucleotide (FMN) cofactor, suggesting that these hybrids may undergo nitro-group reduction analogous to MTZ. Additionally, pharmacokinetic predictions indicated generally favorable profiles.
Collapse
Affiliation(s)
- Erol Akgün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Türkiye
- Department of Pharmaceutical Chemistry, Institute of Graduate Education, Anadolu University, Eskişehir, Türkiye
| | | | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - Ülkiye Dudu Gül
- Department of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, Bilecik, Türkiye
| | - Şeref Demirayak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İstanbul Okan University, İstanbul, Türkiye
| |
Collapse
|
2
|
Kader M, Xu L, Fang L, Wufuer R, Zhang M, Wei N, Wang D, Zhang Z. The Antimicrobial Extract Derived from Pseudomonas sp. HP-1 for Inhibition of Aspergillus flavus Growth and Prolongation of Maize Seed Storage. Foods 2025; 14:1774. [PMID: 40428553 PMCID: PMC12111000 DOI: 10.3390/foods14101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/25/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Maize, one of the most widely cultivated crops globally, is highly susceptible to mycotoxin contamination. In this study, an endophytic strain Pseudomonas sp. HP-1, isolated from Peganum harmala L., demonstrated significant biocontrol potential. The culture extract of Pseudomonas sp. HP-1 (PHE) exhibited strong antifungal activity, with inhibition zones of 40.07 ± 0.21 mm against Penicillium italicum, 29.71 ± 0.25 mm against Aspergillus niger, and 23.10 ± 0.44 mm against A. flavus, along with notable antibacterial activity against Staphylococcus aureus (22.43 ± 0.55 mm). At a concentration of 16 mg/mL, PHE almost completely inhibited the mycelial growth of A. flavus. The antifungal mechanism of PHE was investigated through scanning electron microscopy (SEM) and propidium iodide (PI) staining analysis, which demonstrated that antifungal activity is primarily through the disruption of cellular membrane integrity. Furthermore, PHE significantly reduced the incidence of A. flavus contamination in agroecological maize seeds during storage, and treated PHE showed superior antifungal efficacy compared to non-treated PHE, highlighting its potential as an effective antifungal agent for seed protection. Through one- and two-dimensional NMR and MS analyses, the primary active compound of PHE was identified as 1-phenazinecarboxylic acid. These findings indicate that PHE can be utilized as a sustainable antifungal agent for protecting maize seeds against mycotoxin-producing fungi.
Collapse
Affiliation(s)
- Marhaba Kader
- School of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.K.); (L.X.); (L.F.); (M.Z.)
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Liping Xu
- School of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.K.); (L.X.); (L.F.); (M.Z.)
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Longteng Fang
- School of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.K.); (L.X.); (L.F.); (M.Z.)
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Reziyamu Wufuer
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Minwei Zhang
- School of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (M.K.); (L.X.); (L.F.); (M.Z.)
| | - Nan Wei
- Institute of Agro-Products Storage and Processing, Xinjiang Academy of Agricultural Science, Urumqi 830091, China;
| | - Dong Wang
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Zhiwei Zhang
- School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| |
Collapse
|
3
|
Zheng R, Zhang S, Chen S, Zha W, Li X, Li Q, He J, He S, Feng M, Shen Y. Sunlight-mediated environmental risks of tinidazole in seawater: A neglected ocular toxicity of photolysis mixtures. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137217. [PMID: 39823881 DOI: 10.1016/j.jhazmat.2025.137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Tinidazole (TNZ), a common nitroimidazole antibiotic, is pervasive in aquatic ecosystems, posing potential threats to marine organisms. The environmental fate of TNZ, particularly under solar irradiation, and the associated secondary risks are not well characterized. Herein, the photochemical reactivity of TNZ and four other typical nitroimidazoles (i.e., metronidazole, ornidazole, dimetridazole, and secnidazole) were quantified for multiple photoreactive species. The photolysis products of these nitroimidazoles were identified under solar irradiation, from which the reaction pathways were tentatively proposed. Furthermore, the photo-induced toxicity evolution mechanisms of TNZ were investigated by comparing phenotypic, transcriptomic, and metabolomic changes in marine medaka embryos (Oryzias melastigma) after exposure to TNZ and its photo-irradiated mixtures. Our results indicated that the photo-irradiated TNZ enhanced visual toxicity to marine medaka embryos compared to the parent compound. The photolysis mixtures induced embryonic ocular malformation and significantly affected the expression of the associated genes with the initiation/termination of the phototransduction cascade, leading to metabolite changes related to visual impairment. This work reported the first comprehensive assessment of the photolysis-mediated environmental fate and secondary risks of TNZ in seawater. The findings highlighted the necessity of including complex photolysis mixtures under solar irradiation in future chemical risk assessments of marine environments.
Collapse
Affiliation(s)
- Ruping Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengqi Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengyue Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wenqi Zha
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinyue Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiuru Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jinlin He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Fang B, Jiang D, Wang S, Chen F. Simultaneous determination of five nitroimidazole antimicrobials in pharmaceuticals using HPLC-ESM and QAMS methods. BMC Chem 2025; 19:40. [PMID: 39953570 PMCID: PMC11829564 DOI: 10.1186/s13065-025-01409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
A green, rapid, and simple HPLC-External standard method (ESM) and a quantitative analysis of multi- components with a single-marker (QAMS) method were established for the simultaneous determination of five nitroimidazole antimicrobials (Metronidazole sodium chloride injection, Tinidazole injection, Ornidazole sodium chloride injection, Morinidazole sodium chloride injection, Secnidazole tablets) in pharmaceutical preparations. The five specified drugs were chromatographed via HPLC on a ZORBAX SB-C18 (150 mm×4.6 mm, 5 μm particle size) analytical column using a mobile phase consisting of methanol-0.1% v/v triethylamine (26:74 v/v, pH adjusted to 3.0 with phosphoric acid) with isocratic elution and monitored by photodiode array detector at 316 nm. The chromatographic separation was accomplished within a short run time (less than 20 min) for the studied analyte. Using metronidazole as internal reference, the relative correction factors of each constituent were calculated were established, and the contents of each component of 5 nitroimidazole were calculated to achieve QAMS. The measured results were verified by the ESM. The methods were validated in terms of linearity, intra- and inter-batch precision, accuracy, stability, and recovery. The proposed ESM and QAMS methods could simultaneously determination of the studied analyte, and they were successfully applied to the analysis of the above cited drugs in pharmaceutical preparations with excellent accuracy and precision. In addition, the analytical greenness (AGREE) and blue applicability grade index (BAGI) metric tools were used to evaluate the greenness and environmental friendliness of the developed methods. AGREE scores of QAMS and EMS were 0.66 and 0.59, and BAGI scored 82.5 and 77.5, respectively.
Collapse
Affiliation(s)
- Baoxia Fang
- Sinopharm Dongfeng General Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, 16# Daling Road, Shiyan, Hubei, 442008, PR China
| | - Dan Jiang
- Sinopharm Dongfeng General Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, 16# Daling Road, Shiyan, Hubei, 442008, PR China
| | - Sicen Wang
- Sinopharm Dongfeng General Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, 16# Daling Road, Shiyan, Hubei, 442008, PR China.
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, Shanxi, 710061, PR China.
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, 16# Daling Road, Shiyan, Hubei, 442008, PR China.
| |
Collapse
|
5
|
Koompapong K, Popruk S, Reamtong O, Thiangtrongjit T, Ampawong S, Sakulpanich A, Udonsom R, Thima K, Sreepian PM, Poovorawan K, Mori H, Stensvold CR, Mahittikorn A. Protozoocidal activity of Stemona collinsiae against Giardia duodenalis. Heliyon 2025; 11:e41530. [PMID: 39866421 PMCID: PMC11761316 DOI: 10.1016/j.heliyon.2024.e41530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Giardia duodenalis is a major pathogen of the gastrointestinal tract, and infections impact both human health and the economy. The ongoing issues with drug resistance and the side effects of current anti-Giardia treatments highlight the urgent need for new therapeutic options. This study focused on investigating the in vitro efficacy of crude extracts of Stemona collinsiae from Thailand against G. duodenalis. S. collinsiae was initially extracted with hexane, followed sequentially by dichloromethane, ethanol, and water. The extracts were tested for growth inhibition against G. duodenalis. Dichloromethane and hexane extracts were highly active against the parasite after 48 h of exposure, with half-maximal inhibitory concentration (IC50) values of 60.77 μg/mL and 66.66 μg/mL, respectively. Both extracts reduced G. duodenalis trophozoite motility and adherence, altered trophozoite architecture, and induced apoptosis. Our findings demonstrate the anti-Giardia activity of S. collinsiae root extracts, especially those of dichloromethane and hexane. Our results will support the potential development of new and effective medications for the treatment of giardiasis.
Collapse
Affiliation(s)
- Khuanchai Koompapong
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Supaluk Popruk
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Aurapa Sakulpanich
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Rangsit Campus, Pathum Thani, 12120, Thailand
| | - Ruenruetai Udonsom
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Kanthinich Thima
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | | | - Kittiyod Poovorawan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Hirotake Mori
- Department of General Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Christen Rune Stensvold
- Department of Bacteria, Parasites and Fungi, Laboratory of Parasitology, Statens Serum Institut, Copenhagen, Denmark
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
6
|
Zarenezhad E, Behmard E, Karami R, Behrouz S, Marzi M, Ghasemian A, Soltani Rad MN. The antibacterial and anti-biofilm effects of novel synthetized nitroimidazole compounds against methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli and Klebsiella pneumonia in vitro and in silico. BMC Chem 2024; 18:244. [PMID: 39696637 DOI: 10.1186/s13065-024-01333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024] Open
Abstract
The antibiotic resistance and biofilm formation by bacterial pathogens has led to failure in infections elimination. This study aimed to assess the antibacterial and anti-biofilm properties of novel synthesized nitroimidazole compounds (8a-8o). In this study, nitroimidazole compounds were synthesized via the A3 coupling reaction of sample substrates in the presence of copper-doped silica cuprous sulfate (CDSCS). Fifteen and two carbapenemase producing Escherichia coli and Klebsiella pneumonia (CP-E. coli and CP-K. pneumonia, respectively) and one methicillin-resistant Staphylococcus aureus (MRSA) and one methicillin-susceptible S. aureus (MSSA) plus standard strain of each isolate were included. The antibacterial effects of these compounds demonstrated that the lowest minimum inhibitory and bactericidal concentrations (MIC/MBC, respectively) levels corresponded to compound 8g against S. aureus (1/2 µg/mL) and K. pneumonia (8/32 µg/mL) standard and clinical strains and confirmed by in silico assessment. This was comparable to those of metronidazole being 32-128 µg/mL against K. pneumonia and 32-64 µg/mL against S. aureus. In comparison to metronidazole, against CP-E. coli, compounds 8i and 8m had significantly higher antibacterial effects (p < 0.001) and against CP-K. pneumonia, compounds 8a-8j and 8l-8o had significantly higher (p < 0.0001) antibacterial effects. Compound 8g exhibited significantly higher antibacterial effects against MSSA and compounds 8b (p < 0.001), 8c (p < 0.001), 8d (p < 0.001), 8e (p < 0.001) and 8g (p < 0.0001) exerted significantly higher antibacterial effects than metronidazole against MRSA. Moreover, potential anti-biofilm effects was corresponded to compounds 8a, 8b, 8c, 8e, 8f, 8g, 8i, 8k, 8m and 8n. Considering the antibacterial and anti-biofilm effects of novel synthesized compounds evaluated in this study, further assessments is warranted to verify their properties in vivo and clinical trials in the future.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Raziyeh Karami
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Somayeh Behrouz
- Department of Chemistry, Shiraz University of Technology, Shiraz, 71555-313, Iran
| | - Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| | | |
Collapse
|
7
|
Zhu S, Xiao Y, Xia L, Li J, Lei S, Liu J, Liu L. Occurrence, spatiotemporal distribution, and health risk of antibiotics in the Wuhan section of the Yangtze River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64152-64170. [PMID: 39531106 DOI: 10.1007/s11356-024-35513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The occurrence, spatiotemporal changes, and health hazard of antibiotics in source water and finished water in the Wuhan section of the Yangtze River are not well understood. In this study, 43 source water and finished water samples were collected from 11 water plants in Wuhan in August 2021 and May 2022. Fifty-one antibiotics from eight categories were measured. A total of 41 antibiotics were detected in the source water samples, and 24 in the finished water samples. The total antibiotic concentration in source water ranged from 1.68 to 437.18 ng/L, which is significantly higher than that in finished water (2.04-87.25 ng/L). Sulfonamides and lincosamides were predominant, accounting for nearly 80% of the total antibiotic concentration. Lincomycin constituted nearly 30% of the total antibiotic concentration in the source water. In August 2021, the average total antibiotic concentration in source water was 107.12 ng/L, higher than in May 2022 (63.13 ng/L). Spatially, the total antibiotic concentrations in samples collected from the Han River, a tributary of the Yangtze River, were higher than those in the main stream of the Yangtze River. Ecological risk assessment indicated that the hazard posed by most antibiotics were negligible. Lincomycin potentially posed a high health hazard, and clarithromycin and roxithromycin posed a moderate hazard to infants.
Collapse
Affiliation(s)
- Sijia Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Yonghua Xiao
- Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, 430024, People's Republic of China
| | - Lu Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Jia Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China
| | - Shengxi Lei
- Wuhan Britain-China School, Wuhan, Hubei, 430030, People's Republic of China
| | - Junling Liu
- Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei, 430024, People's Republic of China
| | - Li Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.
| |
Collapse
|
8
|
Gursoy S, Satici D, Kuzu B, Turkmenoglu B, Dilek E, Algul O. Exploring new 5-Nitroimidazole Derivatives as Potent Acetylcholinesterase and Butyrylcholinesterase Enzyme Inhibitors. Chem Biodivers 2024; 21:e202400918. [PMID: 38924646 DOI: 10.1002/cbdv.202400918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Discovering new compounds capable of inhibiting physiologically and metabolically significant drug targets or enzymes is of paramount importance in biological chemistry. With this aim, new 5-nitroimidazole derivatives (1-4) were designed and synthesized, and their inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were discovered using acetyl (butyryl) thiocholine and Ellman's reagents for spectrophotometric assay. The inhibitory profiles of the synthesized compounds were assessed by comparing their IC50 and Ki values. Results demonstrate significant inhibitory activity of all synthesized compounds against both AChE and BuChE compared to the reference compound, donepezil. Notably, compound 4 exhibited dual inhibition of these enzymes, showing the highest activity against Electrophorus electricus AChE (EeAChE) with a Ki value of 0.024±0.009 nM and against equine BuChE (eqBuChE) with a Ki value of 0.087±0.017 nM. Furthermore, molecular modeling was conducted to study the interaction modes of the most potent compound (4) and donepezil in the active site of their related enzymes' crystal structures (PDB ID: 4EY7 and 4BDS, respectively). Additionally, drug-likeness, ADME, and toxicity profiles of the compounds and metronidazole were predicted. The above results indicated that the dual inhibition of these enzymes is considered as a promising strategy for the treatment of neurological disorder especially Alzheimer's disease.
Collapse
Affiliation(s)
- Sule Gursoy
- Department of Biohemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Doruk Satici
- Department of Pharmaceutical Sciences, Institute of Health Sciences, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Burak Kuzu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Van Yüzüncü Yıl University, Van, Türkiye
| | - Burcin Turkmenoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Esra Dilek
- Department of Biohemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Türkiye
- Department of Pharmaceutical Chemistry, Mersin University, Faculty of Pharmacy, Mersin, Türkiye
| |
Collapse
|
9
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
10
|
Fawad Ansari M, Tan YM, Sun H, Li S, Zhou CH. Unique iminotetrahydroberberine-corbelled metronidazoles as potential membrane active broad-spectrum antibacterial agents. Bioorg Med Chem Lett 2022; 76:129012. [DOI: 10.1016/j.bmcl.2022.129012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 12/21/2022]
|
11
|
Raju S, Sheridan PE, Hauer AK, Garrett AE, McConnell DE, Thornton JA, Stokes SL, Emerson J. Cu-Catalyzed Chan-Evans-Lam Coupling reactions of 2-Nitroimidazole with Aryl boronic acids: An effort toward new bioactive agents against S. pneumoniae. Chem Biodivers 2022; 19:e202200327. [PMID: 35819995 PMCID: PMC10184775 DOI: 10.1002/cbdv.202200327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
The coupling of phenylboronic acids with poorly-activated imidazoles is studied as a model system to explore the use of copper-catalyzed Chan-Evans-Lam (CEL) coupling for targeted C-N bond forming reactions. Optimized CEL reaction conditions are reported for four phenanthroline-based ligand systems, where the ligand 4,5-diazafluoren-9-one (dafo, L2 ) with 1 molar equivalent of potassium carbonate yielded the highest reactivity. The substrate 2-Nitroimidazole (also known as azomycin) has documented antimicrobial activity against a range of microbes. Here N-arylation of 2-nitroimidazole with a range of aryl boronic acids has been successfully developed by copper(II)-catalyzed CEL reactions. Azomycin and a range of newly arylated azomycin derivatives were screened against S. pneumoniae , where 1-(4-(benzyloxy)phenyl)-2-nitro-1H-imidazole ( 3d ) was demonstrated to have a minimal inhibition concentration value of 3.3 μg/mL.
Collapse
Affiliation(s)
- Selvam Raju
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Laboratory, 39762, Mississippi State, UNITED STATES
| | - Patrick E Sheridan
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Alanna K Hauer
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Allyn E Garrett
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Danielle E McConnell
- Mississippi State University, Biological Sciences, Harned Hall, 39762, Mississippi State, UNITED STATES
| | - Justin A Thornton
- Mississippi State University, Biological Sciences, Harned Hall, 39762, Mississippi State, UNITED STATES
| | - Sean L Stokes
- Mississippi State University, Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Joseph Emerson
- Mississippi State University, Chemistry, 1115 Hand Laboratory, 310 President's circle, 39762, Mississippi State, UNITED STATES
| |
Collapse
|
12
|
Li FF, Zhao WH, Tangadanchu VKR, Meng JP, Zhou CH. Discovery of novel phenylhydrazone-based oxindole-thiolazoles as potent antibacterial agents toward Pseudomonas aeruginosa. Eur J Med Chem 2022; 239:114521. [PMID: 35716514 DOI: 10.1016/j.ejmech.2022.114521] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
With the soaring of bacterial infection and drug resistance, it is imperative to exploit new efficient antibacterial agents. This work constructed a series of unique phenylhydrazone-based oxindole-thiolazoles to combat monstrous bacterial resistance. Some target molecules showed potent antibacterial activity, among which oxindole-thiolimidazole derived carboxyphenylhydrazone 4e exhibited an 8-fold stronger inhibitory ability than norfloxacin on the growth of P. aeruginosa, with MIC value of 1 μg/mL. Compound 4e with imperceptible hemolysis could hamper bacterial biofilm formation and significantly impede the development of bacterial resistance. Subsequent mechanism studies demonstrated that 4e could destruct bacterial cytoplasmic membrane, causing the leakage of cellular contents (protein and nucleic acid). Moreover, metabolic stagnation and intracellular oxidative stress caused by 4e expedited the death of bacteria. Furthermore, molecule 4e existed supramolecular interactions with DNA to block DNA proliferation. These research results provided a promising light for phenylhydrazone-based oxindole-thiolazoles as novel potential antibacterial agents.
Collapse
Affiliation(s)
- Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wen-Hao Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiang-Ping Meng
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Novel metronidazole-derived three-component hybrids as promising broad-spectrum agents to combat oppressive bacterial resistance. Bioorg Chem 2022; 122:105718. [DOI: 10.1016/j.bioorg.2022.105718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
|
14
|
Yang L, Zeng L, Tao Y, Wang D, Zhang K, Tian M, Xia Z, Gao D. Galli Gigerii Endothelium Corneum derived fluorescent carbon dots and their application as sensing platform for nitroimidazoles and cell imaging. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Ibáñez-Escribano A, Fonseca-Berzal C, Martínez-Montiel M, Álvarez-Márquez M, Gómez-Núñez M, Lacueva-Arnedo M, Espinosa-Buitrago T, Martín-Pérez T, Escario JA, Merino-Montiel P, Montiel-Smith S, Gómez-Barrio A, López Ó, Fernández-Bolaños JG. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J Enzyme Inhib Med Chem 2022; 37:781-791. [PMID: 35193444 PMCID: PMC8881069 DOI: 10.1080/14756366.2022.2041629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 μM (CL-B5 strain) and 33.65 μM (Y strain), IC50 (BZ)=25.31 μM (CL-B5) and 22.73 μM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.
Collapse
Affiliation(s)
- Alexandra Ibáñez-Escribano
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Cristina Fonseca-Berzal
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Mónica Martínez-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Manuel Álvarez-Márquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - María Gómez-Núñez
- Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Lacueva-Arnedo
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Teresa Espinosa-Buitrago
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - José Antonio Escario
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Alicia Gómez-Barrio
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
16
|
Chen N, Yang L, Ding N, Li G, Cai J, An X, Wang Z, Qin J, Niu Y. Recurrent neural network (RNN) model accelerates the development of antibacterial metronidazole derivatives. RSC Adv 2022; 12:22893-22901. [PMID: 36105994 PMCID: PMC9377161 DOI: 10.1039/d2ra01807a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Metronidazole is a specific drug against trichomonas and anaerobic bacteria, and is widely used in the clinic. However, extensive clinical application is often accompanied by extensive side effects, so it is still of great significance to develop metronidazole derivatives with a new skeleton. Compared with other traditional receptor-based drug design methods, the computational model based on a neural network has higher accuracy and reliability. In this work, a Recurrent Neural Network (RNN) model is applied to the discovery of metronidazole drugs with a new skeleton. Firstly, the generation model based on a Gated Recurrent Unit (GRU) is trained to generate an effective Simplified Molecular-Input Line-Entry System (SMILES) string library with high precision. Then, transfer learning is introduced to fine-tune the GRU model, and many molecules with structures similar to known active drugs are generated. After cluster analysis of the structures of the new compounds, 20 small molecular compounds with metronidazole structures of all different categories were selected, of which 19 may not belong to any published patents or applications. Through prediction and personal experience, the difficulty of synthesizing these 20 new structures was analyzed, and compound 0001 was chosen as our synthetic target, and a series of structures (8a–l) similar to compound 0001 were synthesized. Finally, the inhibitory activities of these compounds against bacteria E. coli, P. aeruginosa, B. subtilis and S. aureus were determined. The results showed that compound 8a–l had obvious inhibitory activity against these four bacteria, which proved the accuracy of our compound generation model. Generating antibacterial metronidazole derivatives using a recurrent neural network model.![]()
Collapse
Affiliation(s)
- Nannan Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Lijuan Yang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 Gansu, China
- School of Physics and Technology, Lanzhou University, Lanzhou 730000, China
| | - Na Ding
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Guiwen Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Jiajing Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Xiaoli An
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 Gansu, China
| | - Zhijie Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| | - Yuzhen Niu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049 Shandong, China
| |
Collapse
|
17
|
Miranda MCR, Sato NC, Brasil GSP, Piazza RD, Jafelicci M, de Barros NR, Borges FA, Batagin-Neto A, de Melo Silva W, Herculano RD, Guerra NB. Silver nanoparticles effect on drug release of metronidazole in natural rubber latex dressing. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03983-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Surur AS, Sun D. Macrocycle-Antibiotic Hybrids: A Path to Clinical Candidates. Front Chem 2021; 9:659845. [PMID: 33996753 PMCID: PMC8120311 DOI: 10.3389/fchem.2021.659845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
The tale of abate in antibiotics continued defense mechanisms that chaperone the rise of drug-defying superbugs—on the other hand, the astray in antibacterial drug discovery and development. Our salvation lies in circumventing the genesis of resistance. Considering the competitive advantages of antibacterial chemotherapeutic agents equipped with multiple warheads against resistance, the development of hybrids has rejuvenated. The adoption of antibiotic hybrid paradigm to macrocycles has advanced novel chemical entities to clinical trials. The multi-targeted TD-1792, for instance, retained potent antibacterial activities against multiple strains that are resistant to its constituent, vancomycin. Moreover, the antibiotic conjugation of rifamycins has provided hybrid clinical candidates with desirable efficacy and safety profiles. In 2020, the U.S. FDA has granted an orphan drug designation to TNP-2092, a conjugate of rifamycin and fluoroquinolone, for the treatment of prosthetic joint infections. DSTA4637S is a pioneer antibacterial agent under clinical development and represents a novel class of bacterial therapy, that is, antibody–antibiotic conjugates. DSTA4637S is effective against the notorious persistent S. aureus bacteremia, a revelation of the abracadabra potential of antibiotic hybrid approaches.
Collapse
Affiliation(s)
- Abdrrahman Shemsu Surur
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| |
Collapse
|