1
|
Zhang S, Wang L, Lu Y, Guo C, Zhang T, Zhang L. Targeting spleen tyrosine kinase (SYK): structure, mechanisms and drug discovery. Drug Discov Today 2025; 30:104257. [PMID: 39653169 DOI: 10.1016/j.drudis.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Spleen tyrosine kinase (SYK) is a crucial non-receptor tyrosine kinase involved in signaling pathways that regulate various cellular processes. It is primarily expressed in hematopoietic cells and myeloid cells, which are crucial for B-cell development, maturation and antibody production, and it is a key therapeutic target for autoimmune and allergic diseases. Overexpression of SYK is also associated with cancer and cardiovascular, cerebrovascular and neurodegenerative diseases, contributing to their initiation and progression. SYK is a promising target for drug development, and several inhibitors have already been reported. This review covers the structure and regulatory pathways of SYK, as well as its links to various diseases. It also highlights key small-molecule SYK inhibitors, their design strategies and their potential therapeutic benefits, aiming to enhance our understanding and aid in the discovery of more-effective SYK inhibitors.
Collapse
Affiliation(s)
- Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lilin Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chuanxin Guo
- Nucleic Acid Division, Shanghai Cell Therapy Group, Shanghai 201805, China.
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
2
|
Hu MT, Ma WC, Wang JH, Jiang XQ, Yang DQ, Ao JY. Mechanistic insights into the allosteric inactivation mechanism of ZAP-70 induced by the hot spot W165C mutation. J Biomol Struct Dyn 2024; 42:7600-7609. [PMID: 37505058 DOI: 10.1080/07391102.2023.2240421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Zeta chain-associated protein kinase 70 (ZAP-70) is a non-receptor tyrosine kinase that interacts with the activated T-cell receptor to transduce downstream signals, and thus plays an important role in the adaptive immune system. The biphosphorylated immunotyrosine-based activation motifs (ITAM-Y2P) binds to the N-SH2 and C-SH2 domains of ZAP-70 to promote the activation of ZAP-70. The present study explores molecular mechanisms of allosteric inactivation of ZAP-70 induced by the hot spot W165C mutation through atomically detailed molecular dynamics simulation approaches. We report microsecond-length simulations of two states of the tandem SH2 domains of ZAP-70 in complex with the ITAM-Y2P motif, including the wild-type and W165C mutant. Extensive analysis of local flexibility and dynamical correlated motions show that W165C mutation changes coupled motions of protein domains and community networks. The binding affinities of the ITAM-Y2P motif to the wild-type and W165C mutant of ZAP-70 are predicted using binding free energy calculations. The results suggest that the driving force to decrease the binding affinity in the W165C mutant derives from the difference in the protein-protein electrostatic interactions. Moreover, the per-residue free energy decomposition unravels that the contributions from residues in the phosphorylated Tyr315 (pY315) binding site, in particular pY315 of ITAM-Y2P, and Arg43, Tyr240 of ZAP-70, are the key determinants for the loss of binding affinity. This study may insights into our understanding of the pathological mechanism of ZAP-70.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ming-Tai Hu
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Cong Ma
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing-Han Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Qing Jiang
- Department of Biliary Tract Surgery I, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Da-Qing Yang
- Department of General Surgery, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, Zhejiang, China
| | - Jian-Yang Ao
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
4
|
Rao D, Yang T, Feng H, An Q, Zhang S, Yu J, Ren X, Diao X, Huang H, Tang W, Xu S. Discovery and Structural Optimization of Covalent ZAP-70 Kinase Inhibitors against Psoriasis. J Med Chem 2023; 66:12018-12032. [PMID: 37594408 DOI: 10.1021/acs.jmedchem.3c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease closely related with T cells, and its management remains a challenge. Novel targets and associated drugs are urgently needed. Zeta-chain-associated protein kinase 70 kDa (ZAP-70) has been recognized as a potential target for treating autoimmune diseases due to its crucial role in T cell receptor signaling. In our previous work, we identified a potent and selective covalent ZAP-70 inhibitor with anti-inflammatory activity in vitro. Herein, we report the structural optimization of covalent ZAP-70 inhibitors. Our efforts led to the discovery of compound 25 (RDN2150), which exhibited potent inhibitory activity against ZAP-70 and favorable selectivity. It also demonstrated promising inhibitory effects on T cell activation and inflammatory cytokine production. Furthermore, a topical application of 25 resulted in significant efficacy in an imiquimod-induced psoriasis mouse model. Overall, these findings present the basis of a promising strategy for the treatment of psoriasis by targeting ZAP-70.
Collapse
Affiliation(s)
- Danni Rao
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Tao Yang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Huixu Feng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi An
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaofeng Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinghua Yu
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingxing Diao
- Center for Drug Metabolism and Pharmacokinetics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - He Huang
- Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Fernandez CA. Pharmacological strategies for mitigating anti-TNF biologic immunogenicity in rheumatoid arthritis patients. Curr Opin Pharmacol 2023; 68:102320. [PMID: 36580770 PMCID: PMC10540078 DOI: 10.1016/j.coph.2022.102320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 12/28/2022]
Abstract
Tumor necrosis factor alpha (TNFα) inhibitors are a mainstay of treatment for rheumatoid arthritis (RA) patients after failed responses to conventional disease-modifying antirheumatic drugs (DMARDs). Despite the clinical efficacy of TNFα inhibitors (TNFi), many RA patients experience TNFi treatment failure due to the development of anti-drug antibodies (ADAs) that can neutralize drug levels and lead to RA disease relapse. Methotrexate (MTX) therapy with concomitant TNFα inhibitors decreases the risk of TNFi immunogenicity, but additional and/or alternative strategies are needed to reduce MTX-associated toxicities and to further increase its potency for preventing TNFα inhibitor immunogenicity. In this review, we highlight the limitations of MTX for mitigating TNFα inhibitor immunogenicity, and we discuss potential alternative pharmacological targets for decreasing the risk of immunogenicity during TNFα inhibitor therapy based on the key kinases, second messengers, and shared signaling mechanisms of lymphocyte receptor signaling.
Collapse
Affiliation(s)
- Christian A Fernandez
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Leveille E, Chan LN, Mirza AS, Kume K, Müschen M. SYK and ZAP70 kinases in autoimmunity and lymphoid malignancies. Cell Signal 2022; 94:110331. [PMID: 35398488 DOI: 10.1016/j.cellsig.2022.110331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022]
Abstract
SYK and ZAP70 nonreceptor tyrosine kinases serve essential roles in initiating B-cell receptor (BCR) and T-cell receptor (TCR) signaling in B- and T-lymphocytes, respectively. Despite their structural and functional similarity, expression of SYK and ZAP70 is strictly separated during B- and T-lymphocyte development, the reason for which was not known. Aberrant co-expression of ZAP70 with SYK was first identified in B-cell chronic lymphocytic leukemia (CLL) and is considered a biomarker of aggressive disease and poor clinical outcomes. We recently found that aberrant ZAP70 co-expression not only functions as an oncogenic driver in CLL but also in various other B-cell malignancies, including acute lymphoblastic leukemia (B-ALL) and mantle cell lymphoma. Thereby, aberrantly expressed ZAP70 redirects SYK and BCR-downstream signaling from NFAT towards activation of the PI3K-pathway. In the sole presence of SYK, pathological BCR-signaling in autoreactive or premalignant cells induces NFAT-activation and NFAT-dependent anergy and negative selection. In contrast, negative selection of pathological B-cells is subverted when ZAP70 diverts SYK from activation of NFAT towards tonic PI3K-signaling, which promotes survival instead of cell death. We discuss here how both B-cell malignancies and autoimmune diseases frequently evolve to harness this mechanism, highlighting the importance of developmental separation of the two kinases as an essential safeguard.
Collapse
Affiliation(s)
- Etienne Leveille
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lai N Chan
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abu-Sayeef Mirza
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kohei Kume
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA; Department of Immunobiology, Yale University, CT 06520, USA.
| |
Collapse
|
7
|
Expanding the Diversity at the C-4 Position of Pyrido[2,3- d]pyrimidin-7(8 H)-ones to Achieve Biological Activity against ZAP-70. Pharmaceuticals (Basel) 2021; 14:ph14121311. [PMID: 34959711 PMCID: PMC8703703 DOI: 10.3390/ph14121311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Pyrido[2,3-d]pyrimidin-7(8H)-ones have attracted widespread interest due to their similarity with nitrogenous bases found in DNA and RNA and their potential applicability as tyrosine kinase inhibitors. Such structures, presenting up to five diversity centers, have allowed the synthesis of a wide range of differently substituted compounds; however, the diversity at the C4 position has mostly been limited to a few substituents. In this paper, a general synthetic methodology for the synthesis of 4-substituted-2-(phenylamino)-5,6-dihydropyrido[2,3-d]pyrimidin-7(8H)-ones is described. By using cross-coupling reactions, such as Ullmann, Buchwald–Hartwig, Suzuki–Miyaura, or Sonogashira reactions, catalyzed by Cu or Pd, we were able to describe new potential biologically active compounds. The resulting pyrido[2,3-d]pyrimidin-7(8H)-ones include N-alkyl, N-aryl, O-aryl, S-aryl, aryl, and arylethynyl substituents at C4, which have never been explored in connection with the biological activity of such heterocycles as tyrosine kinase inhibitors, in particular as ZAP-70 inhibitors.
Collapse
|