1
|
Jiang Q, Zhong H, Wu C, Li J, Chen J, Zhou X, Li B, Yu H, Wang W, Sheng W. Design, synthesis and biological activity of novel Xuetongsu derivatives as potential anticancer agents by inducing apoptosis. J Enzyme Inhib Med Chem 2025; 40:2482140. [PMID: 40197120 PMCID: PMC11983529 DOI: 10.1080/14756366.2025.2482140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
Xuetongsu (XTS, Schisanlactone E) is one of the main active compounds and considered as the star molecule isolated from Kadsura heteroclita (Roxb.) Craib. In order to improve XTS anti-tumour bioactivities, a series of novel XTS derivatives were designed and synthesised by introducing an amide bond at the parent. Anti-proliferative assays on four different human tumour cell lines (BGC-823, HepG-2, HCT-116, and MCF-7) showed that the anti-tumour activities of most derivatives increased greatly compared to the parent XTS, and especially, compounds A-7, A-14, and A-18 exhibited multiple anti-tumour effects. Among them, compound A-7 has the best biological activities on the four tumour cell lines with the IC50 values ranging from 13.86 to 20.71 μM, which could significantly increase the fraction of apoptotic cells according to flow cytometry experience. Further study demonstrated that A-7 could induce apoptosis on HepG-2 cells through influencing the key apoptotic related proteins, such as Bcl-2, Bax, and cleaved Caspase-3.
Collapse
Affiliation(s)
- Qi Jiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hui Zhong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Cong Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jingmin Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xudong Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Bin Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Huanghe Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Wenbing Sheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Liu X, Su YX, Yang YM, Li RT, Zhang ZJ. The Small Molecules of Plant Origin with Anti-Glioma Activity. Int J Mol Sci 2025; 26:1942. [PMID: 40076568 PMCID: PMC11900624 DOI: 10.3390/ijms26051942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Gliomas, originating from glial cells, are prevalent and aggressive brain tumors with high recurrence rates and poor prognosis. Despite advancements in surgical, radiation, and chemotherapeutic treatments, the survival rates remain low. Current standard therapies, such as Temozolomide, have limitations due to cytotoxicity, restricted effectiveness, and severe side effects. So, the development of safer anti-glioma agents is the need of the hour. Bioactive compounds of plant origin, either natural or synthetic, have potential implications due to them actively attacking different targets with a wide range of bioactivities, including anti-glioma activities. In this review, for the first time, there is an overall overview of 51 small molecules of plant origin and seven of their synthetic derivatives, represented as anti-glioma agents in the past decades. The goal of the present review is to provide a summary to comprehend the anti-glioma effects of these compounds in addition to providing a reference for preclinical research into novel anti-glioma agents for future clinical application.
Collapse
Affiliation(s)
| | | | | | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (Y.-X.S.); (Y.-M.Y.)
| | - Zhi-Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (Y.-X.S.); (Y.-M.Y.)
| |
Collapse
|
3
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024; 82:3157-3208. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Kuzminska J, Szyk P, Mlynarczyk DT, Bakun P, Muszalska-Kolos I, Dettlaff K, Sobczak A, Goslinski T, Jelinska A. Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment. Molecules 2024; 29:5321. [PMID: 39598712 PMCID: PMC11596437 DOI: 10.3390/molecules29225321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Curcumin, a naturally occurring compound found in the rhizome of Curcuma plants, particularly in turmeric (Curcuma longa L.), exhibits a broad range of biological activities, including anti-inflammatory, antioxidant, and anticancer properties. Curcumin has demonstrated effectiveness in inhibiting tumor growth, arousing interest for its potential in treating various cancers, such as breast, lung, prostate, and brain cancers. However, the clinical application of curcumin is limited due to its low chemical stability, poor water solubility, and low bioavailability. In response to these challenges, structural modifications of curcumin have been explored to improve its pharmacological properties, including enhanced anticancer selectivity index and bioavailability. This review highlights promising chemical modifications of curcumin that could lead to the development of more effective anticancer therapies. By functionalizing the parent curcumin molecule, researchers aim to create more stable and bioavailable compounds with enhanced therapeutic potential, making curcumin derivatives promising candidates for medical applications.
Collapse
Affiliation(s)
- Joanna Kuzminska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Piotr Szyk
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Katarzyna Dettlaff
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Agnieszka Sobczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Anna Jelinska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| |
Collapse
|
5
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
6
|
Zhang J, Zhu W, Ma Y, Huang X, Su W, Sun Y, Liu Q, Ma T, Ma L, Sun J, Fan S, Wang X, Lin S, Wang W, Han C. Triphenylphosphonium-linked derivative of hecogenin with enhanced antiproliferative activity: Design, synthesis, and biological evaluation. Bioorg Chem 2024; 145:107210. [PMID: 38364551 DOI: 10.1016/j.bioorg.2024.107210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Hecogenin (HCG), a steroidal sapogenin, possesses good antitumor properties. However, the application of HCG for cancer treatment has been hindered primarily by its moderate potency. In this study, we incorporated triphenylphosphonium cation (TPP+) at the C-3 and C-12 positions through different lengths of alkyl chains to target mitochondria and enhance the efficacy and selectivity of the parent compound. Cytotoxicity screening revealed that most of the target compounds exhibited potent antiproliferative activity against five human cancer cell lines (MKN45, A549, HCT-116, MCF-7, and HepG2). Structure-activity relationship studies indicated that the TPP+ group significantly enhanced the antiproliferative potency of HCG. Among these compounds, 3c demonstrated remarkable potency against MKN45 cells with an IC50 value of 0.48 μM, significantly more effective than its parent compound HCG (IC50 > 100 μM). Further investigations into the mechanism of action revealed that 3c induced apoptosis of MKN45 cells through the mitochondrial pathway. In a zebrafish xenograft model, 3c inhibited the proliferation of MKN45 cells. Overall, these results suggest that 3c, with potent antiproliferative activity, may serve as a valuable scaffold for developing new antitumor agents.
Collapse
Affiliation(s)
- Jinling Zhang
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenquan Zhu
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yukun Ma
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Xiaoying Huang
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenle Su
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Yu Sun
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Qi Liu
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Tiancheng Ma
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Liwei Ma
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Jia Sun
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Songjie Fan
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Xiaoli Wang
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Song Lin
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China
| | - Wenbao Wang
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| | - Cuiyan Han
- Qiqihar Medical University, Qiqihar 161006, Heilongjiang, PR China.
| |
Collapse
|
7
|
Dai H, Zhang S, Zheng X, Luo Z, Chen H, Yao X. Advances in β-Diketocyclisation of Curcumin Derivatives and their Antitumor Activity. Chem Biodivers 2024; 21:e202301556. [PMID: 38095134 DOI: 10.1002/cbdv.202301556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Curcumin, derived from the popular spice turmeric, is a pharmacologically active polyphenol. Curcumin's therapeutic activity has been extensively studied in recent decades, with reports implicating curcumin in many biological activities, particularly, its significant anticancer activity. However, its potential as an oral administration product is hampered by poor bioavailability, which is associated with a variety of factors, including low water solubility, poor intestinal permeability, instability, and degradation at alkaline pH. To improve its bioavailability, modifying β-diketone curcumin with heterocycles, such as pyrazole, isoxazole and triazole is a powerful strategy. Derivatives are synthesized while maintaining the basic skeleton of curcumin. The β-diketone cyclized curcumin derivatives are regulators of multiple molecular targets, which play vital roles in a variety of cellular pathways. In some literatures, structurally modified curcumin derivatives have been compared with curcumin, and the former has enhanced biological activity, improved water solubility and stability. Therefore, the scope of this review is to report the most recently synthesized heterocyclic derivatives and to classify them according to their chemical structures. Several of the most important and effective compounds are reviewed by introducing different active groups into the β-diketone position to achieve better therapeutic efficacy and bioavailability.
Collapse
Affiliation(s)
- Hailong Dai
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Si Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan, 410004, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan, 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan, 422000, China
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
8
|
Wang ZF, Huang XQ, Wu RC, Xiao Y, Zhang SH. Antitumor studies evaluation of triphenylphosphine ruthenium complexes with 5,7-dihalo-substituted-8-quinolinoline targeting mitophagy pathways. J Inorg Biochem 2023; 248:112361. [PMID: 37659141 DOI: 10.1016/j.jinorgbio.2023.112361] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Both ruthenium-containing complexes and 8-quinolinoline compounds have emerged as a potential novel agent for malignant tumor therapy. Here, three triphenylphosphine ruthenium complexes, [Ru(ZW1)(PPh3)2Cl2] (PPh3 = triphenylphosphine) (RuZ1), [Ru(ZW2)(PPh3)2Cl2] (RuZ2) and [Ru(ZW2)2(PPh3)Cl2]·CH2Cl2 (RuZ3) bearing 5,7-dichloro-8-quinolinol (H-ZW1) and 5,7-dichloro-8-hydroxyquinaldine (H-ZW2), have been synthesized, characterized and tested for their anticancer potential. We showed that triphenylphosphine ruthenium complexes RuZ1-RuZ3 impaired the cell viability of ovarian adenocarcinoma cisplatin-resistant SK-OV-3/DDP (SKO3CR) and SK-OV-3 (SKO3) cancer cells with greater selectivity and specificity than cisplatin. In addition, RuZ1-RuZ3 show higher excellent cytotoxicity than cisplatin towards SKO3CR cells, with IC50 values of 9.66 ± 1.08, 4.05 ± 0.67 and 7.18 ± 0.40 μM, respectively, in which the SKO3CR cells was the most sensitive to RuZ1-RuZ3. Depending on the substituent type, the antiproliferative ability of RuZ1-RuZ3 followed the trend: -CH3 > -H. However, RuZ1-RuZ3 have no obvious toxicity to normal cell HL-7702. Besides, RuZ1 and RuZ2 could induce mitophagy related-apoptosis pathways through suppression of mitochondrial membrane potential (ΔΨm), accumulation of [Ca2+] and reactive oxygen species (ROS), and regulation of LC3 II/LC3 I, Beclin-1, P62, FUNDC1, PINK1, Parkin, cleaved-caspase-3, caspase-9 and cytochrome c signaling pathway, and hindering the preparation of mitochondrial respiration complexes I and IV and ATP levels. Mechanistic study revealed that RuZ1 and RuZ2 induce apoptosis in SKO3CR cells via mitophagy related-apoptosis pathways induction and energy (ATP) generation disturbance. Taken together, the studied triphenylphosphine ruthenium complexes RuZ1-RuZ3 are promising chemotherapeutic agents with high effectiveness and low toxicity.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China
| | - Xiao-Qiong Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Run-Chun Wu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yu Xiao
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China.
| | - Shu-Hua Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, PR China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, Guilin University of Technology, Guilin, PR China.
| |
Collapse
|
9
|
Musicco C, Signorile A, Pesce V, Loguercio Polosa P, Cormio A. Mitochondria Deregulations in Cancer Offer Several Potential Targets of Therapeutic Interventions. Int J Mol Sci 2023; 24:10420. [PMID: 37445598 DOI: 10.3390/ijms241310420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondria play a key role in cancer and their involvement is not limited to the production of ATP only. Mitochondria also produce reactive oxygen species and building blocks to sustain rapid cell proliferation; thus, the deregulation of mitochondrial function is associated with cancer disease development and progression. In cancer cells, a metabolic reprogramming takes place through a different modulation of the mitochondrial metabolic pathways, including oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, glutamine and heme metabolism. Alterations of mitochondrial homeostasis, in particular, of mitochondrial biogenesis, mitophagy, dynamics, redox balance, and protein homeostasis, were also observed in cancer cells. The use of drugs acting on mitochondrial destabilization may represent a promising therapeutic approach in tumors in which mitochondrial respiration is the predominant energy source. In this review, we summarize the main mitochondrial features and metabolic pathways altered in cancer cells, moreover, we present the best known drugs that, by acting on mitochondrial homeostasis and metabolic pathways, may induce mitochondrial alterations and cancer cell death. In addition, new strategies that induce mitochondrial damage, such as photodynamic, photothermal and chemodynamic therapies, and the development of nanoformulations that specifically target drugs in mitochondria are also described. Thus, mitochondria-targeted drugs may open new frontiers to a tailored and personalized cancer therapy.
Collapse
Affiliation(s)
- Clara Musicco
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, 70126 Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
10
|
Wang Q, Li S, Xu C, Hua A, Wang C, Xiong Y, Deng Q, Chen X, Yang T, Wan J, Ding ZY, Zhang BX, Yang X, Li Z. A novel lonidamine derivative targeting mitochondria to eliminate cancer stem cells by blocking glutamine metabolism. Pharmacol Res 2023; 190:106740. [PMID: 36958408 DOI: 10.1016/j.phrs.2023.106740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Cancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC50 values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND. Mechanistically, we reveal that HYL001 downregulates glutaminase (GLS) expression to block glutamine metabolism, blunt tricarboxylic acid cycle, and amplify mitochondrial oxidative stress, leading to apoptotic cell death. Therefore, HYL001 displays significant antitumor activity in vivo, both as a single agent and combined with paclitaxel. Furthermore, HYL001 represses CSCs of fresh tumor tissues derived from liver cancer patients. This study provides critical implications for CSCs biology and development of potent anti-CSCs drugs.
Collapse
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
11
|
Du LQ, Zhang TY, Huang XM, Xu Y, Tan MX, Huang Y, Chen Y, Qin QP. Synthesis and anticancer mechanisms of zinc(II)-8-hydroxyquinoline complexes with 1,10-phenanthroline ancillary ligands. Dalton Trans 2023; 52:4737-4751. [PMID: 36942929 DOI: 10.1039/d3dt00150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Twenty new zinc(II) complexes with 8-hydroxyquinoline (H-Q1-H-Q6) in the presence of 1,10-phenanthroline derivatives (D1-D10) were synthesized and formulated as [Zn(Q1)2(D1)] (DQ1), [Zn(Q2)2(D2)]·CH3OH (DQ2), [Zn(Q1)2(D3)] (DQ3), [Zn(Q1)2(D4)] (DQ4), [Zn(Q3)2(D5)] (DQ5), [Zn(Q3)2(D4)] (DQ6), [Zn(Q4)2(D5)]·CH3OH (DQ7), [Zn(Q4)2(D6)] (DQ8), [Zn(Q4)2(D3)]·CH3OH (DQ9), [Zn(Q4)2(D1)]·H2O (DQ10), [Zn(Q5)2(D4)] (DQ11), [Zn(Q6)2(D6)]·CH3OH (DQ12), [Zn(Q5)2(D2)]·5CH3OH·H2O (DQ13), [Zn(Q5)2(D7)]·CH3OH (DQ14), [Zn(Q5)2(D8)]·CH2Cl2 (DQ15), [Zn(Q5)2(D9)] (DQ16), [Zn(Q5)2(D1)] (DQ17), [Zn(Q5)2(D5)] (DQ18), [Zn(Q5)2(D10)]·CH2Cl2 (DQ19) and [Zn(Q5)2(D3)] (DQ20). They were characterized using multiple techniques. The cytotoxicity of DQ1-DQ20 was screened using human cisplatin-resistant SK-OV-3/DDP ovarian cancer (SK-OV-3CR) cells and normal hepatocyte (HL-7702) cells. Complex DQ6 showed low IC50 values (2.25 ± 0.13 μM) on SK-OV-3CR cells, more than 3.0-8.0 times more cytotoxic than DQ1-DQ5 and DQ7-DQ20 (≥6.78 μM), and even 22.2 times more cytotoxic than the standard cisplatin, the corresponding free H-Q1-H-Q6 and D1-D10 alone (>50 μM). As a comparison, DQ1-DQ20 displayed nontoxic rates against healthy HL-7702 cells. Furthermore, DQ6 and DQ11 induced significant apoptosis via mitophagy pathways. DQ6 also significantly inhibited tumor growth in an in vivo SK-OV-3-xenograft model (ca. 49.7%). Thus, DQ6 may serve as a lead complex for the discovery of new antitumor agents.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Tian-Yu Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yue Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yuan Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
12
|
Charlton NC, Mastyugin M, Török B, Török M. Structural Features of Small Molecule Antioxidants and Strategic Modifications to Improve Potential Bioactivity. Molecules 2023; 28:molecules28031057. [PMID: 36770724 PMCID: PMC9920158 DOI: 10.3390/molecules28031057] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This review surveys the major structural features in various groups of small molecules that are considered to be antioxidants, including natural and synthetic compounds alike. Recent advances in the strategic modification of known small molecule antioxidants are also described. The highlight is placed on changing major physicochemical parameters, including log p, bond dissociation energy, ionization potential, and others which result in improved antioxidant activity.
Collapse
|
13
|
Design, Synthesis, Biological Evaluation, and Preliminary Mechanistic Study of a Novel Mitochondrial-Targeted Xanthone. Molecules 2023; 28:molecules28031016. [PMID: 36770683 PMCID: PMC9920806 DOI: 10.3390/molecules28031016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
α-Mangostin, a natural xanthone, was found to have anticancer effects, but these effects are not sufficient to be effective. To increase anticancer potential and selectivity, a triphenylphosphonium cation moiety (TPP) was introduced to α-mangostin to specifically target cancer cell mitochondria. Compared to the parent compound, the cytotoxicity of the synthesized compound 1b increased by one order of magnitude. Mechanistic analysis revealed that the anti-tumor effects were involved in the mitochondrial apoptotic pathway by prompting apoptosis and arresting the cell cycle at the G0/G1 phase, increasing the production of reactive oxygen species (ROS), and reducing mitochondrial membrane potential (Δψm). More notably, the antitumor activity of compound 1b was further confirmed by zebrafish models, which remarkably inhibited cancer cell proliferation and migration, as well as zebrafish angiogenesis. Taken together, our results for the first time indicated that TPP-linked 1b could lead to the development of new mitochondrion-targeting antitumor agents.
Collapse
|
14
|
Zhong J, Hong Z, Huang S, Zhong Q, Zhang L, Zhao S, Liang H, Huang FP. A triphenylphosphine coordinated Cu(I) Fenton-like agent with ferrocene moieties for enhanced chemodynamic therapy. Dalton Trans 2022; 51:18054-18058. [PMID: 36373723 DOI: 10.1039/d2dt03088h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A triphenylphosphine coordinated Cu(I) complex of Fc-OD-Cu was rationally designed for chemodynamic therapy (CDT) of cancer. The complex was capable of generating a highly toxic hydroxyl radical (˙OH) via a Fenton-like reaction induced by Cu(I) moieties and simultaneously mediated by ferrocene moieties. As a result, the CDT efficiency of Fc-OD-Cu is higher than that of Ba-OD-Cu (without ferrocene moieties) and Fc-OD (without Cu(I) moieties).
Collapse
Affiliation(s)
- Jingjing Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhaoguo Hong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Sudi Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Qiongqiong Zhong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Ping Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
15
|
Lin Y, Zhang Y, Wang D, Yang B, Shen YQ. Computer especially AI-assisted drug virtual screening and design in traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154481. [PMID: 36215788 DOI: 10.1016/j.phymed.2022.154481] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM), as a significant part of the global pharmaceutical science, the abundant molecular compounds it contains is a valuable potential source of designing and screening new drugs. However, due to the un-estimated quantity of the natural molecular compounds and diversity of the related problems drug discovery such as precise screening of molecular compounds or the evaluation of efficacy, physicochemical properties and pharmacokinetics, it is arduous for researchers to design or screen applicable compounds through old methods. With the rapid development of computer technology recently, especially artificial intelligence (AI), its innovation in the field of virtual screening contributes to an increasing efficiency and accuracy in the process of discovering new drugs. PURPOSE This study systematically reviewed the application of computational approaches and artificial intelligence in drug virtual filtering and devising of TCM and presented the potential perspective of computer-aided TCM development. STUDY DESIGN We made a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Then screening the most typical articles for our research. METHODS The systematic review was performed by following the PRISMA guidelines. The databases PubMed, EMBASE, Web of Science, CNKI were used to search for publications that focused on computer-aided drug virtual screening and design in TCM. RESULT Totally, 42 corresponding articles were included in literature reviewing. Aforementioned studies were of great significance to the treatment and cost control of many challenging diseases such as COVID-19, diabetes, Alzheimer's Disease (AD), etc. Computational approaches and AI were widely used in virtual screening in the process of TCM advancing, which include structure-based virtual screening (SBVS) and ligand-based virtual screening (LBVS). Besides, computational technologies were also extensively applied in absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction of candidate drugs and new drug design in crucial course of drug discovery. CONCLUSIONS The applications of computer and AI play an important role in the drug virtual screening and design in the field of TCM, with huge application prospects.
Collapse
Affiliation(s)
- Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - You Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Xu C, Xiao L, Lin P, Yang X, Zou X, Mu L, Yang X. Synthesis and Antitumor Activities of Novel Mitochondria-Targeted Dihydroartemisinin Ether Derivatives. ACS OMEGA 2022; 7:38832-38846. [PMID: 36340114 PMCID: PMC9631890 DOI: 10.1021/acsomega.2c04562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ten novel mitochondria-targeted dihydroartemisinin ether derivatives were designed, synthesized, and evaluated for antitumor activity against five cancer cell lines in vitro. Profoundly, compound D8-T (IC50 = 56.9 nM) showed the most potent antiproliferative activity against the T24 cells with low cytotoxicity in normal human umbilical vein endothelial cells. High-performance liquid chromatography analysis confirmed that D8-T targeted mitochondria 6.3-fold higher than DHA. ATP content assay demonstrated that D8-T decreased the ATP level of bladder cancer cells. The effect of D8-T on cell apoptosis was determined by flow cytometry and western blot of Bax and Bcl-2. Surprisingly, the results indicated that D8-T did not induce bladder cancer cell apoptosis. In contrast, the cell cycle analysis and western blot of CDK4, CDK6, cyclin D1, and p21 demonstrated that the cancer cell cycle was arrested at the G1 phase after D8-T treatment. Furthermore, the consistent results were received by RNA-seq assay. These promising findings implied that D8-T could serve as a great candidate against bladder cancer for further investigation.
Collapse
|
17
|
Huang D, Liu Q, Zhang M, Guo Y, Cui Z, Li T, Luo D, Xu B, Huang C, Guo J, Tam KY, Zhang M, Zhang SL, He Y. A Mitochondria-Targeted Phenylbutyric Acid Prodrug Confers Drastically Improved Anticancer Activities. J Med Chem 2022; 65:9955-9973. [PMID: 35818137 DOI: 10.1021/acs.jmedchem.2c00640] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phenylbutyric acid (PBA) has been reported as a dual inhibitor of pyruvate dehydrogenase kinases (PDKs) and histone deacetylases (HDACs), exhibiting anticancer effects. However, the low membrane permeability and poor cellular uptake limit its access to the target organelle, resulting in weak potencies against the intended targets. Herein, we report the design and identification of a novel 4-CF3-phenyl triphenylphosphonium-based PBA conjugate (53) with improved in vitro and in vivo anticancer activities. Compound 53 exhibited an IC50 value of 2.22 μM against A375 cells, outperforming the parent drug PBA by about 4000-fold. In the A375 cell-derived xenograft mouse model, 53 reduced the tumor growth by 76% at a dose of 40 mg/kg, while PBA only reduced the tumor growth by 10% at a dose of 80 mg/kg. On the basis of these results, 53 may be considered for further preclinical evaluations for cancer therapy.
Collapse
Affiliation(s)
- Ding Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Qingwang Liu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Maojie Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhen Guo
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Zhiying Cui
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Tao Li
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Dong Luo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Biao Xu
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chao Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Jian Guo
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR 999078, P. R. China
| | - Min Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
18
|
Mohamadian M, Ahmadi SS, Bahrami A, Ferns GA. Review on the Therapeutic Potential of Curcumin and its Derivatives on Glioma Biology. Neurochem Res 2022; 47:2936-2953. [PMID: 35790698 DOI: 10.1007/s11064-022-03666-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
Abstract
Gliomas are common and aggressive brain tumors that carry a poor prognosis. The current multimodal therapeutic option for glioma includes surgery subsequently temozolomide chemotherapy and/or radiation; but gliomas are often associated with multidrug resistance, intensive adverse events, and tumor relapse. Thus, novel interventions that can enhance successful chemo-prevention and overcome therapeutic resistance are urgently needed. Phytochemicals have several biological properties with multi-target sites and relatively limited degrees of toxicity. Curcumin is a natural polyphenolic compound with several anti-tumor effects which potentially inhibit tumor growth, development, proliferation, invasion, dissemination, and angiogenesis in different human malignancies. Experimental model studies have demonstrated that curcumin attenuates glioma cell viability by G2/M cell cycle arrest, apoptosis, induction of autophagy, gene expression alteration, and disruption of multi-molecular pathways. Moreover, curcumin has been reported to re-sensitize cancer to chemotherapeutics as well as augment the effect of radiotherapy on glioma cells. In this review, we have provided an update on the in vitro and in vivo effects of curcumin-based therapy on gliomas. We have also discussed the use of curcumin in combination therapies, its effectiveness on drug-resistant cells, and new formulations of curcumin in the treatment of gliomas.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. .,Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, BN1 9PH, Sussex, UK
| |
Collapse
|
19
|
Design, synthesis and anti-tumor activity of novel benzothiophenonaphthalimide derivatives targeting mitochondrial DNA (mtDNA) G-quadruplex. Biochem Pharmacol 2022; 201:115062. [DOI: 10.1016/j.bcp.2022.115062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
|
20
|
Castelôa M, Moreira-Pinto B, Benfeito S, Borges F, Fonseca BM, Rebelo I. In Vitro Effects of Mitochondria-Targeted Antioxidants in a Small-Cell Carcinoma of the Ovary of Hypercalcemic Type and in Type 1 and Type 2 Endometrial Cancer. Biomedicines 2022; 10:biomedicines10040800. [PMID: 35453550 PMCID: PMC9030827 DOI: 10.3390/biomedicines10040800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Small-cell carcinoma of the ovary of hypercalcemic type (SCCOHT) and endometrial cancer from type 1 and type 2 are gynecological tumors that affect women worldwide. The treatment encompasses the use of cytotoxic drugs that are nonspecific and inefficient. “Mitocans”, a family of drugs that specifically target tumor cells’ mitochondria, might be a solution, as they conjugate compounds, such as antioxidants, with carriers, such as lipophilic cations, that direct them to the mitochondria. In this study, caffeic acid was conjugated with triphenylphosphonium (TPP), 4-picolinium, or isoquinolinium, forming 3 new compounds (Mito6_TPP, Mito6_picol., and Mito6_isoq.) that were tested on ovarian (COV434) and endometrial (Hec50co and Ishikawa) cancer cells. The results of MTT and neutral red assays suggested a time- and concentration-dependent decrease in cell viability in all tumor cell lines. The presence of apoptosis was indicated by the Giemsa and Höechst staining and by the decrease in mitochondrial membrane potential. The measurement of intracellular reactive oxygen species demonstrated the antioxidant properties of these compounds, which might be related to cell death. Generally, Mito6_TPP was more active at lower concentrations than Mito6_picol. or Mito6_isoq., but was accompanied by more cytotoxic effects, as shown by the lactate dehydrogenase release. Non-tumorous cells (HFF-1) showed no changes after treatment. This study assessed the potential of these compounds as anticancer agents, although further investigation is needed.
Collapse
Affiliation(s)
- Mariana Castelôa
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Beatriz Moreira-Pinto
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Benfeito
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal; (M.C.); (S.B.); (F.B.)
| | - Bruno M. Fonseca
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.M.F.); (I.R.)
| | - Irene Rebelo
- UCIBIO, Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Laboratory of Biochemistry, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (B.M.F.); (I.R.)
| |
Collapse
|
21
|
Yaqoob MD, Xu L, Li C, Leong MML, Xu DD. Targeting Mitochondria for Cancer Photodynamic Therapy. Photodiagnosis Photodyn Ther 2022; 38:102830. [PMID: 35341979 DOI: 10.1016/j.pdpdt.2022.102830] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Cancer remains a health-related concern globally from the ancient times till to date. The application of light to be used as therapeutic potential/agent has been used for several thousands of years. Photodynamic therapy (PDT) is a modern, non-invasive therapeutic modality for the treatment of various infections by bacteria, fungi, and viruses. Mitochondria are subcellular, double-membrane organelles that have the role in cancer and anticancer therapy. Mitochondria play a key role in regulation of apoptosis and these organelles produce most of the cell's energy which enhance its targeting objective. The role of mitochondria in anticancer approach is achieved by targeting its metabolism (glycolysis and TCA cycle) and apoptotic and ROS homeostasis. The role of mitochondria-targeted cancer therapies in photodynamic therapy have proven to be more effective than other similar non-targeting techniques. Particularly in PDT, mitochondria-targeting sensitizers are important as they have a crucial role in overcoming the hypoxia factor, resulting in high efficacy. IR-730 and IR-Pyr are the indocyine derivatives photosensitizers that play a crucial role in targeting mitochondria because of their better photostability during laser irradiation. Clinical and pre-clinical trials are going on this approach to target different solid tumors using mitochondrial targeted photodynamic therapy.
Collapse
Affiliation(s)
- Muhammad Danish Yaqoob
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China; Binzhou Medical University, Yantai, Shandong Province, PR China
| | - Long Xu
- Department of Radiology, Central Hospital of Dongying District, Dongying, Shandong, PR China
| | - Chuanfeng Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Microbiology, Harvard Medical School, Harvard University, Boston, MA, United States.
| | - Dan Dan Xu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
22
|
You X, Hong ZG, Shi SM, Bian HD, Zhang YL, Zhang L, Huang FP, Zhao S, Liang H. Rational Construction of a Triphenylphosphine-Modified Tetra-nuclear Cu(I) Coordinated Cluster for Enhanced Chemodynamic Therapy. Dalton Trans 2022; 51:5782-5787. [DOI: 10.1039/d2dt00063f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triphenylphosphine-modified tetra-nuclear Cu(I) coordinated cluster was constructed for enhanced Chemodynamic Therapy (CDT) by increasing the metal centers. After inside human bladder cancer (T24) cells, a larger number of copper...
Collapse
|
23
|
Yang X, Chen DF, Li LS, Zhao XJ, Zhao MX. Mesoporous silica nanoparticles loaded with fluorescent coumarin-5-fluorouracil conjugates as mitochondrial-targeting theranostic probes for tumor cells. NANOTECHNOLOGY 2021; 32:455101. [PMID: 34340227 DOI: 10.1088/1361-6528/ac19d6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, a nanodrug carrier (mesoporous silica nanoparticle (MSN)-SS-cysteamine hydrochloride (CS)-hyaluronic acid (HA)) for targeted drug delivery was prepared using MSNs, in which HA was used as a targeting ligand and blocking agent to control drug release. Coumarin is a fluorescent molecule that targets mitochondria. Two conjugates (XDS-DJ and 5-FUA-4C-XDS) were synthesized by chemically coupling nitrogen mustard and 5-fluorouracil with coumarin, which was further loaded into MSN-SS-CS-HA nanocarriers. MTT analysis demonstrated that the nanocomposite MSN-SS-CS@5-FUA-4C-XDS/HA displayed stronger cytotoxicity toward HCT-116 cells than HeLa or QSG-7701 cells. Furthermore, MSN-SS-CS@5-FUA-4C-XDS/HA was able to target the mitochondria of HCT-116 cells, causing decreased mitochondrial membrane potential and excessive production of reactive oxygen species. These results indicate that MSN-SS-CS@5-FUA-4C-XDS/HA has the potential to be a nanodrug delivery system for the treatment of colon cancer.
Collapse
Affiliation(s)
- Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Di-Feng Chen
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Lin-Song Li
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Xue-Jie Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|