1
|
Jagtap AD, Geraghty RJ, Wang Z. Inhibiting HCMV pUL89-C Endonuclease with Metal-Binding Compounds. J Med Chem 2023; 66:13874-13887. [PMID: 37827528 PMCID: PMC11793932 DOI: 10.1021/acs.jmedchem.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Human cytomegalovirus (HCMV) infects individuals of all ages and establishes a lifelong latency. Current antiviral drugs are suboptimal in efficacy and safety and ineffective against resistant/refractory HCMV. Therefore, there is an unmet clinical need for efficacious, safe, and mechanistically novel HCMV drugs. The recent Food and Drug Administration (FDA) approval of letermovir (LTV) validated the HCMV terminase complex as a new target for antiviral development. LTV targets terminase subunit pUL56 but not the main endonuclease enzymatic function housed in the C terminus of subunit pUL89 (pUL89-C). Structurally and mechanistically, pUL89-C is an RNase H-like viral endonuclease entailing two divalent metal ions at the active site. In recent years, numerous studies have extensively explored pUL89-C inhibition using metal-chelating chemotypes, an approach previously used for inhibiting HIV ribonuclease H (RNase H) and integrase strand transfer (INST). Collectively, the work summarized herein validates the use of metal-binding scaffolds for designing potent and specific pUL89-C inhibitors.
Collapse
Affiliation(s)
- Ajit Dhananjay Jagtap
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J. Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Almehmadi M, Haq IU, Alsaiari AA, Alshabrmi FM, Abdulaziz O, Allahyani M, Aladhadh M, Shafie A, Aljuaid A, Alotaibi RT, Ullah J, Alharthi NS. Identification of Small Molecule Inhibitors of Human Cytomegalovirus pUL89 Endonuclease Using Integrated Computational Approaches. Molecules 2023; 28:3938. [PMID: 37175348 PMCID: PMC10180037 DOI: 10.3390/molecules28093938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Replication of Human Cytomegalovirus (HCMV) requires the presence of a metal-dependent endonuclease at the C-terminus of pUL89, in order to properly pack and cleave the viral genome. Therefore, pUL89 is an attractive target to design anti-CMV intervention. Herein, we used integrated structure-based and ligand-based virtual screening approaches in combination with MD simulation for the identification of potential metal binding small molecule antagonist of pUL89. In this regard, the essential chemical features needed for the inhibition of pUL89 endonuclease domain were defined and used as a 3D query to search chemical compounds from ZINC and ChEMBL database. Thereafter, the molecular docking and ligand-based shape screening were used to narrow down the compounds based on previously identified pUL89 antagonists. The selected virtual hits were further subjected to MD simulation to determine the intrinsic and ligand-induced flexibility of pUL89. The predicted binding modes showed that the compounds reside well in the binding site of endonuclease domain by chelating with the metal ions and crucial residues. Taken in concert, the in silico investigation led to the identification of potential pUL89 antagonists. This study provided promising starting point for further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed Aladhadh
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Rema Turki Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Jawad Ullah
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Nada Saud Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
3
|
He T, Edwards TC, Majima R, Jung E, Kankanala J, Xie J, Geraghty RJ, Wang Z. Repurposing N-hydroxy thienopyrimidine-2,4-diones (HtPD) as inhibitors of human cytomegalovirus pUL89 endonuclease: Synthesis and biological characterization. Bioorg Chem 2022; 129:106198. [PMID: 36265353 PMCID: PMC9643671 DOI: 10.1016/j.bioorg.2022.106198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
Abstract
The terminase complex of human cytomegalovirus (HCMV) is required for viral genome packaging and cleavage. Critical to the terminase functions is a metal-dependent endonuclease at the C-terminus of pUL89 (pUL89-C). We have previously reported metal-chelating N-hydroxy thienopyrimidine-2,4-diones (HtPD) as inhibitors of human immunodeficiency virus 1 (HIV-1) RNase H. In the current work, we have synthesized new analogs and resynthesized known analogs of two isomeric HtPD subtypes, anti-HtPD (13), and syn-HtPD (14), and characterized them as inhibitors of pUL89-C. Remarkably, the vast majority of analogs strongly inhibited pUL89-C in the biochemical endonuclease assay, with IC50 values in the nM range. In the cell-based antiviral assay, a few analogs inhibited HCMV in low μM concentrations. Selected analogs were further characterized in a biophysical thermal shift assay (TSA) and in silico molecular docking, and the results support pUL89-C as the protein target of these inhibitors. Collectively, the biochemical, antiviral, biophysical, and in silico data reported herein indicate that the isomeric HtPD chemotypes 13-14 can serve as valuable chemical platforms for designing improved inhibitors of HCMV pUL89-C.
Collapse
Affiliation(s)
- Tianyu He
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tiffany C Edwards
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Majima
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eunkyung Jung
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jayakanth Kankanala
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
He T, Edwards TC, Xie J, Aihara H, Geraghty RJ, Wang Z. 4,5-Dihydroxypyrimidine Methyl Carboxylates, Carboxylic Acids, and Carboxamides as Inhibitors of Human Cytomegalovirus pUL89 Endonuclease. J Med Chem 2022; 65:5830-5849. [PMID: 35377638 PMCID: PMC9441020 DOI: 10.1021/acs.jmedchem.2c00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cytomegalovirus (HCMV) terminase complex entails a metal-dependent endonuclease at the C-terminus of pUL89 (pUL89-C). We report herein the design, synthesis, and characterization of dihydroxypyrimidine (DHP) acid (14), methyl ester (13), and amide (15) subtypes as inhibitors of HCMV pUL89-C. All analogs synthesized were tested in an endonuclease assay and a thermal shift assay (TSA) and subjected to molecular docking to predict binding affinity. Although analogs inhibiting pUL89-C in the sub-μM range were identified from all three subtypes, acids (14) showed better overall potency, substantially larger thermal shift, and considerably better docking scores than esters (13) and amides (15). In the cell-based antiviral assay, six analogs inhibited HCMV with moderate activities (EC50 = 14.4-22.8 μM). The acid subtype (14) showed good in vitro ADME properties, except for poor permeability. Overall, our data support the DHP acid subtype (14) as a valuable scaffold for developing antivirals targeting HCMV pUL89-C.
Collapse
Affiliation(s)
- Tianyu He
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tiffany C Edwards
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert J Geraghty
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|