1
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
2
|
Pandiyan S, Wang L. In-silico design of novel potential HDAC inhibitors from indazole derivatives targeting breast cancer through QSAR, molecular docking and pharmacokinetics studies. Comput Biol Chem 2024; 110:108035. [PMID: 38460437 DOI: 10.1016/j.compbiolchem.2024.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
Latest studies confirmed that abnormal function of histone deacetylase (HDAC) plays a pivotal role in formation of tumors and is a potential therapeutic target for treating breast cancer. In this research, in-silico drug discovery approaches via quantitative structure activity relationship (QSAR) and molecular docking simulations were adapted to 43 compounds of indazole derivatives with HDAC inhibition for anticancer activity against breast cancer. The QSAR models were built from multiple linear regression (MLR), and models predictability was cross-validated by leave-one-out (LOO) method. Based on these results, compounds C32, C26 and C31 from model 3 showed superior inhibitory activity with pIC50 of 9.30103, 9.1549 and 9.1549. We designed 10 novel compounds with molecular docking scores ranging from -7.9 to -9.3 kcal/mol. The molecular docking simulation results reveal that amino acid residues ILE1122 and PRO1123 play a significant role in bonding with 6CE6 protein. Furthermore, newly designed compounds P5, P2 and P7 with high docking scores of -9.3 kcal/mol, -8.9 kcal/mol and -8.8 kcal/mol than FDA-approved drug Raloxifene (-8.5 kcal/mol) and aid in establishment of potential drug candidate for HDAC inhibitors. The in-silico ADME functionality is used in the final phase to evaluate newly designed inhibitors as potential drug candidates. The results suggest that newly designed compounds P5, P2 and P7 can be used as a potential anti-breast cancer drug candidate.
Collapse
Affiliation(s)
- Sanjeevi Pandiyan
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China.
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China
| |
Collapse
|
3
|
Scott JS, Klinowska TCM. Selective estrogen receptor degraders (SERDs) and covalent antagonists (SERCAs): a patent review (July 2021-December 2023). Expert Opin Ther Pat 2024; 34:333-350. [PMID: 38836316 DOI: 10.1080/13543776.2024.2364803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Breast cancer is the most frequently diagnosed cancer worldwide. With around 70% of breast cancers expressing the estrogen receptor (ER), molecules capable of antagonizing and degrading ER (SERDs) or covalently binding to and antagonizing ER (SERCAs) are at the forefront of efforts to bring better treatments to patients. AREAS COVERED This review summarizes patent applications that claim estrogen receptor degraders (SERDs) and covalent antagonists (SERCAs) identified using SciFinder between the period July 2021 to December 2023. A total of 91 new patent applications from 32 different applicants are evaluated with stratification into acidic SERDs, basic SERDs, SERCAs and miscellaneous degraders. EXPERT OPINION The widespread adoption of fulvestrant in the treatment of ER+ breast cancer continues to stimulate research into orally bioavailable SERDs and SERCAs. A number of molecules have entered clinical development and, although some have been discontinued, a cohort of potential new treatments have generated encouraging efficacy and safety data. Notably, the first example of an oral SERD, elacestrant, has now been approved by the FDA and EMA, providing further encouragement for this class of targeted therapies.
Collapse
Affiliation(s)
- James S Scott
- AstraZeneca, Cambridge Biomedical Campus, Cambridge, UK
| | | |
Collapse
|
4
|
Xiong S, Song K, Xiang H, Luo G. Dual-target inhibitors based on ERα: Novel therapeutic approaches for endocrine resistant breast cancer. Eur J Med Chem 2024; 270:116393. [PMID: 38588626 DOI: 10.1016/j.ejmech.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Cao X, Gong Y. Recent developments of hydroxamic acid hybrids as potential anti-breast cancer agents. Future Med Chem 2024; 16:469-492. [PMID: 38293775 DOI: 10.4155/fmc-2023-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
Histone deacetylase inhibitors not only possess favorable effects on modulating tumor microenvironment and host immune cells but also can reactivate the genes silenced due to deacetylation and chromatin condensation. Hydroxamic acid hybrids as promising histone deacetylase inhibitors have the potential to address drug resistance and reduce severe side effects associated with a single drug molecule due to their capacity to simultaneously modulate multiple targets in cancer cells. Accordingly, rational design of hydroxamic acid hybrids may provide valuable therapeutic interventions for the treatment of breast cancer. This review aimed to provide insights into the in vitro and in vivo anti-breast cancer therapeutic potential of hydroxamic acid hybrids, together with their mechanisms of action and structure-activity relationships, covering articles published from 2020 to the present.
Collapse
Affiliation(s)
- Xinran Cao
- School of Pharmacy, University College London (UCL), London, WC1E 6BT, UK
| | - Yufeng Gong
- The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
6
|
Pan Y, Hou H, Zhou B, Gao J, Gao F. Hydroxamic acid hybrids: Histone deacetylase inhibitors with anticancer therapeutic potency. Eur J Med Chem 2023; 262:115879. [PMID: 37875056 DOI: 10.1016/j.ejmech.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Histone deacetylases (HDACs), a class of enzymes responsible for the removal of acetyl functional groups from the lysine residues in the amino-terminal tails of core histones, play a critical role in the modulation of chromatin architecture and the regulation of gene expression. Dysregulation of HDAC expression has been closely associated with the development of various cancers. Histone deacetylase inhibitors (HDACis) could regulate diverse cellular pathways, cause cell cycle arrest, and promote programmed cell death, making them promising avenues for cancer therapy with potent efficacy and favorable toxicity profiles. Hybrid molecules incorporating two or more pharmacophores in one single molecule, have the potential to simultaneously inhibit two distinct cancer targets, potentially overcome drug resistance and minimize drug-drug interactions. Notably, hydroxamic acid hybrids, exemplified by fimepinostat and tinostamustine as potential HDACis, could exert the anticancer effects through induction of apoptosis, differentiation, and growth arrest in cancer cells, representing useful scaffolds for the discovery of novel HDACis. The purpose of this review is to summarize the current scenario of hydroxamic acid hybrids as HDACis with anticancer therapeutic potential developed since 2020 to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
7
|
Bhatia N, Hazra S, Thareja S. Selective Estrogen receptor degraders (SERDs) for the treatment of breast cancer: An overview. Eur J Med Chem 2023; 256:115422. [PMID: 37163948 DOI: 10.1016/j.ejmech.2023.115422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Discovery of SERDs has changed the direction of anticancer research, as more than 70% of breast cancer cases are estrogen receptor positive (ER+). Therapies such as selective estrogen receptor modulators (SERM) and aromatase inhibitors (AI's) have been effective, but due to endocrine resistance, SERDs are now considered essential therapeutics for the treatment of ER+ breast cancer. The present review deliberates the pathophysiology of SERDs from the literature covering various molecules in clinical trials. Estrogen receptors active sites distinguishing characteristics and interactions with currently available FDA-approved drugs have also been discussed. Designing strategy of previously reported SERDs, their SAR analysis, in silico, and the biological efficacy have also been summarized along with appropriate examples.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Shreejita Hazra
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
8
|
Xiong S, Wang X, Zhu M, Song K, Li Y, Yang J, Liu X, Liu M, Dong H, Chen M, Chen D, Xiang H, Luo G. Structural optimization of tetrahydroisoquinoline-hydroxamate hybrids as potent dual ERα degraders and HDAC inhibitors. Bioorg Chem 2023; 134:106459. [PMID: 36924653 DOI: 10.1016/j.bioorg.2023.106459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/21/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Both estrogen receptor α (ERα) and histone deacetylases (HDACs) are valid therapeutic targets for anticancer drug development. Combination therapies using diverse ERα antagonists or degraders and HDAC inhibitors have been proven effective in endocrine-resistant ER + breast cancers based on the crosstalk between ERα and HDAC pathway. In this study, we reported the optimization of a series of methoxyphenyl- or pyridinyl- substituted tetrahydroisoquinoline-hydroxamates, which were optimized from 31, a dual ERα degrader/HDAC inhibitor previously reported by our group. Most of the synthesized compounds displayed potent ERα degradation efficacy and antiproliferative activity. Among them, A04 demonstrated the best anti-proliferation activity (MCF-7 IC50 = 1.96 µM) and HDAC6 inhibitory activity (HDAC6 IC50 = 25.96 nM), which is slightly more potent than the lead compound 31 (MCF-7 IC50 = 4.38 μM, HDAC6 IC50 = 63.03 nM). In addition, compound A04 exerted ERα-independent HDAC6-inhibiting effect without agonistic activity in endometrial cells. These results demonstrated that A04 is a novel and promising dual ERα degrader/HDAC inhibitor worthy of further development.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiqi Zhu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Song
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yefan Li
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jiaqi Yang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyan Liu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mofei Liu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing 210009, China
| | - Mingqi Chen
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211109, China
| | - Deying Chen
- Department of Analytical Chemistry, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
|
10
|
Luo G, Li X, Lin X, Lu X, Li Z, Xiang H. Novel 11β-substituted estradiol conjugates: Transition from ERα agonizts to effective PROTAC degraders. J Steroid Biochem Mol Biol 2022; 223:106154. [PMID: 35870675 DOI: 10.1016/j.jsbmb.2022.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Endocrine therapy is widely used in clinic for breast cancer treatment, but long-term treatment inevitably causes drug resistance. Most of endocrine therapy-resistant breast cancers continue to depend on ERα signaling for growth and survival. In this regard, small molecule-induced ERα degradation, i.e. proteolysis targeting chimeras (PROTACs), represents an effective strategy to overcome endocrine resistance. Herein, we describe the design, synthesis, and biological evaluation of novel ERα-targeting PROTACs, wherein a E3 ligase ligand was attached to the 11β-position of estradiol via various linkers. Our efforts have identified a potent ERα PROTAC 15b that achieved excellent ERα degradation activity (DC50 = 67 nM) and induced comparable inhibition of cell growth to that of fulvestrant in MCF-7 cells. Besides, 15b displayed antagonistic effects in uterine cells and favorable physicochemical properties, making it as a good lead compound for further development as anti-breast agents.
Collapse
Affiliation(s)
- Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xinyu Li
- School of Life and Health Sciences and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xin Lin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenbang Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
11
|
Xie Y, Shi Z, Qian Y, Jiang C, Liu W, Liu B, Jiang B. HDAC2- and EZH2-Mediated Histone Modifications Induce PDK1 Expression through miR-148a Downregulation in Breast Cancer Progression and Adriamycin Resistance. Cancers (Basel) 2022; 14:cancers14153600. [PMID: 35892859 PMCID: PMC9329997 DOI: 10.3390/cancers14153600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Epigenetic modification plays an important regulatory role in breast cancer progression. However, the relationship between epigenetic modification with tumor metabolism has not yet been fully elucidated. PDK1, as a key enzyme in glucose metabolism, mediates multiple tumors development. But, the mechanism of epigenetic modification in regulating PDK1 remains unclear in breast cancer. Here, we demonstrated that HDAC2 and EZH2 upregulated PDK1 expression through inhibiting miR-148a. Importantly, miR-148a targeting PDK1 regulated breast cancer cells glycolysis, invasion, epithelial-mesenchymal transition (EMT) and Adriamycin resistance. Our results suggested that the HDAC2/EZH2/miR-148a/PDK1 axis may be a promising potential therapeutic strategy. Abstract Background: Breast cancer has one of highest morbidity and mortality rates for women. Abnormalities regarding epigenetics modification and pyruvate dehydrogenase kinase 1 (PDK1)-induced unusual metabolism contribute to breast cancer progression and chemotherapy resistance. However, the role and mechanism of epigenetic change in regulating PDK1 in breast cancer remains to be elucidated. Methods: Gene set enrichment analysis (GSEA) and Pearson’s correlation analysis were performed to analyze the relationship between histone deacetylase 2 (HDAC2), enhancer of zeste homologue 2 (EZH2), and PDK1 in database and human breast cancer tissues. Dual luciferase reporters were used to test the regulation between PDK1 and miR-148a. HDAC2 and EZH2 were found to regulate miR-148a expression through Western blotting assays, qRT-PCR and co-immunoprecipitation assays. The effects of PDK1 and miR-148a in breast cancer were investigated by immunofluorescence (IF) assay, Transwell assay and flow cytometry assay. The roles of miR-148a/PDK1 in tumor growth were investigated in vivo. Results: We found that PDK1 expression was upregulated by epigenetic alterations mediated by HDAC2 and EZH2. At the post-transcriptional level, PDK1 was a new direct target of miR-148a and was upregulated in breast cancer cells due to miR-148a suppression. PDK1 overexpression partly reversed the biological function of miR-148a—including miR-148a’s ability to increase cell sensitivity to Adriamycin (ADR) treatment—inhibiting cell glycolysis, invasion and epithelial–mesenchymal transition (EMT), and inducing apoptosis and repressing tumor growth. Furthermore, we identified a novel mechanism: DNMT1 directly bound to EZH2 and recruited EZH2 and HDAC2 complexes to the promoter region of miR-148a, leading to miR-148a downregulation. In breast cancer tissues, HDAC2 and EZH2 protein expression levels also were inversely correlated with levels of miR-148a expression. Conclusion: Our study found a new regulatory mechanism in which EZH2 and HDAC2 mediate PDK1 upregulation by silencing miR-148a expression to regulate cancer development and Adriamycin resistance. These new findings suggest that the HDAC2/EZH2/miR-148a/PDK1 axis is a novel mechanism for regulating cancer development and is a potentially promising target for therapeutic options in the future.
Collapse
Affiliation(s)
- Yunxia Xie
- Academy of Medical Science, School of Basic Medical Sciences, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China;
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China;
| | - Yingchen Qian
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Chengfei Jiang
- Department of Pathology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China;
| | - Wenjing Liu
- Academy of Medical Science, School of Basic Medical Sciences, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China;
- Correspondence: (W.L.); (B.L.)
| | - Bingjie Liu
- Academy of Medical Science, School of Basic Medical Sciences, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China;
- Correspondence: (W.L.); (B.L.)
| | - Binghua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
12
|
Rahbari R, Rasmi Y, Khadem-Ansari MH, Abdi M. The role of histone deacetylase 3 in breast cancer. Med Oncol 2022; 39:84. [PMID: 35578147 DOI: 10.1007/s12032-022-01681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/05/2022] [Indexed: 11/25/2022]
Abstract
It has been recently revealed that Histone Deacetylase (HDAC) 3, a unique member of the HDACs family, can trigger and progress cancers by alternation in genes expression and proteins activity. Epigenetic modifications by HDACs have been studied well in various cancer cells. Recent studies have focused on the HDAC enzymes as a possible target in cancer therapy. There are significant documents on upregulation of HDAC3 in breast cancer (BC) cells which suggest an oncogenic role for this enzyme. Interestingly, some studies showed that HDAC3 inhibition could be considered as a promising target in breast cancer therapy, and thus far, several inhibitors from different nature have been introduced. In this review, we discussed the function and highlight the existing inhibitors of HDAC3 in BC pathogenesis and therapy.
Collapse
Affiliation(s)
- Rezgar Rahbari
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|