1
|
Li Y, He X, Li S, Chen S, Zhao Z, Mu Y, Zhao AZ, Zhou S, Li F. The phosphodiesterase-4 inhibitor Zl-n-91 suppresses glioblastoma growth via EGR1/PTEN/AKT pathway. Eur J Pharmacol 2025; 988:177230. [PMID: 39732358 DOI: 10.1016/j.ejphar.2024.177230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor, which presents significant challenges for treatment in clinical settings. Phosphodiesterase 4 (PDE4) inhibitors can prevent the degradation of cAMP and have been used as a potential targeted therapeutic approach for different cancer types. However, their clinical use is restricted by side effects such as nausea and vomiting. Herein, we investigated the efficacy and therapeutic mechanisms of a specific PDE4 inhibitor, Zl-n-91, on GBM cells. The results demonstrated that Zl-n-91 exhibited greater effectiveness than the well-known PDE4 inhibitor Rolipram in treating GBM. It can notably suppress the proliferation of GBM cells by inducing G0/G1 phase arrest and apoptosis. Additionally, Zl-n-91 significantly inhibited the growth of subcutaneous glioma xenografts. Mechanistically, Zl-n-91 treatment increased the expression and nuclear transcription of Early growth response (EGR1), while knockdown of EGR1 could decrease PTEN levels and increase p-AKT levels, restoring the inhibition of cell proliferation induced by Zl-n-91. Collectively, we revealed for the first time that PDE4 inhibitor Zl-n-91 could inhibit the growth of GBM cells through the EGR1/PTEN/AKT signaling pathway. Zl-n-91, a specific PDE4 inhibitor, may be a promising therapeutic candidate for GBM.
Collapse
Affiliation(s)
- Yuyu Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xin He
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shiri Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shenjie Chen
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Allan Z Zhao
- Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Southern Medical University, Foshan, 528308, PR China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Olgen S, Kaleli SNB, Karaca BT, Demirel UU, Bristow HK. Synthesis and Anticancer Activity of Novel Indole Derivatives as Dual EGFR/SRC Kinase Inhibitors. Curr Med Chem 2024; 31:3798-3817. [PMID: 37365789 DOI: 10.2174/0929867330666230626143911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Recent studies showed that the cooperation between c-SRC and EGFR is responsible for more aggressive phenotype in diverse tumors, including glioblastomas and carcinomas of the colon, breast, and lung. Studies show that combination of SRC and EGFR inhibitors can induce apoptosis and delay the acquired resistance to chemotherapy. Therefore, such combination may lead to a new therapeutic strategy for the treatment of EGFR-mutant lung cancer. Osimertinib was developed as a third-generation EGFR-TKI to combat the toxicity of EGFR mutant inhibitors. Due to the resistance and adverse reaction of osimertinib and other kinase inhibitors, 12 novel compounds structurally similar to osimertinib were designed and synthesized. METHODS Compounds were synthesized by developing novel original synthesis methods and receptor interactions were evaluated through a molecular docking study. To evaluate their inhibitory activities against EGFR and SRC kinase, in vitro enzyme assays were used. Anticancer potencies were determined using lung, breast, prostate (A549, MCF6, PC3) cancer cell lines. Compounds were also tested against normal (HEK293) cell line to evaluate their cyctotoxic effects. RESULTS Although, none of compounds showed stronger inhibition compared to osimertinib in the EGFR enzyme inhibition studies, compound 16 showed the highest efficacy with an IC50 of 1.026 μM. It also presented potent activity against SRC kinase with an IC50 of 0.002 μM. Among the tested compounds, the urea containing derivatives 6-11 exhibited a strong inhibition profile (80.12-89.68%) against SRC kinase in comparison to the reference compound dasatinib (93.26%). Most of the compounds caused more than 50% of cell death in breast, lung and prostate cancer cell lines and weak toxicity for normal cells in comparison to reference compounds osimertinib, dasatinib and cisplatin. Compound 16 showed strong cytotoxicity on lung and prostate cancer cells. Treatment of prostate cancer cell lines with the most active compound, 16, significantly increased the caspase-3 (8-fold), caspase-8 (6-fold) and Bax (5.7-fold) levels and decreased the Bcl-2 level (2.3-fold) compared to the control group. These findings revealed that the compound 16 strongly induces apoptosis in the prostate cancer cell lines. CONCLUSION Overall kinase inhibition, cytotoxicity and apoptosis assays presented that compound 16 has dual inhibitory activity against SRC and EGFR kinases while maintaining low toxicity against normal cells. Other compounds also showed considerable activity profiles in kinase and cell culture assays.
Collapse
Affiliation(s)
- Sureyya Olgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, 34010, Zeytinburnu, Istanbul, Turkey
| | - Sevde Nur Biltekin Kaleli
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul Medipol University, 34815 Beykoz-Istanbul, Turkey
| | - Banu Taktak Karaca
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Atlas University, İstanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Beykoz-Istanbul, Turkey
| | - Ural U Demirel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey
| | - Hacer Karatas Bristow
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, 34810 Beykoz-Istanbul, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul Medipol University, 34815 Beykoz-Istanbul, Turkey
- C. Eugene Bennett Department of Chemistry, West Virgina University, 26506 Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Arpa MD, Kesmen EE, Biltekin SN. Novel Sprayable Thermosensitive Benzydamine Hydrogels for Topical Application: Development, Characterization, and In Vitro Biological Activities. AAPS PharmSciTech 2023; 24:214. [PMID: 37848623 DOI: 10.1208/s12249-023-02674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Benzydamine hydrochloride (BZD) having analgesic, anesthetic, and anti-inflammatory effects is used orally or topically in the treatment of disorders such as joint inflammation and muscle pain. Within the scope of this study, sprayable thermosensitive BZD hydrogels were developed using thermoresponsive poloxamers to avoid systemic side effects and to provide better compliance for topical administration. Also, hydroxypropyl methyl cellulose (HPMC) was employed to improve the mechanical strength and bioadhesive properties of the hydrogel. The addition of BZD generally decreased the viscosity of the formulations (p < 0.05), while increasing the gelation temperature (p < 0.05). The formulations that did not have any clogs or leaks in the nozzle of the bottle during the spraying process were considered lead formulations. To spray the formulations easily, it was found that the viscosity at RT should be less than 200 mPa·s, and their gelation temperature should be between 26 and 34°C. Increasing HPMC and poloxamer improved bioadhesion. The amount of HPMC and poloxamers did not cause a significant change in the release characteristics of the formulations (p > 0.05); the release profiles of BZD from the formulations were similar according to model-independent kinetic (f2 > 50). HPMC and poloxamers had important roles in the accumulation of BZD in the skin. In vitro biological activity studies demonstrated that the formulations presented their anti-inflammatory activity with TNF-α inhibition but did not have any effect on the inhibition of COX enzymes as expected. As a result, thermosensitive hydrogels containing BZD might be an appropriate alternative, providing an advantage in terms of easier application compared to conventional gels.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey.
| | - Ebrar Elif Kesmen
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
| | - Sevde Nur Biltekin
- Department of Microbiology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduated Studies in Science, Istanbul University, 34116, Istanbul, Turkey
| |
Collapse
|
4
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Teng J, Chen Y, Xiao S, Li T, Su G, Wang G, Zhao Y. Novel ginsenoside derivatives induce apoptosis in HepG-2 cells via the MDM2-p53 signaling pathway. Bioorg Med Chem Lett 2022; 78:129045. [DOI: 10.1016/j.bmcl.2022.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
6
|
Sahin Z, Biltekin SN, Yurttaş L, Berk B, Küçükkılınç TT, Demirayak Ş. Novel benzofurane carbonyl analogs of donepezil as acetylcholinesterase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Sahin Z, Biltekin SN, Ozansoy M, Hemiş B, Ozansoy MB, Yurttaş L, Berk B, Demirayak Ş. Synthesis and
in vitro
Antitumor Activities of Novel Thioamide Substituted Piperazinyl‐1,2,
4‐Triazines. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zafer Sahin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| | - Sevde Nur Biltekin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Microbiology Istanbul Turkey
- Institute of Science Istanbul University Istanbul Turkey
| | - Mehmet Ozansoy
- Bahçeşehir University, School of Medicine, Department of Physiology Istanbul Turkey
| | - Bervis Hemiş
- Bahçeşehir University, School of Medicine Istanbul Turkey
| | | | - Leyla Yurttaş
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry Eskisehir Turkey
| | - Barkin Berk
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| | - Şeref Demirayak
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry Istanbul Turkey
| |
Collapse
|
8
|
Sahin Z, Özhan Y, Sipahi H, Biltekin SN, Yurttaş L, Berk B, Demirayak Ş. Novel benzofurane-pyrazole derivatives with anti-inflammatory, cyclooxygenase inhibitory and cytotoxicity evaluation. Z NATURFORSCH C 2022; 77:279-285. [PMID: 34902233 DOI: 10.1515/znc-2021-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022]
Abstract
Novel benzofurane-pyrazolone hybrids have been synthesized for evaluating their anti-inflammatory and cytotoxic properties. 4-(2-chloroacetyl)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one were reacted with α-hydroxy aldehyde or α-hydroxy ketone derivatives to obtain nine novel pyrazolone derivatives. Structures were successfully elucidated by 1H NMR, 13C NMR, IR and HRMS. Enzyme inhibitory activity was measured on cyclooxygenases (COXs) as considered to address anti-inflammatory activity. Compound 2 showed the highest activity on both COX-1 and COX-2 subtypes with 12.0 μM and 8.0 μM IC50, respectively. This activity was found close to indomethacin COX-2 inhibition measured as 7.4 μM IC50. Rest of the compounds (1, 3-9) showed 10.4-28.1 μM IC50 on COX-2 and 17.0-35.6 μM IC50 on COX-1 (Compound 1 has no activity on COX-1). Tested compounds (1-9) showed activity on NO production. Only compound was the 4, which showed a low inhibition on IL-6 levels. Cell viability was up to 60% at 100 μM for all compounds (1-9) on RAW 264.7 and NIH3T3 cell lines, thus compounds were reported to be noncytotoxic.
Collapse
Affiliation(s)
- Zafer Sahin
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Yağmur Özhan
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Sevde Nur Biltekin
- Department of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
- Institute of Science, Istanbul University, Istanbul, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Barkin Berk
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| | - Şeref Demirayak
- Department of Pharmaceutical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
9
|
Aremu OS, Alapour S, Manhas N, Singh M, Singh P, Koorbanally NA. Synthesis, molecular docking and anticancer activity of 5,5'-(phenylmethylene)bis(6-amino-2-thiouracil) derivatives. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1946060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Oluwole Samuel Aremu
- School of Chemistry and Physics and School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saba Alapour
- School of Chemistry and Physics and School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Neha Manhas
- School of Chemistry and Physics and School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moganavelli Singh
- School of Chemistry and Physics and School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics and School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Neil Anthony Koorbanally
- School of Chemistry and Physics and School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Avsar T, Yigit BN, Turan G, Altunsu D, Calis S, Kurt B, Kilic T, Yavuz Ergun M, Durdagi S, Acar M. Development of imidazolone based angiotensin II receptor type I inhibitor small molecule as a chemotherapeutic agent for cell cycle inhibition. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1954098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Timucin Avsar
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Berfu Nur Yigit
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Gizem Turan
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Deniz Altunsu
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Seyma Calis
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Graduate School of Science, Engineering and Technology, Molecular Biology, Genetics and Biotechnology Graduate Program, Istanbul Technical University, Istanbul, Turkey
| | - Bahar Kurt
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Turker Kilic
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Department of Neurosurgery, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - M. Yavuz Ergun
- Department of Chemistry, Dokuz Eylul University, Izmir, Turkey
| | - Serdar Durdagi
- Neuroscience Program, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
- Department of Biophysics, Computational Biology and Molecular Simulations Laboratory, School of Medicine, Bahcesehir University Istanbul, Turkey
| | - Melih Acar
- Department of Medical Biology, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|