1
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Liu ZQ. Is it still worth renewing nucleoside anticancer drugs nowadays? Eur J Med Chem 2024; 264:115987. [PMID: 38056297 DOI: 10.1016/j.ejmech.2023.115987] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Nucleoside has situated the convergence point in the discovery of novel drugs for decades, and a large number of nucleoside derivatives have been constructed for screening novel pharmacological properties at various experimental platforms. Notably, nearly 20 nucleosides are approved to be used in the clinic treatment of various cancers. Nevertheless, the blossom of synthetic nucleoside analogs in comparison with the scarcity of nucleoside anticancer drugs leads to a question: Is it still worth insisting on the screening of novel anticancer drugs from nucleoside derivatives? Hence, this review attempts to emphasize the importance of nucleoside analogs in the discovery of novel anticancer drugs. Firstly, we introduce the metabolic procedures of nucleoside anticancer drug (such as 5-fluorouracil) and summarize the designing of novel nucleoside anticancer candidates based on clinically used nucleoside anticancer drugs (such as gemcitabine). Furthermore, we collect anticancer properties of some recently synthesized nucleoside analogs, aiming at emphasizing the availability of nucleoside analogs in the discovery of anticancer drugs. Finally, a variety of synthetic strategies including the linkage of sugar moiety with nucleobase scaffold, modifications on the sugar moiety, and variations on the nucleobase structure are collected to exhibit the abundant protocols in the achievement of nucleoside analogs. Taken the above discussions collectively, nucleoside still advantages for the finding of novel anticancer drugs because of the clearly metabolic procedures, successfully clinic applications, and abundantly synthetic routines.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
3
|
Rabaan AA, Bello KE, Irekeola AA, Kaabi NAA, Halwani MA, Yousuf AA, Alshengeti A, Alfaraj AH, Khamis F, Al-Subaie MF, AlShehail BM, Almuthree SA, Ibraheem NY, Khalifa MH, Alfaresi M, Fares MAA, Garout M, Alsayyah A, Alshehri AA, Alqahtani AS, Alissa M. Prevalence of Hepatocellular Carcinoma in Hepatitis B Population within Southeast Asia: A Systematic Review and Meta-Analysis of 39,050 Participants. Pathogens 2023; 12:1220. [PMID: 37887736 PMCID: PMC10609743 DOI: 10.3390/pathogens12101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) is a significant complication of hepatitis B and still poses a global public health concern. This systematic review and meta-analysis provide adequate details on the prevalence of HCC in the HBV population within Southeast Asian countries. METHOD Following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) criteria, a thorough search for literature discussing the prevalence of HCC in the HBV population within southeast Asia was performed. Eligible studies were subjected to a meta-analysis utilising a DerSimonian and Laird approach and a random effect model. A protocol was registered with PROSPERO (CRD42023423953). RESULT Our study meticulously recovered 41 articles from seven countries in Southeast Asia, namely Cambodia, Indonesia, Malaysia, the Philippines, Singapore, Thailand, and Vietnam. A total of 39,050 HBV patients and 7479 HCC cases in southeast Asia were analysed. The pooled prevalence of HCC in HBV cases within southeast Asia was 45.8% (95% CI, 34.3-57.8%, I2 = 99.51%, p < 0.001). Singapore (62.5%, CI: 42.4-79.1) had the highest pooled prevalence of HCC in the HBV population compared to Vietnam, with the lowest estimate (22.4%, CI: 9.9-44.9). There was a drop in the pooled prevalence of HCC in HBV from 2016 until now (37.6%, CI: 19.2-60.5). CONCLUSION The findings of this review reveal a high pooled prevalence of HCC in the HBV population and therefore stir the need for routine screening, management, and surveillance.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Kizito Eneye Bello
- Department of Microbiology, Faculty of Natural Science, Kogi State University (Prince Abubakar Audu University) Anyigba, Anyigba PMB 1008, Nigeria
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Nigeria
| | - Nawal A. Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi 51900, United Arab Emirates
| | - Muhammad A. Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Amjad A. Yousuf
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah 41411, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Maha F. Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
- Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Bashayer M. AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Noha Y. Ibraheem
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Mahassen H. Khalifa
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Mubarak Alfaresi
- Department of Pathology and Laboratory Medicine, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates
| | - Mona A. Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
4
|
Wang M, Qu K, Zhao P, Yin X, Meng Y, Herdewijn P, Liu C, Zhang L, Xia X. Synthesis and anticancer evaluation of acetylated-lysine conjugated gemcitabine prodrugs. RSC Med Chem 2023; 14:1572-1580. [PMID: 37593582 PMCID: PMC10429768 DOI: 10.1039/d3md00190c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023] Open
Abstract
Gemcitabine is an antimetabolite drug approved for the treatment of various cancers. However, its use is limited due to several issues such as stability, toxicity and drug resistance. Herein, we present the design and synthesis of a series of gemcitabine prodrugs with modifications on the 4-N-amino group by employing an acetylated l- or d-lysine moiety masked by different substitutions. Prodrugs 1-3 and 6-8 showed up to 2.4 times greater anticancer activity than gemcitabine in A549 lung cells, while they exhibited potent activity against BxPC-3 pancreatic cells with IC50 values in the range of 7-40 nM. Moreover, prodrugs 2-3 and 7-8 were found to be less potent against CTSL low expression Caco-2 cells and at least 69-fold less toxic towards human normal HEK-293T cells compared to gemcitabine, leading to improved selectivity and safety profiles. Further stability studies showed that representative prodrugs 2 and 7 exhibited enhanced metabolic stability in human plasma, human liver microsomes and cytidine deaminase. Prodrug 1 can be cleaved by tumor cell-enriched CTSL to release parent drug gemcitabine. Overall, these results demonstrated that acetylated lysine conjugated gemcitabine prodrugs could serve as promising leads for further evaluation as new anticancer drugs.
Collapse
Affiliation(s)
- Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Kunyu Qu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven 3000 Leuven Belgium
| | - Chao Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan 250012 China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST) Shanghai 200237 China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| |
Collapse
|
5
|
Hade MD, Suire CN, Suo Z. An Effective Peptide-Based Platform for Efficient Exosomal Loading and Cellular Delivery of a microRNA. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3851-3866. [PMID: 36638205 DOI: 10.1021/acsami.2c20728] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exosomes, membrane-bound nanosized vesicles of biologic origin, are known to contain various molecules, e.g., proteins, lipids, and nucleic acids, which contribute to the exosomes' ability to mediate cell-to-cell communication. Recent impediments of artificial nanoparticles in drug delivery, including low cellular uptake, activation of the immune system, and tissue obstacles, have led scientists to engineer exosomes as drug delivery vehicles. Though exosomes possess inherent properties of stability, biocompatibility, low immunogenicity, and capability to cross biological barriers, there is a need to develop technologies that allow the efficient loading of therapeutic materials into exosomes. Here, we introduced a simple peptide-equipped technology that can enhance the cargo-loading potential of exosomes in a mild loading environment. Specifically, a known cell-penetrating peptide, YARA, derived from human immunodeficiency virus-1 trans-activator of transcription, was covalently conjugated with miR-21-5p, a mammalian microRNA. The conjugate YARA-miR-21-5p was then incubated with exosomes, isolated from either mesenchymal stem cells or cancer cells, for loading. Exosomal loading of YARA-miR-21-5p was time-dependent and demonstrated an impressive 18.6-fold increase in efficiency over exosomal loading of miR-21-5p through incubation. After effective cellular uptake, the loaded exosomes rapidly delivered YARA-miR-21-5p into mammalian cells. Relative to unloaded exosomes and free YARA-miR-21-5p, the loaded exosomes significantly enhanced the proliferation, migration, and invasion of human and mouse fibroblasts, which are vital steps in wound healing. This study lays the groundwork for using cell-penetrating peptides as an innovative approach to efficiently load therapeutic cargos, e.g., microRNAs, into exosomes, which can then be employed to deliver the cargos into cells to yield biological effects.
Collapse
Affiliation(s)
- Mangesh D Hade
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Caitlin N Suire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Shen C, Jiang X, Li M, Luo Y. Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers (Basel) 2023; 15:533. [PMID: 36672482 PMCID: PMC9856776 DOI: 10.3390/cancers15020533] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge, causing 600,000 deaths each year. Infectious factors, including hepatitis B virus (HBV), hepatitis C virus (HCV) and hepatitis D virus (HDV), have long been considered the major risk factors for the development and progression of HCC. These pathogens induce hepatocyte transformation through a variety of mechanisms, including insertional mutations caused by viral gene integration, epigenetic changes, and the induction of long-term immune dysfunction. The discovery of these mechanisms, while advancing our understanding of the disease, also provides targets for new diagnostic and therapeutic approaches. In addition, the discovery and research of chronic HEV infection over the past decade indicate that this common hepatitis virus also seems to have the potential to induce HCC. In this review, we provide an overview of recent studies on the link between hepatitis virus and HCC, as well as new diagnostic and therapeutic approaches to HCC based on these findings. Finally, we also discuss the potential relationship between HEV and HCC. In conclusion, these associations will further optimize the diagnosis and treatment of infection-associated HCC and call for better management policies.
Collapse
Affiliation(s)
| | | | - Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Peng X, Zhu J, Liu S, Luo C, Wu X, Liu Z, Li Y, Yuan R. Signature construction and molecular subtype identification based on cuproptosis-related genes to predict the prognosis and immune activity of patients with hepatocellular carcinoma. Front Immunol 2022; 13:990790. [PMID: 36248822 PMCID: PMC9555242 DOI: 10.3389/fimmu.2022.990790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world, with high incidence, high malignancy, and low survival rate. Cuproptosis is a novel form of cell death mediated by lipoylated TCA cycle proteins-mediated novel cell death pathway and is highly associated with mitochondrial metabolism. However, the relationship between the expression level of cuproptosis-related genes (CRGs) and the prognosis of HCC is still unclear. Methods Combining the HCC transcriptomic data from The Cancer Genome Atlas(TCGA) and Gene Expression Omnibus (GEO) databases, we identified the differentially expressed cuproptosis-related genes (DECRGs) and obtained the prognosis-related DECRGs through univariate regression analysis.LASSO and multivariate COX regression analyses of these DECRGs yielded four genes that were used to construct the signature. Next, we use ROC curves to evaluate the performance of signatures. The tumor microenvironment, immune infiltration, tumor mutation load, half-maximum suppression concentration, and immunotherapy effects were also compared between the low-risk and high-risk groups. Finally, we analyzed the expression level, prognosis, and immune infiltration correlation on the four genes that constructed the model. Results Four DECRGs s were used to construct the signature. The ROC curves indicated that signature can better assess the prognosis of HCC patients. Patients were grouped according to the signature risk score. Patients in the low-risk group had a significantly longer survival time than those in the high-risk group. Furthermore, the tumor mutation burden (TMB) values were associated with the risk score and the higher-risk group had a higher proportion of TP53 mutations than the low-risk group.ESTIMATE analysis showed significant differences in stromal scores between the two groups.N6-methyladenosine (m6A) and multiple immune checkpoints were expressed at higher levels in the high-risk group. Then, we found that signature score correlated with chemotherapeutic drug sensitivity and immunotherapy efficacy in HCC patients. Finally, we further confirmed that the four DECRGs genes were associated with the prognosis of HCC through external validation. Conclusions We studied from the cuproptosis perspective and developed a new prognostic feature to predict the prognosis of HCC patients. This signature with good performance will help physicians to evaluate the overall prognosis of patients and may provide new ideas for clinical decision-making and treatment strategies.
Collapse
Affiliation(s)
- Xingyu Peng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sicheng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xun Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zitao Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanzhen Li
- Department of Clinical Medicine, Nanchang Medical College, Nanchang, China,*Correspondence: Yanzhen Li, ; Rongfa Yuan,
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Yanzhen Li, ; Rongfa Yuan,
| |
Collapse
|
8
|
Recent advancement in small molecules as HCV inhibitors. Bioorg Med Chem 2022; 60:116699. [PMID: 35278819 DOI: 10.1016/j.bmc.2022.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
Hepatitis C virus (HCV) has caused a considerable threat to human health. To date, no treatments are without side effects. The proteins and RNA associated with HCV have specific functions during the viral life cycle. The vulnerabilities to virus are associated with those proteins or RNA. Thus, targeting these proteins and RNA is an efficient strategy to develop anti-HCV therapeutics. The treatment for HCV-infected patients has been greatly improved after the approval of direct-acting antivirals (DAAs). However, the cost of DAAs is unusually high, which adds to the economic burden on patients with chronic liver diseases. So far, many efforts have been devoted to the development of small molecules as novel HCV inhibitors. Investigations on the inhibitory activities of these small molecules have involved the target identification and the mechanism of action. In this mini-review, these small molecules divided into four kinds were elaborated, which focused on their targets and structural features. Furthermore, we raised the current challenges and promising prospects. This mini-review may facilitate the development of small molecules with improved activities targeting HCV based on the chemical scaffolds of HCV inhibitors.
Collapse
|