1
|
Hao M, Li X, Zhang X, Tao B, Shi H, Wu J, Li Y, Li X, Li S, Wu H, Xiang J, Wang D, Liu W, Wang G. Tongue squamous cell carcinoma-targeting Au-HN-1 nanosystem for CT imaging and photothermal therapy. Int J Oral Sci 2025; 17:9. [PMID: 39805836 PMCID: PMC11729884 DOI: 10.1038/s41368-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is a prevalent malignancy that afflicts the head and neck area and presents a high incidence of metastasis and invasion. Accurate diagnosis and effective treatment are essential for enhancing the quality of life and the survival rates of TSCC patients. The current treatment modalities for TSCC frequently suffer from a lack of specificity and efficacy. Nanoparticles with diagnostic and photothermal therapeutic properties may offer a new approach for the targeted therapy of TSCC. However, inadequate accumulation of photosensitizers at the tumor site diminishes the efficacy of photothermal therapy (PTT). This study modified gold nanodots (AuNDs) with the TSCC-targeting peptide HN-1 to improve the selectivity and therapeutic effects of PTT. The Au-HN-1 nanosystem effectively targeted the TSCC cells and was rapidly delivered to the tumor tissues compared to the AuNDs. The enhanced accumulation of photosensitizing agents at tumor sites achieved significant PTT effects in a mouse model of TSCC. Moreover, owing to its stable long-term fluorescence and high X-ray attenuation coefficient, the Au-HN-1 nanosystem can be used for fluorescence and computed tomography imaging of TSCC, rendering it useful for early tumor detection and accurate delineation of surgical margins. In conclusion, Au-HN-1 represents a promising nanomedicine for imaging-based diagnosis and targeted PTT of TSCC.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun, China
| | - Xinxin Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - He Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jianing Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuyang Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Xiang Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Guoqing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Lv MY, Hou DY, Liu SW, Cheng DB, Wang H. Strategy and Design of In Situ Activated Protein Hydrolysis Targeted Chimeras. ACS NANO 2025; 19:101-119. [PMID: 39731609 DOI: 10.1021/acsnano.4c11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway. This process is cyclical, allowing for broad applicability, potent protein degradation, and selective targeting. Despite their effectiveness, PROTACs can inadvertently target and degrade nonspecific proteins, potentially resulting in significant side effects and off-target toxicity. To address this concern, researchers have created stimuli-activated PROTACs that enhance targeted protein degradation while minimizing potential harm to healthy cells. These advanced PROTACs aim to improve the precision of degradation in both time and space. This article reviews the strategies for in situ activated PROTACs, highlighting key compounds and research advancements associated with various mechanisms of action. The insights presented here aim to guide further exploration in the field of activated PROTACs.
Collapse
Affiliation(s)
- Mei-Yu Lv
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin 150001, China
| | - Da-Yong Hou
- Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin 150001, China
| | - Shao-Wei Liu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, P. R. China
| | - Haoran Wang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518100, P. R. China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| |
Collapse
|
3
|
Cheng J, Dong G, Wang W, Sheng C. Precise Modulation of Protein Degradation by Smart PROTACs. Chembiochem 2025; 26:e202400682. [PMID: 39367518 DOI: 10.1002/cbic.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Proteolysis-targeting chimera (PROTAC) has emerged as an attractive therapeutic modality in drug discovery. PROTACs are bifunctional molecules that effectively bridge proteins of interest (POIs) with E3 ubiquitin ligases, such that, the target proteins are tagged with ubiquitin and subsequently degraded via the proteasome. Despite significant progress in the field of targeted protein degradation (TPD), the application of conventional PROTAC degraders still faces significant challenges, including systemic toxicity induced by non-tissue-specific targeting. To address this issue, a variety of smart PROTACs that can be activated by specific stimuli, have been developed for achieving conditional and spatiotemporal modulation of protein levels. Here, on the basis of our contributions, we overview recent advances of smart PROTACs, including tumor microenvironment-, photo-, and X-ray radiation-responsive PROTACs, that enable controllable TPD. The design strategy, case studies, potential applications and challenges will be focused on.
Collapse
Affiliation(s)
- Junfei Cheng
- Nautical Medicine Experimental Teaching Demonstration Center of Educational Institutions, Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, People's Republic of China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, People's Republic of China
| | - Wei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, People's Republic of China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, People's Republic of China
| |
Collapse
|
4
|
Wang S, Li Z, Ma S, Zhang S, Guo S, Ma Z, Du L, Li M. Discovery of novel 20S proteasome subunit β5 PROTAC degraders as potential therapeutics for pharyngeal carcinoma and Bortezomib-resistant multiple myeloma. Bioorg Chem 2024; 153:107801. [PMID: 39244973 DOI: 10.1016/j.bioorg.2024.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Resistance to proteasome inhibitors like Bortezomib is a major challenge in the treatment of multiple myeloma (MM). Proteolysis targeting chimeras (PROTACs), an emerging therapeutic approach that induces selective degradation of target proteins, offer a promising solution to overcome drug resistance. In this study, we designed and synthesized novel small-molecule PROTACs that induce 20S proteasome subunit β5 degradation as a strategy to overcome Bortezomib resistance. These 20S proteasome subunit β5 PROTACs demonstrated considerable binding affinity to 20S proteasome subunit β5 and cereblon (CRBN), effectively induced 20S proteasome subunit β5 degradation, and exhibited potent antiproliferative activity against a panel of cancer cell lines. Notably, PROTACs 12f and 14 displayed robust antitumor effects against both the pharyngeal carcinoma cell line FaDu and the Bortezomib-resistant MM cell line KM3/BTZ in vitro and in vivo with excellent safety profiles. Taken together, our findings highlight the potential of PROTACs 12f and 14 as novel 20S proteasome subunit β5-degrading agents for the treatment of pharyngeal carcinoma and overcoming Bortezomib resistance in MM.
Collapse
Affiliation(s)
- Shumei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhenzhen Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Siyue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuxin Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuxian Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Tang J, Chen H, Fan H, Chen T, Pu C, Guo Y. Research progress of BRD4 in head and neck squamous cell carcinoma: Therapeutic application of novel strategies and mechanisms. Bioorg Med Chem 2024; 113:117929. [PMID: 39317007 DOI: 10.1016/j.bmc.2024.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Bromodomain-containing protein 4 (BRD4) belongs to the bromodomain and extra-terminal domain (BET) protein family, which plays a crucial role in recognizing acetylated lysine residues in chromatin. The abnormal expression of BRD4 contributes to the development of various human malignant tumors, including head and neck squamous cell carcinoma (HNSCC). Recent studies have shown that BRD4 inhibition can effectively prevent the proliferation and growth of HNSCC. However, the specific role and mechanism of BRD4 in HNSCC are not yet fully clarified. This article will briefly summarize the critical role of BRD4 in the pathogenesis of HNSCC and discuss the potential clinical applications of targeting BRD4 in HNSCC therapy. We further inquiry the challenges and opportunities for HNSCC therapies based on BRD4 inhibition, including BRD4 inhibitor combination with conventional chemotherapy, radiotherapy, and immunotherapy, as well as new strategies of BRD4-targeting drugs and BRD4 proteolysis-targeting chimeras (PROTACs). Moreover, we will also offer outlook on the associated challenges and future directions of targeting BRD4 for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Jiao Tang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Huaqiu Chen
- Department of Laboratory Medicine, Xichang People's Hospital, Xichang, Sichuan 615000, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| | - Tao Chen
- Department of Laboratory Medicine, Xindu District People's Hospital, Chengdu, Sichuan 610500, China
| | - Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| | - Yuanbiao Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China.
| |
Collapse
|
6
|
Yan S, Zhang G, Luo W, Xu M, Peng R, Du Z, Liu Y, Bai Z, Xiao X, Qin S. PROTAC technology: From drug development to probe technology for target deconvolution. Eur J Med Chem 2024; 276:116725. [PMID: 39083982 DOI: 10.1016/j.ejmech.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drug development remains a critical focus within the global pharmaceutical industry. To date, more than 80 % of disease targets are considered difficult to target. The emergence of PROTAC technology has, to some extent, alleviated this challenge. Since introduction, PROTAC technology has evolved through the peptide E3 ligase ligand phase and the small molecule E3 ligase ligand phase. Currently, multiple PROTAC molecules are in the clinical research phase, showing promising potential for addressing drug resistance, disease recurrence, and intractable targets. Target deconvolution is a crucial step in the drug discovery and development process. Due to the exceptional targeting ability and specificity of PROTAC, it is widely used and promoted as an innovative technology for discovering new drug targets, leading to significant breakthroughs. The use of PROTAC probe requires only a catalytic dose and weak interaction with the target protein to achieve target degradation. Thus, it offers substantial advantages over traditional probes, particularly in identifying new targets that are low-abundance or difficult to target. This review provides a comprehensive overview of the advancements made by PROTAC technology in drug development and drug target discovery, while also systematically reviewing the workflow of PROTAC probe. With the ongoing development of PROTAC technology, PROTAC probe is poised to become a key research area in future drug target deconvolution.
Collapse
Affiliation(s)
- Si Yan
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Guangshuai Zhang
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Wei Luo
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Mengwei Xu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Rui Peng
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Yan Liu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Zhaofang Bai
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Xiaohe Xiao
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Shuanglin Qin
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| |
Collapse
|
7
|
Clotworthy MR, Dawson JJM, Johnstone MD, Fleming CL. Coumarin-Derived Caging Groups in the Spotlight: Tailoring Physiochemical and Photophysical Properties. Chempluschem 2024; 89:e202400377. [PMID: 38960871 DOI: 10.1002/cplu.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The development of light-responsive molecular tools enables spatiotemporal control of biochemical processes with superior precision. Amongst these molecular tools, photolabile caging groups are employed to prevent critical binding interactions between a bioactive molecule and its corresponding target. Only upon irradiation with light, the bioactive is released in its 'active' form and is now readily available to bind to its target. Coumarin-derived caging groups constitute one of the most popular classes of photolabile protecting groups, due to their facile synthetic accessibility, ease of tuning photophysical properties via structural modification and rapid photolysis reactions. Herein, we highlight the recent progress made on the development of coumarin-derived caging groups, in which the red-shifting of absorption spectra, improving aqueous solubility and tailoring sub-cellular localisation has been of particular interest.
Collapse
Affiliation(s)
- Megan R Clotworthy
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Joseph J M Dawson
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mark D Johnstone
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Cassandra L Fleming
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
8
|
Zhang Z, Xu M, Shi R, He X, Wang Y, Shao Y, Huang C, Zhang F, Zhang P, Liu J. Natural Compound-Rhein and PROTACs Unleash Potent VEGFR-2 Degraders. Chem Biodivers 2024; 21:e202400753. [PMID: 38818648 DOI: 10.1002/cbdv.202400753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
VEGFR-2 is a prominent therapeutic target in antitumor drug research to block tumor angiogenesis. This study focused on the synthesis and optimization of PROTACs based on the natural product rhein, resulting in the successful synthesis of 15 distinct molecules. In A549 cells, D9 exhibited remarkable antitumor efficacy with an IC50 of 5.88±0.50 μM, which was 15-fold higher compared to rhein (IC50=88.45±2.77 μM). An in-depth study of the effect of D9 on the degradation of VEGFR-2 revealed that D9 was able to induce the degradation of VEGFR-2 in A549 cells in a time-dependent manner. The observed effect was reversible, contingent upon the proteasome and ubiquitination system, and demonstrably linked to CRBN. Further experiments revealed that D9 induced apoptosis in A549 cells and led to cell cycle arrest in the G1 phase. Molecular docking simulations validated the binding mode of D9 to VEGFR, establishing the potential of D9 to bind to VEGFR-2 in its natural state. In summary, this study confirms the feasibility of natural product-bound PROTAC technology for the development of a new generation of VEGFR-2 degraders, offering a novel trajectory for the future development of pharmacological agents targeting VEGFR-2.
Collapse
Affiliation(s)
- Ziqing Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| | - Meng Xu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| | - Ruling Shi
- Department of Pharmacy, Quanzhou Medical College, 362021, Quanzhou, China
| | - Xinyi He
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| | - Yan Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| | - Yongying Shao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| | - Caixia Huang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| | - Fengyang Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| | - Peixi Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| | - Jieqing Liu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Key Laboratory of Xiamen Marine and Gene Drugs, School of Medicine, Huaqiao University, 3622021, Quanzhou, P. R. China
| |
Collapse
|
9
|
Cheng J, Zhang J, He S, Li M, Dong G, Sheng C. Photoswitchable PROTACs for Reversible and Spatiotemporal Regulation of NAMPT and NAD . Angew Chem Int Ed Engl 2024; 63:e202315997. [PMID: 38282119 DOI: 10.1002/anie.202315997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme with diverse biological functions in DNA synthesis. Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme involved in NAD+ biosynthesis in mammals. We developed the first chemical tool for optical control of NAMPT and NAD+ in biological systems using photoswitchable proteolysis-targeting chimeras (PS-PROTACs). An NAMPT activator and dimethylpyrazolazobenzene photoswitch were used to design highly efficient PS-PROTACs, enabling up- and down-reversible regulation of NAMPT and NAD+ in a light-dependent manner and reducing the toxicity associated with inhibitor-based PS-PROTACs. PS-PROTAC was activated under 620 nm irradiation, realizing in vivo optical manipulation of antitumor activity, NAMPT, and NAD+ .
Collapse
Affiliation(s)
- Junfei Cheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
- Nautical Medicine Experimental Teaching Demonstration Center of Educational Institutions, Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Jing Zhang
- Department of Pathology, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoqiang Dong
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Chunquan Sheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| |
Collapse
|
10
|
He X, Weng Z, Zou Y. Progress in the controllability technology of PROTAC. Eur J Med Chem 2024; 265:116096. [PMID: 38160619 DOI: 10.1016/j.ejmech.2023.116096] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Proteolysis-targeting chimaera (PROTAC) technology functions by directly targeting proteins and catalysing their degradation through an event-driven mode of action, a novel mechanism with significant clinical application prospects for various diseases. Currently, the most advanced PROTAC drug is undergoing phase III clinical trials (NCT05654623). Although PROTACs exhibit significant advantages over traditional small-molecule inhibitors, their catalytic degradation of normal cellular proteins can potentially cause toxic side effects. Therefore, to achieve targeted release of PROTACs and minimize adverse reactions, researchers are actively exploring diverse controllable PROTACs. In this review, we comprehensively summarize the control strategies to provide a theoretical basis for the innovative application of PROTAC technology.
Collapse
Affiliation(s)
- Xin He
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, 213164, PR China.
| | - Zhibing Weng
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, 213164, PR China
| | - Yi Zou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
11
|
Weng W, Xue G, Pan Z. Development of visible-light-activatable photocaged PROTACs. Eur J Med Chem 2024; 265:116062. [PMID: 38128235 DOI: 10.1016/j.ejmech.2023.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Photocaged proteolysis-targeting chimeras (PROTACs), which employ light as a stimulus to control protein degradation, have recently garnered considerable attention as both powerful chemical tools and a promising therapeutic strategy. However, the poor penetration depth of traditionally used ultraviolet light and the deficiency of alternative caging positions have restricted their applications in biological systems. By installing a diverse array of photocaged groups, with excitation wavelengths ranging from 365 nm to 405 nm, onto different positions of cereblon (CRBN) and Von Hippel-Lindau (VHL)-recruiting Brd4 degraders, we conducted the first comprehensive study on visible-light-activatable photocaged PROTACs to the best of our knowledge. We found the A2, A4 and B3 positions to be most effective at regulating the activity of the degraders, and to provide the resulting molecules (9-12 and 17) as potent visible-light-controlled degraders in live cells.
Collapse
Affiliation(s)
- Weizhi Weng
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Gang Xue
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
12
|
He T, Wen C, Yang G, Yang X. Targeted Protein Degradation: Principles, Strategies, and Applications. Adv Biol (Weinh) 2023; 7:e2300083. [PMID: 37518856 DOI: 10.1002/adbi.202300083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Indexed: 08/01/2023]
Abstract
Protein degradation is a general process to maintain cell homeostasis. The intracellular protein quality control system mainly includes the ubiquitin-proteasome system and the lysosome pathway. Inspired by the physiological process, strategies to degrade specific proteins have developed, which emerge as potent and effective tools in biological research and drug discovery. This review focuses on recent advances in targeted protein degradation techniques, summarizing the principles, advantages, and challenges. Moreover, the potential applications and future direction in biological science and clinics are also discussed.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Chenxi Wen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
13
|
Noblejas-López MDM, Tébar-García D, López-Rosa R, Alcaraz-Sanabria A, Cristóbal-Cueto P, Pinedo-Serrano A, Rivas-García L, Galán-Moya EM. TACkling Cancer by Targeting Selective Protein Degradation. Pharmaceutics 2023; 15:2442. [PMID: 37896202 PMCID: PMC10610449 DOI: 10.3390/pharmaceutics15102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Targeted protein degradation has emerged as an alternative therapy against cancer, offering several advantages over traditional inhibitors. The new degrader drugs provide different therapeutic strategies: they could cross the phospholipid bilayer membrane by the addition of specific moieties to extracellular proteins. On the other hand, they could efficiently improve the degradation process by the generation of a ternary complex structure of an E3 ligase. Herein, we review the current trends in the use of TAC-based technologies (TACnologies), such as PROteolysis TArgeting Chimeras (PROTAC), PHOtochemically TArgeting Chimeras (PHOTAC), CLIck-formed Proteolysis TArgeting Chimeras (CLIPTAC), AUtophagy TArgeting Chimeras (AUTAC), AuTophagosome TEthering Compounds (ATTEC), LYsosome-TArgeting Chimeras (LYTAC), and DeUBiquitinase TArgeting Chimeras (DUBTAC), in experimental development and their progress towards clinical applications.
Collapse
Affiliation(s)
- María del Mar Noblejas-López
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - David Tébar-García
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - Raquel López-Rosa
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - Ana Alcaraz-Sanabria
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
| | - Pablo Cristóbal-Cueto
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
| | - Alejandro Pinedo-Serrano
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
| | - Lorenzo Rivas-García
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
| | - Eva M. Galán-Moya
- Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (M.d.M.N.-L.); (D.T.-G.); (R.L.-R.); (A.A.-S.); (P.C.-C.); (A.P.-S.)
- Unidad de Investigación, Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain
- Facultad de Enfermería, Campus de Albacete, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
| |
Collapse
|
14
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
15
|
Wang W, Zhu C, Zhang B, Feng Y, Zhang Y, Li J. Self-Assembled Nano-PROTAC Enables Near-Infrared Photodynamic Proteolysis for Cancer Therapy. J Am Chem Soc 2023; 145:16642-16649. [PMID: 37477624 DOI: 10.1021/jacs.3c04109] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Confining the protein degradation activity of proteolysis-targeting chimera (PROTAC) to cancer lesions ensures precision treatment. However, it still remains challenging to precisely control PROTAC function in tumor regions in vivo. We herein describe a near-infrared (NIR) photoactivatable nano-PROTAC (NAP) for remote-controllable proteolysis in tumor-bearing mice. NAP is formed by molecular self-assembly from an amphiphilic conjugate of PROTAC linked with an NIR photosensitizer through a singlet oxygen (1O2)-cleavable linker. The activity of PROTAC is initially silenced but can be remotely switched on upon NIR photoirradiation to generate 1O2 by the photosensitizer. We demonstrated that NAP enabled tumor-specific degradation of bromodomain-containing protein 4 (BRD4) in an NIR light-instructed manner. This in combination with photodynamic therapy (PDT) elicited an effective suppression of tumor growth. This work thus presents a novel approach for spatiotemporal control over targeted protein degradation by PROTAC.
Collapse
Affiliation(s)
- Weishan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Bin Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yi Feng
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that induce the ternary complex formation between a protein-of-interest (POI) and an E3 ligase, leading to targeted polyubiquitination and degradation of the POI. Particularly, PROTACs have the distinct advantage of targeting both canonical and noncanonical functions of epigenetic targets over traditional inhibitors, which typically target canonical functions only, resulting in greater therapeutic efficacy. In this review, we methodically analyze published PROTAC degraders of epigenetic writer, reader, and eraser proteins and their in vitro and in vivo effects. We highlight the mechanism of action of these degraders and their advantages in targeting both canonical and noncanonical functions of epigenetic targets in the context of cancer treatment. Furthermore, we present a future outlook for this exciting field. Overall, pharmacological degradation of epigenetic targets has emerged as an effective and attractive strategy to thwart cancer progression and growth.
Collapse
Affiliation(s)
- Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
| |
Collapse
|
17
|
Gao J, Yang L, Lei S, Zhou F, Nie H, Peng B, Xu T, Chen X, Yang X, Sheng C, Rao Y, Pu K, Jin J, Xu Z, Yu H. Stimuli-activatable PROTACs for precise protein degradation and cancer therapy. Sci Bull (Beijing) 2023; 68:1069-1085. [PMID: 37169612 DOI: 10.1016/j.scib.2023.04.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
The proteolysis targeting chimeras (PROTACs) approach has attracted extensive attention in the past decade, which represents an emerging therapeutic modality with the potential to tackle disease-causing proteins that are historically challengeable for conventional small molecular inhibitors. PROTAC harnesses the endogenic E3 ubiquitin ligase to degrade protein of interest (POI) via ubiquitin-proteasome system in a cycle-catalytic manner. The event-driven pharmacology of PROTAC is poised to pursue those targets that are conventionally undruggable, which enormously extends the space of drug development. Furthermore, PROTAC has the potential to address drug resistance of small molecular inhibitors by degrading the whole POI. Nevertheless, PROTACs display high-efficiency and always-on properties to degrade POI, they may cause severe side effects due to an "on-target but off-tissue" protein degradation profile at the undesirable tissues and cells. Given that, the stimuli-activatable PROTAC prodrugs have been recently exploited to confine precise protein degradation of the favorable targets, which may conquer the adverse effects of PROTAC due to uncontrollable protein degradation. Herein, we summarized the cutting-edge advances of the stimuli-activatable PROTAC prodrugs. We also overviewed the progress of PROTAC prodrug-based nanomedicine to improve PROTAC delivery to the tumors and precise POI degradation in the targeted cells.
Collapse
Affiliation(s)
- Jing Gao
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lei Yang
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shumin Lei
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Zhou
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huijun Nie
- Center of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Peng
- Information Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianfeng Xu
- Center of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Chen
- Center of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd. Shanghai 201306, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu Rao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
18
|
Yan Z, Lyu X, Lin D, Wu G, Gong Y, Ren X, Xiao J, Lou J, Huang H, Chen Y, Zhao Y. Selective degradation of cellular BRD3 and BRD4-L promoted by PROTAC molecules in six cancer cell lines. Eur J Med Chem 2023; 254:115381. [PMID: 37084596 DOI: 10.1016/j.ejmech.2023.115381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Targeted degradation of BET family proteins BRD2/3/4 or only BRD4 with PROTAC molecules has been a promising strategy for the treatment of human cancer. Meanwhile, selective degradation of cellular BRD3 and BRD4-L remains a challenging task. We report herein a novel PROTAC molecule 24 that promoted selective degradation of cellular BRD3 and BRD4-L, but not BRD2 or BRD4-S, in a panel of six cancer cell lines. The observed target selectivity was partially attributed to differences in protein degradation kinetics and in types of cell lines. In a MM.1S mouse xenograft model, an optimized lead compound 28 promoted selective degradation of BRD3 and BRD4-L in vivo and exhibited robust antitumor activity. In summary, we have demonstrated that selective degradation of BRD3 and BRD4-L over BRD2 and BRD4-S is a feasible and robust approach in multiple cancer cell lines and an animal model, which could be helpful for further investigations on BRD3 and BRD4-L that ultimately benefitting cancer research and therapeutics.
Collapse
Affiliation(s)
- Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Dongze Lin
- Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Gaoxing Wu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yang Gong
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, China
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Jian Xiao
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - He Huang
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
| | - Yi Chen
- Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China.
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China.
| |
Collapse
|
19
|
Jin Y, Fan J, Wang R, Wang X, Li N, You Q, Jiang Z. Ligation to Scavenging Strategy Enables On-Demand Termination of Targeted Protein Degradation. J Am Chem Soc 2023; 145:7218-7229. [PMID: 36971523 DOI: 10.1021/jacs.2c12809] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Event-driven bifunctional molecules, typified by proteolysis targeting chimera (PROTAC) technology, have been successfully applied in degrading many proteins of interest (POI). Due to the unique catalytic mechanism, PROTACs will induce multiple cycles of degradation until the elimination of the target protein. Here, we propose a versatile "Ligation to scavenging" approach to terminate event-driven degradation for the first time. Ligation to the scavenging system consists of a TCO-modified dendrimer (PAMAM-G5-TCO) and tetrazine-modified PROTACs (Tz-PROTACs). PAMAM-G5-TCO can rapidly scavenge intracellular free PROTACs via an inverse electron demand Diels-Alder reaction and terminate the degradation of certain proteins in living cells. Thus, this work proposes a flexible chemical knockdown approach to adjust the levels of POI on-demand in living cells, which paves the way for controlled target protein degradation.
Collapse
|
20
|
Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem Soc Rev 2022; 51:8216-8257. [PMID: 35983982 PMCID: PMC9528729 DOI: 10.1039/d2cs00387b] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The von Hippel-Lindau (VHL) Cullin RING E3 ligase is an essential enzyme in the ubiquitin-proteasome system that recruits substrates such as the hypoxia inducible factor for ubiquitination and subsequent proteasomal degradation. The ubiquitin-proteasome pathway can be hijacked toward non-native neo-substrate proteins using proteolysis targeting chimeras (PROTACs), bifunctional molecules designed to simultaneously bind to an E3 ligase and a target protein to induce target ubiquitination and degradation. The availability of high-quality small-molecule ligands with good binding affinity for E3 ligases is fundamental for PROTAC development. Lack of good E3 ligase ligands as starting points to develop PROTAC degraders was initially a stumbling block to the development of the field. Herein, the journey towards the design of small-molecule ligands binding to VHL is presented. We cover the structure-based design of VHL ligands, their application as inhibitors in their own right, and their implementation into rationally designed, potent PROTAC degraders of various target proteins. We highlight the key findings and learnings that have provided strong foundations for the remarkable development of targeted protein degradation, and that offer a blueprint for designing new ligands for E3 ligases beyond VHL.
Collapse
Affiliation(s)
- Claudia J Diehl
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
21
|
A Comprehensive Review of BET-targeting PROTACs for Cancer Therapy. Bioorg Med Chem 2022; 73:117033. [DOI: 10.1016/j.bmc.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
22
|
Abstract
Proteolysis targeting chimeras (PROTACs) technology is a novel and promising therapeutic strategy using small molecules to induce ubiquitin-dependent degradation of proteins. It has received extensive attention from both academia and industry as it can potentially access previously inaccessible targets. However, the design and optimization of PROTACs present big challenges for researchers, and the general strategy for its development and optimization is a lot of trial and error based on experience. This review highlights the important advances in this rapidly growing field and critical limitations of the traditional trial-and-error approach to developing PROTACs by analyzing numerous representative examples of PROTACs development. We summarize and analyze the general principles and strategies for PROTACs design and optimization from the perspective of chemical structure design, and propose potential future pathways to facilitate the development of PROTACs.
Collapse
Affiliation(s)
- Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China. .,Tsinghua-Peking Center for Life Sciences, Beijing 100084, P. R. China
| | - Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| | - Liguo Wang
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
23
|
Ni Y, Low JT, Silke J, O’Reilly LA. Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Front Immunol 2022; 13:835997. [PMID: 35844493 PMCID: PMC9277720 DOI: 10.3389/fimmu.2022.835997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
When small proteins such as cytokines bind to their associated receptors on the plasma membrane, they can activate multiple internal signaling cascades allowing information from one cell to affect another. Frequently the signaling cascade leads to a change in gene expression that can affect cell functions such as proliferation, differentiation and homeostasis. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) and the tumor necrosis factor receptor (TNFR) are the pivotal mechanisms employed for such communication. When deregulated, the JAK-STAT and the TNF receptor signaling pathways can induce chronic inflammatory phenotypes by promoting more cytokine production. Furthermore, these signaling pathways can promote replication, survival and metastasis of cancer cells. This review will summarize the essentials of the JAK/STAT and TNF signaling pathways and their regulation and the molecular mechanisms that lead to the dysregulation of the JAK-STAT pathway. The consequences of dysregulation, as ascertained from founding work in haematopoietic malignancies to more recent research in solid oral-gastrointestinal cancers, will also be discussed. Finally, this review will highlight the development and future of therapeutic applications which modulate the JAK-STAT or the TNF signaling pathways in cancers.
Collapse
Affiliation(s)
- Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun T. Low
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lorraine A. O’Reilly
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
25
|
Drula R, Iluta S, Gulei D, Iuga C, Dima D, Ghiaur G, Buzoianu AD, Ciechanover A, Tomuleasa C. Exploiting the ubiquitin system in myeloid malignancies. From basic research to drug discovery in MDS and AML. Blood Rev 2022; 56:100971. [PMID: 35595613 DOI: 10.1016/j.blre.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the crucial homeostatic mechanism responsible for the degradation and turnover of proteins. As such, alterations at this level are often associated with oncogenic processes, either through accumulation of undegraded pathway effectors or, conversely, excessive degradation of tumor-suppressing factors. Therefore, investigation of the ubiquitin- proteasome system has gained much attraction in recent years, especially in the context of hematological malignancies, giving rise to efficient therapeutics such as bortezomib for multiple myeloma. Current investigations are now focused on manipulating protein degradation via fine-tuning of the ubiquitination process through inhibition of deubiquitinating enzymes or development of PROTAC systems for stimulation of ubiquitination and protein degradation. On the other hand, the efficiency of Thalidomide derivates in myelodysplastic syndromes (MDS), such as Lenalidomide, acted as the starting point for the development of targeted leukemia-associated protein degradation molecules. These novel molecules display high efficiency in overcoming the limitations of current therapeutic regimens, such as refractory diseases. Therefore, in this manuscript we will address the therapeutic opportunities and strategies based on the ubiquitin-proteasome system, ranging from the modulation of deubiquitinating enzymes and, conversely, describing the potential of modern targeted protein degrading molecules and their progress into clinical implementation.
Collapse
Affiliation(s)
- Rares Drula
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Cristina Iuga
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Pharmaceutical Analysis, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania
| | - Gabriel Ghiaur
- Department of Oncology, The Johns Hopkins Hospital, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Aaron Ciechanover
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Rappaport Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3109601, Israel; Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine - MedFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania; Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
| |
Collapse
|
26
|
Chen L, Wan X, Shan X, Zha W, Fan R. Smart PROTACs Enable Controllable Protein Degradation for Precision Cancer Therapy. Mol Diagn Ther 2022; 26:283-291. [PMID: 35471699 DOI: 10.1007/s40291-022-00586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional chemicals that degrade proteins at the post-translational level, which represent an emerging therapeutic modality to fight cancer and other diseases. Although several PROTACs have now entered clinical trials, potential off-tissue side effects have resulted from nonspecific accumulation at non-cancerous sites after systemic administration, and this remains a major challenge. To this end, in the past 3 years, activatable PROTACs whose activity can only be launched on demand have gained tremendous momentum. In this review, we provide an overview of these new smart activatable PROTACs, which exert protein degradation action only in response to internal or external stimuli. We categorize these activatable PROTACs according to their activation mechanism contributed by different stimuli, including reduction-activatable, hypoxia-activatable, and enzyme-activatable PROTACs and photo-caged or photo-switchable PROTACs. The use of stimuli-responsive chemical blocks in these activatable PROTACs allows local activation of the antitumor effects while reducing the incidence of off-site side effects for precision cancer therapy. The design principle and category of smart PROTACs are introduced along with an overview of their therapeutic prospects and challenges.
Collapse
Affiliation(s)
- Lixia Chen
- Medical College of Nantong University, Nantong, China
| | - Xinqiang Wan
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, China
| | - Xiangxiang Shan
- Department of Geraeology, Yancheng City No. 1 People's Hospital, Yancheng, China
| | - Wenzhang Zha
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, 166 Yulong Road, Yancheng, 224001, China
| | - Rengen Fan
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, 166 Yulong Road, Yancheng, 224001, China.
| |
Collapse
|
27
|
He S, Dong G, Cheng J, Wu Y, Sheng C. Strategies for designing proteolysis targeting chimaeras (PROTACs). Med Res Rev 2022; 42:1280-1342. [PMID: 35001407 DOI: 10.1002/med.21877] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022]
Abstract
Proteolysis targeting chimaeras (PROTACs) is a cutting edge and rapidly growing technique for new drug discovery and development. Currently, the largest challenge in the molecular design and drug development of PROTACs is efficient identification of potent and drug-like degraders. This review aims to comprehensively summarize and analyse state-of-the-art methods and strategies in the design of PROTACs. We provide a detailed illustration of the general principles and tactics for designing potent PROTACs, highlight representative case studies, and discuss the advantages and limitations of these strategies. Particularly, structure-based rational PROTAC design and emerging new types of PROTACs (e.g., homo-PROTACs, multitargeting PROTACs, photo-control PROTACs and PROTAC-based conjugates) will be focused on.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Junfei Cheng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ying Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|