1
|
Gouda MM, Elsharkawy ER, He Y, Li X. Importance of Advanced Detection Methodologies from Plant Cells to Human Microsystems Targeting Anticancer Applications. Int J Mol Sci 2025; 26:4691. [PMID: 40429833 PMCID: PMC12112733 DOI: 10.3390/ijms26104691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
The growing global demand for phytochemicals as bioactive sources is prompting scientists to develop methods that link their sensory properties to their mechanisms of action in cancer treatment. Recent techniques for tracking the actions of small plant metabolites (SPMs) from single-cell plant sources to their molecular anticancer biomarkers could provide valuable insights in this field. Among the critical methods discussed in this review are the real-time tracking of cell components through stable isotope probing (Sis) and microspectroscopy, which has attracted the attention of biotechnologists. Additionally, the precise pathways required for studying new insights into functional materials are discussed, based on high-resolution and accurate technologies, which could aid their functional categorization. Notably, the molecules under study have recently garnered attention for their anticancer applications due to advancements in effective evaluation techniques that surpass traditional methods. In December 2020, the Food and Drug Administration (FDA) authorized 89 SPMs as safe anticancer natural molecules. In conclusion, by combining spatiotemporal techniques and SPMs' mechanisms, they could facilitate the development of more exceptional, bio-efficient materials.
Collapse
Affiliation(s)
- Mostafa M. Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China or (M.M.G.); (Y.H.)
- Department of Nutrition and Food Science, National Research Centre, Giza 12622, Egypt
| | - Eman R. Elsharkawy
- Center for Health Research, Northern Border University, Arar 73213, Saudi Arabia
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China or (M.M.G.); (Y.H.)
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China or (M.M.G.); (Y.H.)
| |
Collapse
|
2
|
Tan Y, Liu J, Yong D, Hu J, Seeberger PH, Fu J, Yin J. Tandem activated caged galactoside prodrugs: advancing beyond single galactosidase dependence. Chem Sci 2025; 16:7173-7190. [PMID: 40134665 PMCID: PMC11932646 DOI: 10.1039/d5sc00722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
β-Galactoside prodrugs, activated by β-galactosidase (β-gal) highly expressed in some cancer cells, have been explored as anticancer agents for three decades. However, the distribution of β-gal lacks sufficient specificity to ensure precise drug release at cancer sites. By utilizing the highly stringent substrate specificity of β-gal, we chose the naturally occurring hydroxyl group of galactose as a prodrug modification site and developed a new class of tandem activated caged galactoside (TACG) prodrugs that require an additional trigger for more controlled on-demand drug release. We demonstrated that attaching various masking groups to the 6-hydroxyl group of galactose renders the galactosides resistant to β-gal hydrolysis. Focusing on the photosensitive mask 4,5-dimethoxy-2-nitrobenzyl (DMNB), we synthesized O6-DMNB modified galactosides of combretastatin A4 and 8-hydroxyquinoline, showcasing their UV/β-gal-dependent anticancer activities. We further established synthetic routes for O2-, O3-, and O4-DMNB modified TACGs. Comparative intracellular studies highlighted the O2-DMNB modified TACG as the most effective positional isomer, offering superior light-dependent selectivity. This insight led to the discovery of the O2-DMNB modified galactoside of combretastatin A4 as a potent UV-dependent microtubule assembly inhibitor. Our work provides a straightforward, effective, and universally applicable strategy for constructing dual-stimulus responsive galactoside prodrugs, extendable to various glycoside prodrugs, advancing carbohydrate-based drug discovery.
Collapse
Affiliation(s)
- Yunying Tan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jie Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Dianya Yong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University Wuxi 214122 PR China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces Potsdam 14476 Germany
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- Innovation Center for Vaccine Engineering, Jiangnan University Wuxi 214122 PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 PR China
- Innovation Center for Vaccine Engineering, Jiangnan University Wuxi 214122 PR China
| |
Collapse
|
3
|
Yao X, Wang J, Liu J, Yu C, Hu J, Wang X, Fu J, Yin J. Developing dual-responsive quinolinium prodrugs of 8-hydroxyquinoline by harnessing the dual chelating sites. Eur J Med Chem 2025; 284:117196. [PMID: 39721291 DOI: 10.1016/j.ejmech.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
The bidentate metal ion chelator 8-hydroxyquinoline (8-HQ) demonstrates significant potential in anticancer therapy but is hindered by adverse effects due to nonspecific chelation in normal tissues. The phenolic hydroxyl oxygen of 8-HQ has been extensively exploited to develop O-masked 8-HQ prodrugs aimed at achieving on-demand chelation. However, the equally crucial quinoline nitrogen for chelation remains underutilized. By alkylating the quinoline nitrogen of 8-HQ, we synthesized a series of N-masked quinolinium (QUM) prodrugs that release 8-HQ upon activation by various stimuli. Comprehensive in vitro and in vivo studies were conducted with QUM-1 and QUM-4, which are activated by H2O2 and β-glucosidase, respectively. Both QUM-1 and QUM-4 exhibit improved cancer cell selectivity compared to 8-HQ or the O-masked isomeric prodrug, attributed to unique properties such as enhanced mitochondrial targeting and increased glucose transporter-mediated cellular uptake. Additionally, by leveraging both chelating sites, we constructed dual-masked 8-HQ prodrugs that are activated non-sequentially by two stimuli to release 8-HQ. QUM-5 demonstrates anticancer activity upon activation by UV/H2O2 and shows improved safety in mice compared to 8-HQ. Our research presents novel applications for the construction of quaternary ammonium prodrugs utilizing aromatic tertiary amines and underscores the potential of dual-responsive prochelators for targeted cancer therapy.
Collapse
Affiliation(s)
- Xueyan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Junjiao Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jie Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Xue Wang
- Department of Pharmacy, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China; Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China; Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology & School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China; Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Gao C, Li X, Liu T, Wang W, Wu J. An overview of phenylsulfonylfuroxan-based nitric oxide donors for cancer treatment. Bioorg Chem 2025; 154:108020. [PMID: 39657549 DOI: 10.1016/j.bioorg.2024.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Nitric oxide (NO) is a gaseous molecule integral to numerous physiological processes, including tumor modulation, cardiovascular regulation, and systemic physiological functions. Its dual role in promoting and inhibiting tumor growth makes it a focal point of contemporary oncological research. Phenylsulfonylfuroxan, a classical NO donor, has been shown to significantly elevate NO levels, thereby inducing apoptosis and inhibiting proliferation and metastasis in tumor cells. It enhances the efficacy of chemotherapy, radiotherapy, and immunotherapy, reverses multidrug resistance (MDR), and impedes tumor progression. Notably, phenylsulfonylfuroxan have the ability to trigger ferroptosis in cancer cells by binding covalently to inhibit glutathione peroxidase 4 (GPX4). Recent developments in phenylsulfonylfuroxan-based therapies have positioned them as crucial in the advancement of cancer treatment modalities. This review elucidates the mechanism by which phenylsulfonylfuroxan releases NO and summarizes the significant advancements over the past 16 years in the research and development of phenylsulfonylfuroxan conjugates with various anticancer agents for targeted cancer therapy.
Collapse
Affiliation(s)
- Chao Gao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xingyu Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Tong Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Wanning Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Rola M, Zielonka J, Smulik-Izydorczyk R, Pięta J, Pierzchała K, Sikora A, Michalski R. Boronate-Based Bioactive Compounds Activated by Peroxynitrite and Hydrogen Peroxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 10:100040. [PMID: 39678628 PMCID: PMC11637410 DOI: 10.1016/j.rbc.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Boronates react directly and stoichiometrically with peroxynitrite and hydrogen peroxide. For this reason, boronates have been widely used as peroxynitrite- and hydrogen peroxide-sensitive moieties in various donors of bioactive compounds. So far, numerous boronate-based prodrugs and theranostics have been developed, characterized, and used in biological research. Here, the kinetic aspects of their activation are discussed, and the potential benefits of modifying their original structure with a boronic or boronobenzyl moiety are described.
Collapse
Affiliation(s)
- Monika Rola
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Renata Smulik-Izydorczyk
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jakub Pięta
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Karolina Pierzchała
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Radosław Michalski
- Institute of Applied Radiation Chemistry, Department of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
6
|
Meng T, Xu Z, Wang HJ, Huang J, Wen JL, Huang MP, Zhou CY, Zhong JP. Mitochondria-localizing triphenylphosphine-8-hydroxyquinoline Ru complexes induce ferroptosis and their antitumor evaluation. J Inorg Biochem 2024; 257:112585. [PMID: 38718498 DOI: 10.1016/j.jinorgbio.2024.112585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
Ruthenium complexes are one of the most promising anticancer drugs and ferroptosis is a novel form of regulated cell death, the study on the effect of Ru complexes on ferroptosis is helpful to find more effective antitumor drugs. Here, the synthesis and characterization of two Ru complexes containing 8-hydroxylquinoline and triphenylphosphine as ligands, [Ru(L1) (PPh3)2Cl2] (Ru-1), [Ru(L2) (PPh3)2Cl2] (Ru-2), were reported. Complexes Ru-1 ∼ Ru-2 showed good anticancer activity in Hep-G2 cells. Researches indicated that complexes Ru-1 ∼ Ru-2 could be enriched and appear as red fluorescence in the mitochondria, arouse dysfunction of mitochondria, induce the accumulation of reactive oxygen species (ROS) and lipid peroxidation (LPO), while the morphology of nuclei and cell apoptosis had no significant change. Further experiments proved that GPX4 and Ferritin were down-regulated, which eventually triggered ferroptosis in Hep-G2 cells. Remarkably, Ru-1 showed high inhibitory activity against xenograft tumor growth in vivo (TGIR = 49%). This study shows that the complex Ru-1 could act as a novel drug candidate by triggering cell ferroptosis.
Collapse
Affiliation(s)
- Ting Meng
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhong Xu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Han-Jie Wang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jin Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jia-Li Wen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mei-Ping Huang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Chun-Yan Zhou
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Jing-Ping Zhong
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
7
|
Virts NA, Karogodina TY, Panfilov MA, Vorob’ev AY, Moskalensky AE. Nitric Oxide Photorelease from Silicone Films Doped with N-Nitroso BODIPY. J Funct Biomater 2024; 15:92. [PMID: 38667549 PMCID: PMC11051420 DOI: 10.3390/jfb15040092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Nitric oxide (NO) is a unique biochemical mediator involved in the regulation of vital processes. Light-controllable NO releasers show promise in the development of smart therapies. Here, we present a novel biocompatible material based on polydimethylsiloxane (PDMS) doped with BODIPY derivatives containing an N-nitroso moiety that is capable of the photoinduced generation of NO. We study the green-light-induced NO-release properties with the following three methods: electrochemical gas-phase sensor, liquid-phase sensor, and the Griess assay. Prolonged release of NO from the polymer films after short irradiation by narrow-band LED light sources and a laser beam is demonstrated. Importantly, this was accompanied by no or little release of the parent compound (BODIPY-based photodonor). Silicone films with the capability of controllable and clean NO release can potentially be used as a highly portable NO delivery system for different therapeutic applications.
Collapse
Affiliation(s)
- Natalia A. Virts
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatyana Yu. Karogodina
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Mikhail A. Panfilov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Alexey Yu. Vorob’ev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | | |
Collapse
|
8
|
Amin MM, Abuo-Rahma GEDA, Shaykoon MSA, Marzouk AA, Abourehab MAS, Saraya RE, Badr M, Sayed AM, Beshr EAM. Design, synthesis, cytotoxic activities, and molecular docking of chalcone hybrids bearing 8-hydroxyquinoline moiety with dual tubulin/EGFR kinase inhibition. Bioorg Chem 2023; 134:106444. [PMID: 36893547 DOI: 10.1016/j.bioorg.2023.106444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/β-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and β-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.
Collapse
Affiliation(s)
- Mohammed M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt.
| | - Montaser Sh A Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Roshdy E Saraya
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
9
|
Kang M, Jiang S, Liu Y, Wei K, Liu P, Yang X, Pei M, Zhang G. A new “off-on-off” Schiff base from quinoline and thiophene as a fluorescent sensor for sequential monitoring Ga3+ and Pd2+. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Synthesis, photophysical and photochemical properties of unsymmetrical zinc(II) phthalocyanines bearing 8-hydroxyquinoline unit. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ilakiyalakshmi M, Arumugam Napoleon A. Review on recent development of quinoline for anticancer activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104168] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
12
|
Gu YQ, Zhong YJ, Hu MQ, Li HQ, Yang K, Dong Q, Liang H, Chen ZF. Terpyridine copper(II) complexes as potential anticancer agents by inhibiting cell proliferation, blocking the cell cycle and inducing apoptosis in BEL-7402 cells. Dalton Trans 2022; 51:1968-1978. [PMID: 35023532 DOI: 10.1039/d1dt02988f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Four mononuclear terpyridine complexes [Cu(H-La)Cl2]·CH3OH (1), [Cu(H-La)Cl]ClO4 (2), [Cu(H-Lb)Cl2]·CH3OH (3), and [Cu(H-Lb)(CH3OH)(DMSO)](ClO4)2 (4) were prepared and fully characterized. Complexes 1-4 exhibited higher cytotoxic activity against several tested cancer cell lines especially BEL-7402 cells compared to cisplatin, and they showed low toxicity towards normal human liver cells. ICP-MS detection indicated that the copper complexes were accumulated in mitochondria. Mechanistic studies demonstrated that the copper complexes induced G0/G1 arrest and altered the expression of the related proteins of the cell cycle. All copper complexes reduced the mitochondrial membrane potential while increasing the intracellular ROS levels and the release of Ca2+. They also up-regulated Bax and down-regulated Bcl-2 expression levels, caused cytochrome c release and the activation of the caspase cascade, and induced mitochondrion-mediated apoptosis. Animal studies demonstrated that complex 1 suppressed tumor growth in a mouse xenograft model bearing BEL-7402 tumor cells.
Collapse
Affiliation(s)
- Yun-Qiong Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China. .,School of Environment and Life Science, Nanning Normal University, Nanning, 530001, P. R China
| | - Yu-Jun Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Mei-Qi Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Huan-Qing Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Kun Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Qi Dong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Centre for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
13
|
Mo X, Chen K, Chen Z, Chu B, Liu D, Liang Y, Xiong J, Yang Y, Cai J, Liang F. Antitumor Activities for Two Pt(II) Complexes of Tropolone and 8-Hydroxyquinoline Derivative. Inorg Chem 2021; 60:16128-16139. [PMID: 34647723 DOI: 10.1021/acs.inorgchem.1c01763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reactions of cis-Pt(DMSO)2Cl2 and tropolone (HL) with 8-hydroxyquinoline (HQ) or 2-methyl-8-hydroxyquinoline (HMQ) gave [Pt(Q)(L)] (1) and [Pt(MQ)(L)] (2), which present mononuclear structures with their Pt(II) ions four-coordinated in square planar geometries. Their in vitro biological properties were evaluated by MTT assay, which showed a remarkable cytotoxic activity on the cancer cell lines. 1 shows higher cytotoxic activities on tumor cells such as T24, HeLa, A549, and NCI-H460 than complex 2 and cisplatin, with IC50 values <16 μM. Among them, an IC50 value of 3.6 ± 0.63 μM was found for complex 1 against T24 cells. It presented a tuning cytotoxic activity by substitution groups on 8-hydroxyquinoline skeleton. In our case, the substitution groups of -H are much superior to -CH3 against tumor cells. It revealed that both complexes can induce cell apoptosis by decreasing the potential of a mitochondrial membrane, enhancing reactive oxygen species and increasing Ca2+ levels of T24 cells. The T24 cell cycle can be arrested at G2 and G1 phases by complexes 1 and 2, respectively, with an upregulation for P21 and P27 expression levels and a down-regulation for cyclin A, CDK1, Cdc25A, and cyclin B expression levels. Furthermore, complex 1 exhibits satisfactory in vivo antitumor activity as revealed by the tumor inhibitory rate and the tumor weight change as well as by the cute toxicity assay and renal pathological examinations, which is close to cisplatin and much better than complex 2. All of these suggest that 1 might be a potential candidate for developing into a safe and effective anticancer agent.
Collapse
Affiliation(s)
- Xiyu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Kaiyong Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Zilu Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Bo Chu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Yuning Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
| | - Jianwen Xiong
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Yubing Yang
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - JinYuan Cai
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, P.R. China
| | - Fupei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P.R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P.R. China
| |
Collapse
|
14
|
Omidkhah N, Ghodsi R. NO-HDAC dual inhibitors. Eur J Med Chem 2021; 227:113934. [PMID: 34700268 DOI: 10.1016/j.ejmech.2021.113934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022]
Abstract
HDAC inhibitors and NO donors have both demonstrated independently broad therapeutic potential in a variety of diseases. Borretto et al. presented the topic of NO-HDAC dual inhibitors for the first time in 2013 as an attractive new topic. Here we collected the general structure of all synthesized NO-HDAC dual inhibitors, lead compounds, synthesis methods and biological features of the most potent dual NO-HDAC inhibitor in each category with the intention of assisting in the synthesis and optimization of new drug-like compounds for diverse diseases. Based on studies done so far, NO-HDAC dual inhibitors have displayed satisfactory results against wound healing (3), heart hypertrophy (3), inflammatory, cardiovascular, neuromuscular illnesses (11a-11e) and cancer (6a-6o, 9a-9d, 10a-10d, 16 and 17). NO-HDAC dual inhibitors can have high therapeutic potential for various diseases due to their new properties, NO properties, HDAC inhibitor properties and also due to the effects of NO on HDAC enzymes.
Collapse
Affiliation(s)
- Negar Omidkhah
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Guo X, Yu H, Shen W, Cai R, Li Y, Li G, Zhao W, Wang S. Synthesis and biological evaluation of NO-donor containing photosensitizers to induce ferroptosis of cancer cells. Bioorg Chem 2021; 116:105355. [PMID: 34592689 DOI: 10.1016/j.bioorg.2021.105355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Photodynamic therapy (PDT) is a non-invasive treatment method for tumors by exciting photosensitizers (PS) upon light irradiation to generate cytotoxic reactive oxygen species (ROS). However, the low oxygen concentration near the tumor tissue limits the therapeutic effect of PDT. Herein, we synthesized six chlorin e6 derivatives containing NO-donors to enhance their antitumor activity by synergistic effect of ROS and NO. The results revealed that the new NO-donor containing photosensitizers (PS-NO) exhibited more potent photodynamic activity than chlorin e6, and the introduction of NO donor moieties to chlorin e6 increased the level of NO and ROS in cells. The addition of Ferrostatin-1, a ferroptosis inhibitor, markedly reduced the photodynamic activity of PS-NO as well as the level of NO and ROS in cells. Mechanism studies further showed that PS-NO could reduce intracellular GSH level, inhibit GPX4 activity and promote malondialdehyde (MDA) accumulation upon light irradiation, which suggested the ferroptosis mechanism underlying the PDT effect of PS-NO.
Collapse
Affiliation(s)
- Xiuhan Guo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China.
| | - Haoze Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Wanjie Shen
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Rui Cai
- Center of Analysis and Research, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Yueqing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Shisheng Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, Zhejiang, China.
| |
Collapse
|
16
|
Zhong Y, Liang N, Liu Y, Cheng MS. Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chin J Nat Med 2021; 19:641-647. [PMID: 34561074 DOI: 10.1016/s1875-5364(21)60097-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Natural products are one of the important sources for the discovery of new drugs. Betulinic acid (BA), a pentacyclic triterpenoid widely distributed in the plant kingdom, exhibits powerful biological effects, including antitumor activity against various types of cancer cells. A considerable number of BA derivatives have been designed and prepared to remove their disadvantages, such as poor water solubility and low bioavailability. This review summarizes the current studies of the structural diversity of antitumor BA derivatives within the last five years, which provides prospects for further research on the structural modification of betulinic acid.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Liang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
17
|
Fershtat LL, Zhilin ES. Recent Advances in the Synthesis and Biomedical Applications of Heterocyclic NO-Donors. Molecules 2021; 26:5705. [PMID: 34577175 PMCID: PMC8470015 DOI: 10.3390/molecules26185705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO) is a key signaling molecule that acts in various physiological processes such as cellular metabolism, vasodilation and transmission of nerve impulses. A wide number of vascular diseases as well as various immune and neurodegenerative disorders were found to be directly associated with a disruption of NO production in living organisms. These issues justify a constant search of novel NO-donors with improved pharmacokinetic profiles and prolonged action. In a series of known structural classes capable of NO release, heterocyclic NO-donors are of special importance due to their increased hydrolytic stability and low toxicity. It is no wonder that synthetic and biochemical investigations of heterocyclic NO-donors have emerged significantly in recent years. In this review, we summarized recent advances in the synthesis, reactivity and biomedical applications of promising heterocyclic NO-donors (furoxans, sydnone imines, pyridazine dioxides, azasydnones). The synthetic potential of each heterocyclic system along with biochemical mechanisms of action are emphasized.
Collapse
Affiliation(s)
- Leonid L. Fershtat
- Laboratory of Nitrogen Compounds, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp., 47, 119991 Moscow, Russia;
| | | |
Collapse
|
18
|
Knoblauch R, Geddes CD. Plasmonic enhancement of nitric oxide generation. NANOSCALE 2021; 13:12288-12297. [PMID: 34254104 DOI: 10.1039/d1nr02126e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including nitric oxide (NO˙) for these applications should not be overlooked. In recent years, NO˙ donor species with numerous-including photodynamic-mechanisms have been classified with efficacy in antimicrobial and therapeutic applications. While properties of NO˙ delivery may be tuned structurally, herein we describe for the first time a method by which photodynamic NO˙ release is amplified simply by utilizing a plasmonic metal substrate. This is a process we term "metal-enhanced nitric oxide release", or ME-NO˙. Using donor agents known as brominated carbon nanodots (BrCND), also the first carbon nanodot variation classified to release NO˙ photodynamically, and the fluorescence-on probe DAF-FM, we report metal-enhanced release of NO˙ 2- to 6-fold higher than what is achieved under classical conditions. Factors affecting the plasmon-amplified photodynamic system are subsequently studied, including exposure times, excitation powers, and surface area, and consistent ME-NO˙ factors are reported from BrCND across these tunable conditions. Only probe concentration is determined to impact the detected ME-NO˙ factor, with higher concentrations resulting in improved detectability of "actual" NO˙ release enhancement. Further, principles of metal-enhanced fluorescence (MEF) are applied to achieve a faster, high-throughput experimental method with improved data resolution in ME-NO˙ detection. The results have significant implications for the improvement of not just carbon nanodot NO˙ donor agents, but a wide spectrum of photoactivated NO˙ donor systems as well.
Collapse
Affiliation(s)
- Rachael Knoblauch
- Institute of Fluorescence and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 701 East Pratt Street, Baltimore, Maryland 21202, USA.
| | | |
Collapse
|