1
|
Chen JF, Guo SJ, He B, Zheng W, Jiang WJ, Yuan Z, Xiang Y, Peng C, Xiong W, Shi JY. Advances of dual inhibitors based on ALK for the treatment of cancer. Bioorg Chem 2025; 159:108417. [PMID: 40168884 DOI: 10.1016/j.bioorg.2025.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Anaplastic lymphoma kinase (ALK), which encodes a highly conserved receptor tyrosine kinase (RTK), is important for the development and progression of many tumors, especially non-small cell lung cancer (NSCLC). Currently, third-generation ALK inhibitors are used to treat ALK-mutant NSCLC, but the rapid emergence of resistance during treatment greatly limits their efficacy in clinic. In comparison to single-target inhibitors, ALK dual inhibitors offer the benefits of reducing the emergence of drug resistance, improving treatment efficacy, and optimizing pharmacokinetic features due to the synergistic function of ALK and other associated targets involved in tumor progression. Therefore, we outline the development of ALK dual inhibitors, highlight their design approaches and structure-activity relationship (SAR), and offer insights into new challenges and potential future directions in this area.
Collapse
Affiliation(s)
- Jin-Feng Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731. China; Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shu-Jin Guo
- Department of Health Management Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin He
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Wei Zheng
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Wen-Jie Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhuo Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Wei Xiong
- Department of urology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Jian-You Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
2
|
Kumari S, Akhter M, Gupta GD, Sharma K. Progression and expansion of ALK inhibitors against NSCLC: A dual target approach. Eur J Med Chem 2025; 293:117722. [PMID: 40339471 DOI: 10.1016/j.ejmech.2025.117722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/19/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
ALK gene is a member of the tyrosine kinase receptor family found on chromosome 2 (2p23) that plays an important role in the progression of the non-small cell lung cancer (NSCLC). Since the ALK inhibitors such as Crizotinib, Ceritinib, Brigatinib, Alectinib and Lorlatinib, was endorsed for the treatment of advanced NSCLC linked to ALK gene rearrangement. But eventually, patients become resistant to the medication, which will result in treatment failure. However, treatment for NSCLC could be greatly advanced by the development of dual inhibitors that target ALK in addition to other oncogenic pathways like ROS1, c-MET, EGFR, etc. These strategies seek to improve therapy efficacy, address resistance mechanisms, and provide treatment alternatives for patients with intricate molecular profiles. The aim of this review is to summarize the introduction to ALK and the synergy between ALK and other anti-tumor targets, recent developments in the synthesis of various dual inhibitors of the ALK. We also thoroughly discussed their design concepts, structure-activity relationships (SARs), preclinical and clinical data as well as in silico studies to provide ideas for further development of novel ALK based dual inhibitors.
Collapse
Affiliation(s)
- Shreya Kumari
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, 110062, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
3
|
Song M, Elkamhawy A, Noh W, Abdelazem AZ, Park Y, Sivaraman A, Bertleuova A, Atef D, Lee K. Pyrimidine scaffold dual-target kinase inhibitors for cancer diseases: A review on design strategies, synthetic approaches, and structure-activity relationship (2018‒2023). Arch Pharm (Weinheim) 2025; 358:e2400163. [PMID: 39828961 DOI: 10.1002/ardp.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Cancer, the second leading cause of death globally, causes a significant threat to life. Despite advancements in the treatment of cancer, persistent challenges include severe side effects and the emergence of acquired drug resistance. Additionally, many traditional chemotherapy drugs show restricted efficacy and high toxicity, primarily attributed to their lack of selectivity. Thus, the development of drugs targeting protein kinases has emerged as a noteworthy priority for addressing human cancers. Medicinal chemists have shown considerable interest in the development of dual drug candidates as a strategy to create medicines that are safer, more efficient, and cost-effective. Furthermore, the Food and Drug Administration (FDA) has approved several dual-target drugs for anticancer treatment, emphasizing their lower risks of drug interactions and improved pharmacokinetics and safety profiles. This review focuses on the synthetic efforts, design strategies, and structure-activity relationship of the pyrimidine scaffold-based dual kinase inhibitors developed with anticancer potential within the recent 6 years (2018‒2023). Collectively, these strategies are expected to offer fresh perspectives on the future directions of pyrimidine-based dual-target kinase drug design, potentially advancing cancer therapeutics.
Collapse
Affiliation(s)
- Moeun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Ahmed Elkamhawy
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Woojeong Noh
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Ahmed Z Abdelazem
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni, suef, Egypt
| | - Younggeun Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Aneesh Sivaraman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Arailym Bertleuova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Dalia Atef
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Li Y, Lv Y, Zhang C, Fu B, Liu Y, Hu J. Recent advances in the development of dual ALK/ROS1 inhibitors for non-small cell lung cancer therapy. Eur J Med Chem 2023; 257:115477. [PMID: 37210839 DOI: 10.1016/j.ejmech.2023.115477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
As a member of the insulin-receptor superfamily, ALK plays an important role in regulating the growth, proliferation, and survival of cells. ROS1 is highly homologous with ALK, and can also regulate normal physiological activities of cells. The overexpression of both is closely related to the development and metastasis of tumors. Therefore, ALK and ROS1 may serve as important therapeutic targets in non-small cell lung cancer (NSCLC). Clinically, many ALK inhibitors have shown powerful therapeutic efficacy in ALK and ROS1-positive NSCLC patients. However, after some time, patients inevitably develop drug resistance, leading to treatment failure. There are no significant drug breakthroughs in solving the problem of drug-resistant mutations. In this review, we summarize the chemical structural features of several novel dual ALK/ROS1 inhibitors, their inhibitory effect on ALK and ROS1 kinases, and future treatment strategies for patients with ALK and ROS1 inhibitor-resistant mutations.
Collapse
Affiliation(s)
- Yingxue Li
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yanna Lv
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Cheng Zhang
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Binyu Fu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China
| | - Yue Liu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| | - Jinxing Hu
- Weifang Medical University, No.7166 Baotong Road, Weifang, 261053, PR China.
| |
Collapse
|
5
|
Discovery of novel 2-phenylamino-4-prolylpyrimidine derivatives as TRK/ALK dual inhibitors with promising antitumor effects. Bioorg Med Chem 2021; 47:116396. [PMID: 34534734 DOI: 10.1016/j.bmc.2021.116396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023]
Abstract
In order to explore novel TRK and ALK dual inhibitors, a series of 2-phenylamino-4-prolylpyrimidine derivatives were designed, synthesized and evaluated for their in vitro cytotoxicity and enzymatic activities. Delightfully, most compounds were detected moderated to excellent activities in cellular assay. Among them, compound 21 exhibited encouraging cytotoxicity on KM12, H2228 and KARPAS299 cells with IC50 values of 0.86, 0.141 and 0.072 μM. Meanwhile, the performances of 21 in the enzymatic assays were in good accordance with anti-proliferative activity with IC50 values of 2.2, 9.3 and 38 nM towards TRKA, ALKWT and ALKL1196M, respectively. Compared with Entrectinib, compound 21 not only ensured the inhibitory activity on TRKA, but also improved the affinity with ALK and ALKL1196M to a certain extent. Ultimately, the binding model of 21 with TRKA and ALK were ideally established through molecular docking, which further confirmed the SARs analysis.
Collapse
|