1
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2025; 29:2829-2862. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
2
|
Lao Z, Chen X, Pan B, Fang B, Yang W, Qian Y. Pharmacological regulators of Hippo pathway: Advances and challenges of drug development. FASEB J 2025; 39:e70438. [PMID: 40100056 DOI: 10.1096/fj.202401895rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The Hippo signaling pathway is crucial in regulating organ size, tumor progression, tissue regeneration, and bone homeostasis. Inactivation of the Hippo pathway results in the nuclear translocation and activation of YAP/TAZ. This activation not only promotes tumor progression but also enhances tissue regeneration, wound healing, and maintenance of bone stability Although its discovery occurred over two decades ago, developing effective inhibitors or activators for the Hippo pathway remains challenging. Recently, however, the pace of advancements in developing Hippo signaling-related agonists and antagonists has accelerated, with some drugs that target TEAD advancing to clinical trials and showing promise for treating related diseases. This review summarizes the progress in research on Hippo signaling-related agonists and inhibitors, offering an in-depth analysis of their regulatory mechanisms, pharmacological properties, and potential in vivo applications.
Collapse
Affiliation(s)
- Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Fang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Toulotte F, Coevoet M, Liberelle M, Bailly F, Zagiel B, Gelin M, Allemand F, Fourquet P, Melnyk P, Guichou JF, Cotelle P. Towards the design of ligands of the internal pocket TEADs C-terminal domain. Eur J Med Chem 2025; 282:117026. [PMID: 39571457 DOI: 10.1016/j.ejmech.2024.117026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 12/10/2024]
Abstract
The Hippo pathway controls in organ size and tissue homeostasis through regulating cell growth, proliferation and apoptosis. Phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) regulates their nuclear import and therefore their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several solid cancers making YAP/TAZ-TEAD interaction a new anti-cancer target. We identified by screening a small in-house library, 5-benzyloxindole which binds to hTEAD2 at its internal/palmitate pocket. Its optimization led to covalent inhibitors bearing different warhead. Soaking with hTEAD2 gave seven new crystal structures where the ligands occupied palmitate pocket. 5-Benzyloxyindoles armed with vinylsulfamide moiety inhibit YAP/TAZ-TEAD target genes expression and breast cancer cell proliferation at micromolar concentration.
Collapse
Affiliation(s)
- Florine Toulotte
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Mathilde Coevoet
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Maxime Liberelle
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Fabrice Bailly
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Benjamin Zagiel
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France
| | - Patrick Fourquet
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Marseille Protéomique, Institut Paoli-Calmettes, Aix Marseille University, 27 Bvd Leï Roure, CS 30059, 13273 Marseille, France
| | - Patricia Melnyk
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France.
| | - Jean-François Guichou
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Univ Montpellier, F-34090, Montpellier, France.
| | - Philippe Cotelle
- Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France; ENSCL-Centrale Lille, CS 90108, F-59652, Villeneuve d'Ascq, France
| |
Collapse
|
4
|
Li N, Liu YH, Wu J, Liu QG, Niu JB, Zhang Y, Fu XJ, Song J, Zhang SY. Strategies that regulate Hippo signaling pathway for novel anticancer therapeutics. Eur J Med Chem 2024; 276:116694. [PMID: 39047607 DOI: 10.1016/j.ejmech.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Han Z, Shen Z, Pei J, You Q, Zhang Q, Wang L. Transformation of peptides to small molecules in medicinal chemistry: Challenges and opportunities. Acta Pharm Sin B 2024; 14:4243-4265. [PMID: 39525591 PMCID: PMC11544290 DOI: 10.1016/j.apsb.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Peptides are native binders involved in numerous physiological life procedures, such as cellular signaling, and serve as ready-made regulators of biochemical processes. Meanwhile, small molecules compose many drugs owing to their outstanding advantages of physiochemical properties and synthetic convenience. A novel field of research is converting peptides into small molecules, providing a convenient portable solution for drug design or peptidomic research. Endowing properties of peptides onto small molecules can evolutionarily combine the advantages of both moieties and improve the biological druggability of molecules. Herein, we present eight representative recent cases in this conversion and elaborate on the transformation process of each case. We discuss the innovative technological methods and research approaches involved, and analyze the applicability conditions of the approaches and methods in each case, guiding further modifications of peptides to small molecules. Finally, based on the aforementioned cases, we summarize a general procedure for peptide-to-small molecule modifications, listing the technological methods available for each transformation step and providing our insights on the applicable scenarios for these methods. This review aims to present the progress of peptide-to-small molecule modifications and propose our thoughts and perspectives for future research in this field.
Collapse
Affiliation(s)
- Zeyu Han
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zekai Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiayue Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
6
|
Zhou C, Sun C, Zhou W, Tian T, Schultz DC, Wu T, Yu M, Wu L, Pi L, Li C. Development of Novel Indole-Based Covalent Inhibitors of TEAD as Potential Antiliver Cancer Agents. J Med Chem 2024; 67:16270-16295. [PMID: 39270302 DOI: 10.1021/acs.jmedchem.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Abnormal activation of the YAP transcriptional signaling pathway drives proliferation in many hepatocellular carcinoma (HCC) and hepatoblastoma (HB) cases. Current treatment options often face resistance and toxicity, highlighting the need for alternative therapies. This article reports the discovery of a hit compound C-3 from docking-based virtual screening targeting TEAD lipid binding pocket, which inhibited TEAD-mediated transcription. Optimization led to the identification of a potent and covalent inhibitor CV-4-26 that exhibited great antitumor activity in HCC and HB cell lines in vitro, xenografted human HCC, and murine HB in vivo. These outcomes signify the potential of a highly promising therapeutic candidate for addressing a subset of HCC and HB cancers. In the cases of current treatment challenges due to high upregulation of YAP-TEAD activity, these findings offer a targeted alternative for more effective interventions against liver cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chunbao Sun
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Tian Tian
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Mu Yu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
- UF Institute of Genetics, University of Florida, Gainesville, Florida 32610, United States
| | - Liya Pi
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
7
|
Leng J, Wang C, Liang Z, Qiu F, Zhang S, Yang Y. An updated review of YAP: A promising therapeutic target against cardiac aging? Int J Biol Macromol 2024; 254:127670. [PMID: 37913886 DOI: 10.1016/j.ijbiomac.2023.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The transcriptional co-activator Yes-associated protein (YAP) functions as a downstream effector of the Hippo signaling pathway and plays a crucial role in cardiomyocyte survival. In its non-phosphorylated activated state, YAP binds to transcription factors, activating the transcription of downstream target genes. It also regulates cell proliferation and survival by selectively binding to enhancers and activating target genes. However, the upregulation of the Hippo pathway in human heart failure inhibits cardiac regeneration and disrupts astrogenesis, thus preventing the nuclear translocation of YAP. Existing literature indicates that the Hippo/YAP axis contributes to inflammation and fibrosis, potentially playing a role in the development of cardiac, vascular and renal injuries. Moreover, it is a key mediator of myofibroblast differentiation and fibrosis in the infarcted heart. Given these insights, can we harness YAP's regenerative potential in a targeted manner? In this review, we provide a detailed discussion of the Hippo signaling pathway and consolidate concepts for the development and intervention of cardiac anti-aging drugs to leverage YAP signaling as a pivotal target.
Collapse
Affiliation(s)
- Jingzhi Leng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China
| | - Chuanzhi Wang
- College of Sports Science, South China Normal University, Guangzhou, China
| | - Zhide Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- School of Physical Education, Qingdao University, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| | - Yuan Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Physical Education, Qingdao University, China.
| |
Collapse
|
8
|
Yang WC, Gong DH, Hong Wu, Gao YY, Hao GF. Grasping cryptic binding sites to neutralize drug resistance in the field of anticancer. Drug Discov Today 2023; 28:103705. [PMID: 37453458 DOI: 10.1016/j.drudis.2023.103705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Drug resistance is a significant obstacle to successful cancer treatment. The utilization and development of cryptic binding sites (CBSs) in proteins involved in cancer-related drug-resistance (CRDR) could help to overcome that drug resistance. However, there is no comprehensive review of the successful use of CBSs in addressing CRDR. Here, we have systematically summarized and analyzed the opportunities and challenges of using CBSs in addressing CRDR and revealed the key role that CBSs have in targeting CRDR. First, we have identified the CRDR targets and the corresponding CBSs. Second, we discuss the mechanisms by which CBSs can overcome CRDR. Finally, we have provided examples of successful CBS applications in addressing CRDR. We hope that this approach will provide guidance to biologists and chemists in effectively utilizing CBSs for the development of new drugs to alleviate CRDR.
Collapse
Affiliation(s)
- Wei-Cheng Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Dao-Hong Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hong Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China; National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
9
|
Chen Y, Li J, Pu L, Hu J, Fang L, Zhou F, Zhang H, Yang Y, Rong X, Deng S, Hou L. DNAJB4 suppresses breast cancer progression and promotes tumor immunity by regulating the Hippo signaling pathway. Discov Oncol 2023; 14:144. [PMID: 37548821 PMCID: PMC10406735 DOI: 10.1007/s12672-023-00762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
PURPOSE Breast cancer is the most common cancer worldwide. Low DNAJB4 expression levels are strongly correlated with poor prognosis in breast cancer patients. However, the molecular mechanism by which DNAJB4 regulates breast cancer progression is unclear. METHODS The expression of DNAJB4 was validated in human breast cancer tissues, normal human breast tissues, and breast cancer cell lines. CCK-8, colony-forming, and wound healing assays were used to assess the biological effect of DNAJB4 overexpression on cell proliferation and migration in MCF-7 cell lines. Bioinformatic analysis was used to identify the DNAJB4 related pathways in breast cancer. Epithelial-mesenchymal transition (EMT)-related biomarkers and Hippo pathway components were quantified by Western blots. Luciferase and Western blot assays were used to validate which miRNA regulates DNAJB4. In addition, the effects of DNAJB4 on in vivo tumor growth were assessed in xenograft models. RESULTS DNAJB4 was expressed at low levels in human breast cancer tissues and breast cancer cell lines and correlated with poor prognosis. DNAJB4 overexpression significantly inhibited cell proliferation and migration in vitro by activating the Hippo pathway. The dual-luciferase assay showed that hsa-miR-183-5p targeted DNAJB4. Moreover, the effects of DNAJB4 could be reversed by miR-183-5p. In addition, the expression of DNAJB4 was strongly correlated with immune infiltration levels. Notably, DNAJB4 overexpression markedly enhanced CD4 + and CD8 + T cells and reduced PD-L1 levels in 4T1 tumors via the Hippo pathway, which retarded tumor growth in a subcutaneous xenograft tumor mouse model of 4T1 cells. CONCLUSIONS The present study demonstrated that DNAJB4 overexpression inhibited the malignant biological behavior of breast cancer by regulating the Hippo pathway and tumor immunosuppressive environment.
Collapse
Affiliation(s)
- Yanru Chen
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jingjia Li
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lulan Pu
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jinghua Hu
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lingyu Fang
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fangfang Zhou
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hongying Zhang
- The Fifth People's Hospital of Nanchong City, Nanchong, Sichuan, China
| | - Yi Yang
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xinxin Rong
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shishan Deng
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Lingmi Hou
- Academician (Expert) Workstation, Medical Imaging Key Laboratory of Sichuan Province, Biological Targeting Laboratory of Breast Cancer, Department of Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
- Medical Imaging Key Laboratory of Sichuan Province, Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
10
|
Huang H, Han MH, Gu Q, Wang JD, Zhao H, Zhai BW, Nie SM, Liu ZG, Fu YJ. Identification of pancreatic lipase inhibitors from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Orbitrap MS and in vitro validation. Food Chem 2023; 426:136630. [PMID: 37352710 DOI: 10.1016/j.foodchem.2023.136630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Pancreatic lipase inhibitors can reduce blood lipids by inactivating the catalytic activity of human pancreatic lipase, a key enzyme involved in triglyceride hydrolysis, which helps control some dyslipidemic diseases. The ability of Eucommia ulmoides tea to improve fat-related diseases is closely related to the natural inhibitory components of pancreatic lipase contained in the tea. In this study, fifteen pancreatic lipase inhibitors were screened and identified from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Q-Exactive Orbitrap/MS. Four representative components of geniposidic acid, quercetin-3-O-sambuboside, isochlorogenic acid A, and quercetin with high binding degrees were further verified by nanoscale differential scanning fluorimetry (nanoDSF) and enzyme inhibitory assays. The results of flow cytometry showed that they could significantly reduce the activity of pancreatic lipase in AR42J cells induced by palmitic acid in a concentration-dependent manner. Our findings suggest that Eucommia ulmoides tea may be a promising resource for pancreatic lipase inhibitors of natural origin.
Collapse
Affiliation(s)
- Han Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Ming-Hao Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qi Gu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Heng Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Bo-Wen Zhai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Si-Ming Nie
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhi-Guo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
11
|
Hagenbeek TJ, Zbieg JR, Hafner M, Mroue R, Lacap JA, Sodir NM, Noland CL, Afghani S, Kishore A, Bhat KP, Yao X, Schmidt S, Clausen S, Steffek M, Lee W, Beroza P, Martin S, Lin E, Fong R, Di Lello P, Kubala MH, Yang MNY, Lau JT, Chan E, Arrazate A, An L, Levy E, Lorenzo MN, Lee HJ, Pham TH, Modrusan Z, Zang R, Chen YC, Kabza M, Ahmed M, Li J, Chang MT, Maddalo D, Evangelista M, Ye X, Crawford JJ, Dey A. An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ signaling and overcomes KRAS G12C inhibitor resistance. NATURE CANCER 2023; 4:812-828. [PMID: 37277530 PMCID: PMC10293011 DOI: 10.1038/s43018-023-00577-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
The Hippo pathway is a key growth control pathway that is conserved across species. The downstream effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), are frequently activated in cancers to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs (transcriptional enhanced associate domain) are central to their transcriptional activities, we discovered a potent small-molecule inhibitor (SMI), GNE-7883, that allosterically blocks the interactions between YAP/TAZ and all human TEAD paralogs through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models and achieves strong antitumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes both intrinsic and acquired resistance to KRAS (Kirsten rat sarcoma viral oncogene homolog) G12C inhibitors in diverse preclinical models through the inhibition of YAP/TAZ activation. Taken together, this work demonstrates the activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.
Collapse
Affiliation(s)
| | - Jason R Zbieg
- Department of Discovery Chemistry, Genentech, California, CA, USA
| | - Marc Hafner
- Department of Oncology Bioinformatics, Genentech, California, CA, USA
| | - Rana Mroue
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Jennifer A Lacap
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Nicole M Sodir
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Cameron L Noland
- Department of Structural Biology, Genentech, California, CA, USA
| | - Shervin Afghani
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Ayush Kishore
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Kamakoti P Bhat
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Xiaosai Yao
- Department of Oncology Bioinformatics, Genentech, California, CA, USA
| | - Stephen Schmidt
- Department of Biochemical and Cellular Pharmacology, Genentech, California, CA, USA
| | - Saundra Clausen
- Department of Biochemical and Cellular Pharmacology, Genentech, California, CA, USA
| | - Micah Steffek
- Department of Biochemical and Cellular Pharmacology, Genentech, California, CA, USA
| | - Wendy Lee
- Department of Discovery Chemistry, Genentech, California, CA, USA
| | - Paul Beroza
- Department of Discovery Chemistry, Genentech, California, CA, USA
| | - Scott Martin
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Eva Lin
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Rina Fong
- Department of Structural Biology, Genentech, California, CA, USA
| | - Paola Di Lello
- Department of Structural Biology, Genentech, California, CA, USA
| | - Marta H Kubala
- Department of Structural Biology, Genentech, California, CA, USA
| | - Michelle N-Y Yang
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Jeffrey T Lau
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Emily Chan
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Alfonso Arrazate
- Department of Translational Oncology, Genentech, California, CA, USA
| | - Le An
- Department of Small Molecule Pharmaceutical Sciences, Genentech, California, CA, USA
| | - Elizabeth Levy
- Department of Small Molecule Pharmaceutical Sciences, Genentech, California, CA, USA
| | - Maria N Lorenzo
- Department of Protein Chemistry, Genentech, California, CA, USA
| | - Ho-June Lee
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Trang H Pham
- Department of Discovery Oncology, Genentech, California, CA, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, California, CA, USA
| | - Richard Zang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, California, CA, USA
| | - Yi-Chen Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, California, CA, USA
| | | | | | - Jason Li
- Department of Oncology Bioinformatics, Genentech, California, CA, USA
| | - Matthew T Chang
- Department of Oncology Bioinformatics, Genentech, California, CA, USA
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, California, CA, USA
| | | | - Xin Ye
- Department of Discovery Oncology, Genentech, California, CA, USA.
| | - James J Crawford
- Department of Discovery Chemistry, Genentech, California, CA, USA.
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech, California, CA, USA.
| |
Collapse
|
12
|
Lu W, Fan M, Ji W, Tse J, You I, Ficarro SB, Tavares I, Che J, Kim AY, Zhu X, Boghossian A, Rees MG, Ronan MM, Roth JA, Hinshaw SM, Nabet B, Corsello SM, Kwiatkowski N, Marto JA, Zhang T, Gray NS. Structure-Based Design of Y-Shaped Covalent TEAD Inhibitors. J Med Chem 2023; 66:4617-4632. [PMID: 36946421 PMCID: PMC10270725 DOI: 10.1021/acs.jmedchem.2c01548] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Transcriptional enhanced associate domain (TEAD) proteins together with their transcriptional coactivator yes-associated protein (YAP) and transcriptional coactivator with the PDZ-binding motif (TAZ) are important transcription factors and cofactors that regulate gene expression in the Hippo pathway. In mammals, the TEAD families have four homologues: TEAD1 (TEF-1), TEAD2 (TEF-4), TEAD3 (TEF-5), and TEAD4 (TEF-3). Aberrant expression and hyperactivation of TEAD/YAP signaling have been implicated in a variety of malignancies. Recently, TEADs were recognized as being palmitoylated in cells, and the lipophilic palmitate pocket has been successfully targeted by both covalent and noncovalent ligands. In this report, we present the medicinal chemistry effort to develop MYF-03-176 (compound 22) as a selective, cysteine-covalent TEAD inhibitor. MYF-03-176 (compound 22) significantly inhibits TEAD-regulated gene expression and proliferation of the cell lines with TEAD dependence including those derived from mesothelioma and liposarcoma.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Jason Tse
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Inchul You
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Scott B Ficarro
- Department of Cancer Biology, Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Isidoro Tavares
- Department of Cancer Biology, Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jianwei Che
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Audrey Y Kim
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Xijun Zhu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Andrew Boghossian
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, United States
| | - Steven M Corsello
- Department of Medicine and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nicholas Kwiatkowski
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Jarrod A Marto
- Department of Cancer Biology, Blais Proteomics Center, Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Zhao B, Pobbati AV, Rubin BP, Stauffer S. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals (Basel) 2023; 16:ph16040583. [PMID: 37111340 PMCID: PMC10146773 DOI: 10.3390/ph16040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway that plays important roles in the regulation of cell proliferation and apoptosis. Transcription factors TEAD1-4 and transcriptional coregulators YAP/TAZ are the downstream effectors of the Hippo pathway and can modulate Hippo biology. Dysregulation of this pathway is implicated in tumorigenesis and acquired resistance to therapies. The emerging importance of YAP/TAZ-TEAD interaction in cancer development makes it a potential therapeutic target. In the past decade, disrupting YAP/TAZ-TEAD interaction as an effective approach for cancer treatment has achieved great progress. This approach followed a trajectory wherein peptidomimetic YAP-TEAD protein-protein interaction disruptors (PPIDs) were first designed, followed by the discovery of allosteric small molecule PPIDs, and currently, the development of direct small molecule PPIDs. YAP and TEAD form three interaction interfaces. Interfaces 2 and 3 are amenable for direct PPID design. One direct YAP-TEAD PPID (IAG933) that targets interface 3 has entered a clinical trial in 2021. However, in general, strategically designing effective small molecules PPIDs targeting TEAD interfaces 2 and 3 has been challenging compared with allosteric inhibitor development. This review focuses on the development of direct surface disruptors and discusses the challenges and opportunities for developing potent YAP/TAZ-TEAD inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Mesrouze Y, Gubler H, Villard F, Boesch R, Ottl J, Kallen J, Reid PC, Scheufler C, Marzinzik AL, Chène P. Biochemical and Structural Characterization of a Peptidic Inhibitor of the YAP:TEAD Interaction That Binds to the α-Helix Pocket on TEAD. ACS Chem Biol 2023; 18:643-651. [PMID: 36825662 DOI: 10.1021/acschembio.2c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The TEAD transcription factors are the most distal elements of the Hippo pathway, and their transcriptional activity is regulated by several proteins, including YAP. In some cancers, the Hippo pathway is deregulated and inhibitors of the YAP:TEAD interaction are foreseen as new anticancer drugs. The binding of YAP to TEAD is driven by the interaction of an α-helix and an Ω-loop present in its TEAD-binding domain with two distinct pockets at the TEAD surface. Using the mRNA-based display technique to screen a library of in vitro-translated cyclic peptides, we identified a peptide that binds with a nanomolar affinity to TEAD. The X-ray structure of this peptide in complex with TEAD reveals that it interacts with the α-helix pocket. Under our experimental conditions, this peptide can form a ternary complex with TEAD and YAP. Furthermore, combining it with a peptide binding to the Ω-loop pocket gives an additive inhibitory effect on the YAP:TEAD interaction. Overall, our results show that it is possible to identify nanomolar inhibitors of the YAP:TEAD interaction that bind to the α-helix pocket, suggesting that developing such compounds might be a strategy to treat cancers where the Hippo pathway is deregulated.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Hanspeter Gubler
- NIBR Informatics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Frédéric Villard
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Ralf Boesch
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Johannes Ottl
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Joerg Kallen
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Patrick C Reid
- PeptiDream, 3-25-23 Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Clemens Scheufler
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| | - Andreas L Marzinzik
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056 Basel, Switzerland
| |
Collapse
|
15
|
Son Y, Kim J, Kim Y, Chi SG, Kim T, Yu J. Discovery of dioxo-benzo[b]thiophene derivatives as potent YAP-TEAD interaction inhibitors for treating breast cancer. Bioorg Chem 2023; 131:106274. [PMID: 36434952 DOI: 10.1016/j.bioorg.2022.106274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Disruption of protein-protein interaction between transcriptional enhancer factor (TEA)-domain (TEAD; a transcription factor) and its co-activator Yes-associated protein (YAP)/ transcriptional co-activator with PDZ-binding motif (TAZ) is a potential therapeutic strategy against various types of solid tumors. Based on hit compound 8 and 9a, hydrazone derivatives with dioxo-benzo[d]isothiazole (9b-n) and oxime ester (10a-s) or amide derivatives (11a-r) with dioxo-benzo[b]thiophene were designed and synthesized as novel TEAD-YAP interaction inhibitors. Amide derivative 11q exhibited a higher potency in inhibiting TEAD-YAP reporter expression activity (IC50 = 12.7 μM), endogenous target gene (e.g., CTGF and CYR61) expression, breast cancer cell growth (GI50 = 3.2 μM), and anchorage-independent growth in soft agar. Molecular docking analysis suggested that the newly synthesized compounds bound to interface 2 of TEAD had lower docking scores compared to the compounds that bind to interface 3; moreover, they were predicted to overlap with YAP. Therefore, we identified 11q as an attractive therapeutic agent for treating solid tumors overexpressing YAP/TAZ.
Collapse
Affiliation(s)
- Youngchai Son
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea; Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Jaeyeal Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Yongchan Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Tackhoon Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Department of Life Sciences, Korea University, Seoul 02841, South Korea; Division of Bio-medical science and technology, KIST school, University of Science and Technology, Daejeon 34113, South Korea.
| | - Jinha Yu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
16
|
Pobbati AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem Sci 2023; 48:450-462. [PMID: 36709077 DOI: 10.1016/j.tibs.2022.12.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673.
| |
Collapse
|
17
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
18
|
Zhao F, Tang X, Huang J, Li J, Xiao Y, Qin Z. Design, synthesis, and insecticidal activity of a novel series of flupyrimin analogs bearing 1-aryl-1H-pyrazol-4-yl subunits. Front Chem 2022; 10:1019573. [PMID: 36262338 PMCID: PMC9574050 DOI: 10.3389/fchem.2022.1019573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
To discover new potential insecticides to protect agricultural crops from damage, a series of novel flupyrimin derivatives containing an arylpyrazole core were designed and synthesized. Their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Bioassays indicated that the 31 compounds synthesized possessed excellent insecticidal activity against Plutella xylostella. Among these target compounds, the lethality of A3, B1-B6, D4, and D6 reached 100% at 400 μg/ml. Moreover, when the concentration dropped to 25 μg/ml, the insecticidal activities against the Plutella xylostella for compounds B2, B3, and B4 still reached more than 70%. The structure–activity relationship of the Plutella xylostella was discussed. The density functional theory analysis of flupyrimin and B4 was carried out to support the abovementioned structure–activity relationship. The possible binding modes between receptor and active groups in title compounds were also verified by docking simulation. These results provided new ideas for the development of these novel candidate insecticides in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhaohai Qin
- *Correspondence: Jiaxing Huang, ; Zhaohai Qin,
| |
Collapse
|
19
|
Furet P, Bordas V, Le Douget M, Salem B, Mesrouze Y, Imbach-Weese P, Sellner H, Voegtle M, Soldermann N, Chapeau E, Wartmann M, Scheufler C, Fernandez C, Kallen J, Guagnano V, Chène P, Schmelzle T. The First Class of Small Molecules Potently Disrupting the YAP-TEAD Interaction by Direct Competition. ChemMedChem 2022; 17:e202200303. [PMID: 35950546 DOI: 10.1002/cmdc.202200303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Indexed: 11/08/2022]
Abstract
Inhibition of the YAP-TEAD protein protein interaction is an attractive therapeutic concept under intense investigation with the objective to treat cancers associated with a dysregulation of the Hippo pathway. However, owing to the very extended surface of interaction of the two proteins, the identification of small drug-like molecules able to efficiently prevent YAP from binding to TEAD by direct competition has been elusive so far. We disclose here the discovery of the first class of small molecules potently inhibiting the YAP-TEAD interaction by binding at one of the main interaction sites of YAP at the surface of TEAD. These inhibitors, providing a path forward to pharmacological intervention in the Hippo pathway, evolved from a weakly active virtual screening hit advanced to high potency by structure-based design.
Collapse
Affiliation(s)
- Pascal Furet
- Novartis Pharma AG, Biomedical Research, 4002, Basel, SWITZERLAND
| | - Vincent Bordas
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | | | - Bahaa Salem
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | - Yannick Mesrouze
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| | | | - Holger Sellner
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | - Markus Voegtle
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | | | - Emilie Chapeau
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| | - Markus Wartmann
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| | | | - Cesar Fernandez
- Novartis Institutes for BioMedical Research Basel, CBT, SWITZERLAND
| | - Joerg Kallen
- Novartis Institutes for BioMedical Research Basel, CBT, SWITZERLAND
| | - Vito Guagnano
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | - Patrick Chène
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| | - Tobias Schmelzle
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| |
Collapse
|
20
|
Zagiel B, Melnyk P, Cotelle P. Progress with YAP/TAZ-TEAD inhibitors: a patent review (2018-present). Expert Opin Ther Pat 2022; 32:899-912. [PMID: 35768160 DOI: 10.1080/13543776.2022.2096436] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The Hippo pathway represents a new opportunity for the treatment of cancer. Overexpression of Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ) or TEAD has been demonstrated in cancers and YAP mediates resistance to cancer drugs. Since 2018, the potential of this pathway has been illustrated by numerous articles and patents and the first drugs entering in clinical trial phase 1. AREAS COVERED This review is limited to published patent applications that have disclosed direct small-molecule inhibitors of the YAP/TAZ-TEAD interaction. EXPERT OPINION The YAP/TAZ-TEAD transcriptional complex is a promising target for the treatment of cancer. Approximately 30 international patents (used database: Sci-finder, query: TEAD; documents: patents; period: from 2017-January 2022) that disclose TEAD transcriptional inhibitors have been filled since 2018. The mechanism of action is not always described in the patents, we can divide the drugs into three different categories: (i) external TEAD ligands; (ii) non-covalent TEAD ligands of the palmitate pocket; (iii) covalent TEAD ligands, which bind into the palmitate pocket. The first molecules in clinical trial phase 1 are non-covalent TEAD ligands. The selective TEAD ligand have also been patented, published and selectivity could be of great interest for personalized medicine.
Collapse
Affiliation(s)
- Benjamin Zagiel
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| | - Patricia Melnyk
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| | - Philippe Cotelle
- Lille Neuroscience and Cognition Research Center, University of Lille, INSERM, CHU Lille, UMR-S 1172, Lille, France
| |
Collapse
|
21
|
Seeneevassen L, Dubus P, Gronnier C, Varon C. Hippo in Gastric Cancer: From Signalling to Therapy. Cancers (Basel) 2022; 14:cancers14092282. [PMID: 35565411 PMCID: PMC9105983 DOI: 10.3390/cancers14092282] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is one of the most important ones in mammals. Its key functions in cell proliferation, tissue growth, repair, and homeostasis make it the most crucial one to be controlled. Many means have been deployed for its regulation, since this pathway is not only composed of core regulatory components, but it also communicates with and regulates various other pathways, making this signalisation even more complex. Its role in cancer has been studied more and more over the past few years, and it presents YAP/TAZ as the major oncogenic actors. In this review, we relate how vital this pathway is for different organs, and how regulatory mechanisms have been bypassed to lead to cancerous states. Most studies present an upregulation status of YAP/TAZ, and urge the need to target them. A focus is made here on gastric carcinogenesis, its main dysregulations, and the major strategies adopted and tested to counteract Hippo pathway disbalance in this disease. Hippo pathway targeting can be achieved by various means, which are described in this review. Many studies have tested different potential molecules, which are detailed hereby. Though not all tested in gastric cancer, they could represent a real interest.
Collapse
Affiliation(s)
- Lornella Seeneevassen
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
| | - Pierre Dubus
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Histology and Pathology, CHU Bordeaux, F-33000 Bordeaux, France
| | - Caroline Gronnier
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Department of Digestive Surgery, Haut-Lévêque Hospital, CHU Bordeaux, F-33000 Bordeaux, France
| | - Christine Varon
- BRIC (BoRdeaux Institute of onCology), UMR1312, INSERM, University of Bordeaux, F-33000 Bordeaux, France; (L.S.); (P.D.); (C.G.)
- Correspondence:
| |
Collapse
|
22
|
Che K, Pobbati AV, Seavey CN, Fedorov Y, Komar AA, Burtscher A, Ma S, Rubin BP. Aurintricarboxylic acid is a canonical disruptor of the TAZ-TEAD transcriptional complex. PLoS One 2022; 17:e0266143. [PMID: 35417479 PMCID: PMC9007350 DOI: 10.1371/journal.pone.0266143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Disrupting the formation of the oncogenic YAP/TAZ-TEAD transcriptional complex holds substantial therapeutic potential. However, the three protein interaction interfaces of this complex cannot be easily disrupted using small molecules. Here, we report that the pharmacologically active small molecule aurintricarboxylic acid (ATA) acts as a disruptor of the TAZ-TEAD complex. ATA was identified in a high-throughput screen using a TAZ-TEAD AlphaLISA assay that was tailored to identify disruptors of this transcriptional complex. We further used fluorescence polarization assays both to confirm disruption of the TAZ-TEAD complex and to demonstrate that ATA binds to interface 3. We have previously shown that cell-based models that express the oncogenic TAZ-CAMTA1 (TC) fusion protein display enhanced TEAD transcriptional activity because TC functions as an activated form of TAZ. Utilizing cell-based studies and our TC model system, we performed TC/TEAD reporter, RNA-Seq, and qPCR assays and found that ATA inhibits TC/TEAD transcriptional activity. Further, disruption of TC/TEAD and TAZ/TEAD interaction by ATA abrogated anchorage-independent growth, the phenotype most closely linked to dysregulated TAZ/TEAD activity. Therefore, this study demonstrates that ATA is a novel small molecule that has the ability to disrupt the undruggable TAZ-TEAD interface.
Collapse
Affiliation(s)
- Kepeng Che
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ajaybabu V. Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Caleb N. Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yuriy Fedorov
- Small Molecule Drug Development Core, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anton A. Komar
- Department of Biological, Geological and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ashley Burtscher
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Brian P. Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
23
|
Liberelle M, Toulotte F, Renault N, Gelin M, Allemand F, Melnyk P, Guichou JF, Cotelle P. Toward the Design of Ligands Selective for the C-Terminal Domain of TEADs. J Med Chem 2022; 65:5926-5940. [PMID: 35389210 DOI: 10.1021/acs.jmedchem.2c00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Hippo signaling pathway plays a fundamental role in the control of organ growth, cell proliferation, and stem cell characters. TEADs are the main transcriptional output regulators of the Hippo signaling pathway and bind to YAP and TAZ co-activators. TEAD1-4 are expressed differently, depending on the tissue and developmental level, and can be overexpressed in certain pathologies. TEAD ligands mainly target the internal pocket of the C-terminal domain of TEAD, and the first ligands selective for TEAD1 and TEAD3 have been recently reported. In this paper, we focus on the topographic homology of the TEAD C-terminal domain both externally and in the internal pocket to highlight the possibility of rationally designing ligands selective for one of the TEAD family members. We identified a novel TEAD2-specific pocket and reported its first ligand. Finally, AlphaFold2 models of full-length TEADs suggest TEAD autoregulation and emphasize the importance of the interface 2.
Collapse
Affiliation(s)
- Maxime Liberelle
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Florine Toulotte
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Nicolas Renault
- INSERM, CHU Lille, U-1286 - INFINTE - Institute for Translational Research in Inflammation, Université de Lille, F-59000 Lille, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Patricia Melnyk
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France
| | - Jean-François Guichou
- Centre de Biologie Structurale (CBS), CNRS, INSERM, Université de Montpellier, F-34090 Montpellier, France
| | - Philippe Cotelle
- INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, Université de Lille, F-59000 Lille, France.,CS 90108, ENSCL-Centrale Lille, F-59652 Villeneuve d'Ascq, France
| |
Collapse
|
24
|
Li L, Li R, Wang Y. Identification of Small-molecule YAP-TEAD inhibitors by High-throughput docking for the Treatment of colorectal cancer. Bioorg Chem 2022; 122:105707. [PMID: 35247806 DOI: 10.1016/j.bioorg.2022.105707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth, proliferation, and apoptosis. Dysregulation of the Hippo pathway due to overexpression of YAP has been reported in various cancers. Inhibition of TEAD represses the expression of associated genes, proving the value of this transcription factor for the development of novel anti-cancer therapies. We retrieved a promising hit compound L06 which is a potent TEAD4 inhibitor through docking-based virtual screening. L06 inhibits TEAD autopalmitoylation, interrupts YAP-TEAD interaction, and reduces the YAP-TEAD transcriptional activity. Moreover, L06 reduces the expression of CTGF, inhibits HCT 116 colorectal cancer cell proliferation, migration and invasion. The YAP-TEAD complex is a viable drug target, and L06 is a lead compound for the development of more potent TEAD inhibitors to treat colorectal cancer and other hyperproliferative pathologies.
Collapse
Affiliation(s)
- Lijun Li
- Department of General Surgery, Taizhou People's Hospital, Taizhou 225300, PR China.
| | - Ruizhe Li
- Moray house school of education and sport, The university of Edinburgh, Edinburgh, UK
| | - Yumei Wang
- Department of Emergency Internal Medicine, Taizhou People's Hospital, Taizhou 225300, PR China
| |
Collapse
|
25
|
Ren X, Wang X, Yan Y, Chen X, Cai Y, Liang Q, Peng B, Xu Z, He Q, Kang F, Li J, Zhang W, Hong Q, Peng J, Xiao M. Integrative bioinformatics and experimental analysis revealed TEAD as novel prognostic target for hepatocellular carcinoma and its roles in ferroptosis regulation. Aging (Albany NY) 2022; 14:961-974. [PMID: 35077390 PMCID: PMC8833120 DOI: 10.18632/aging.203853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Transcriptional enhanced associate domain (TEAD) family consists of four members TEAD1/2/3/4 that regulate cell growth, stem cell functions and organ development. As the downstream of Hippo signaling pathway, TEAD family is involved in the progression of several cancers. However, the precise biology functions of TEAD family in hepatocellular carcinoma (HCC) have not been reported yet. METHODS We apply bioinformatics analysis based on databases including UALCAN, Oncomine, GEPIA, Kaplan-Meier plotter, WebGestalt, cBioPortal, TIMER2.0, and in vitro experimental evidence to identify the exact roles of TEAD family in HCC. RESULTS The results indicated that TEAD2/4 were significantly upregulated in HCC compared with normal tissues. Downregulated of TEAD2 could promote the death of HCC cells through inducing ferroptosis by iron accumulation and subsequent oxidative damage. According to the Kaplan-Meier plotter database, we found that the high expression of TEAD2 was significantly associated with poor disease-specific survival, overall survival, progression-free survival and relapse-free survival. In aspect of cancer immunity, Tumor Immune Estimation Resource algorithm showed that the expression of TEAD family members was obviously related to multiple of infiltrating immune cells including macrophages, neutrophils, dendritic cells, B cells, CD8+ T cells and CD4+ T cells. Finally, we conducted the functional enrichment analysis including protein-protein interaction network, gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway based on the TEAD family-associated coexpression genes. CONCLUSION The study provided deep insight information of TEAD family in the diagnostic and prognostic evaluation of HCC patients.
Collapse
Affiliation(s)
- Xinxin Ren
- Center for Molecular Medicine, Xiangya Hospital, Key Laboratory of Molecular Radiation Oncology of Hunan Province, Central South University, Changsha 410008, Hunan, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qingchun He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Emergency, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, Hunan, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|