1
|
Myroslava O, Poustforoosh A, Inna B, Parchenko V, Tüzün B, Gutyj B. Molecular descriptors and in silico studies of 4-((5-(decylthio)-4-methyl-4n-1,2,4-triazol-3-yl)methyl)morpholine as a potential drug for the treatment of fungal pathologies. Comput Biol Chem 2024; 113:108206. [PMID: 39265461 DOI: 10.1016/j.compbiolchem.2024.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The article explores the polypharmacological profiling of 4-((5-(decylthio)-4-methyl-4H-1,2,4-triazole-3-yl)methyl)morpholine as a potential antimicrobial agent. The study utilized 15148 electronic pharmacophore models of organisms, ranked by the Tversky index. Detailed analysis revealed classical bonding patterns with selected enzymes, identifying key amino acid residues involved in complex formation. Protein target prediction was conducted through various stages using the Galaxy web service, including ligand structure creation, pharmacophore alignment, and target ranking. The activities of the molecules against 1G6C, 2W6O, 3G7F, 3OWU, 4IVR, and 4TZT proteins were compared. Docking studies with PyMOL and Discovery Studio Visualizer revealed binding to thymidine kinase, thiamine phosphate synthase, and biotin carboxylase with promising binding affinities. These interactions suggest potential antibacterial and antiviral effects, warranting further virtual screening and in-depth studies for the development of effective antimicrobial drugs. Calculations of the molecules were made with the gaussian package program. Calculations were made on the 6-31++g** basis set at B3LYP, HF, and M062X levels with Gaussian software. Afterwards, the 0-100 ns interaction of the molecule with the highest activity was examined.
Collapse
Affiliation(s)
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Bushuieva Inna
- Zaporizhzhia State Medical and Pharmaceutical University, Ukraine
| | | | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Bogdan Gutyj
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Lviv, Ukraine
| |
Collapse
|
2
|
Luo XF, Zhou H, Deng P, Zhang SY, Wang YR, Ding YY, Wang GH, Zhang ZJ, Wu ZR, Liu YQ. Current development and structure-activity relationship study of berberine derivatives. Bioorg Med Chem 2024; 112:117880. [PMID: 39216382 DOI: 10.1016/j.bmc.2024.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Berberine is a quaternary ammonium isoquinoline alkaloid derived from traditional Chinese medicines Coptis chinensis and Phellodendron chinense. It has many pharmacological activities such as hypoglycemic, hypolipidemic, anti-tumor, antimicrobial and anti-inflammatory. Through structural modifications at various sites of berberine, the introduction of different groups can change berberine's physical and chemical properties, thereby improving the biological activity and clinical efficacy, and expanding the scope of application. This paper reviews the research progress and structure-activity relationships of berberine in recent years, aiming to provide valuable insights for the exploration of novel berberine derivatives.
Collapse
Affiliation(s)
- Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
de Sousa Cutrim TA, Eloy MA, Barcelos FF, Meireles LM, de Freitas Ferreira LC, Reis TA, Gonçalves SS, Lacerda V, Fronza M, Morais PAB, Scherer R. New thymol-derived triazole exhibits promising activity against Trichophyton rubrum. Braz J Microbiol 2024; 55:1287-1295. [PMID: 38453819 PMCID: PMC11153403 DOI: 10.1007/s42770-024-01295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Fungal infections have emerged worldwide, and azole antifungals are widely used to control these infections. However, the emergence of antifungal resistance has been compromising the effectiveness of these drugs. Therefore, the objective of this study was to evaluate the antifungal and cytotoxic activities of the nine new 1,2,3 triazole compounds derived from thymol that were synthesized through Click chemistry. The binding mode prediction was carried out by docking studies using the crystallographic structure of Lanosterol 14α-demethylase G73E mutant from Saccharomyces cerevisiae. The new compounds showed potent antifungal activity against Trichophyton rubrum but did not show relevant action against Aspergillus fumigatus and Candida albicans. For T. rubrum, molecules nº 5 and 8 showed promising results, emphasizing nº 8, whose fungicidal and fungistatic effects were similar to fluconazole. In addition, molecule nº 8 showed low toxicity for keratinocytes and fibroblasts, concluding that this compound demonstrates promising characteristics for developing a new drug for dermatophytosis caused by T. rubrum, or serves as a structural basis for further research.
Collapse
Affiliation(s)
- Thiago Antonio de Sousa Cutrim
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Comissário José Dantas de Melo St., 21, Boa Vista, Vila Velha, Espírito Santo, 29102-770, Brazil
| | - Mariana Alves Eloy
- Agrochemical Graduate Program, Federal University of Espírito Santo, Alegre, Espirito Santo, 29500-000, Brazil
| | - Fernando Fontes Barcelos
- Plant Biotechnology Graduate Program, Universidade Vila Velha, Vila Velha, Espírito Santo, 29102-770, Brazil
| | - Leandra Martins Meireles
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Comissário José Dantas de Melo St., 21, Boa Vista, Vila Velha, Espírito Santo, 29102-770, Brazil
| | | | - Tatiana Alves Reis
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sarah Santos Gonçalves
- Center for Research in Medical Mycology, Department of Pathology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Valdemar Lacerda
- Chemistry Graduate Program, Universidade Federal Do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Marcio Fronza
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Comissário José Dantas de Melo St., 21, Boa Vista, Vila Velha, Espírito Santo, 29102-770, Brazil
| | - Pedro Alves Bezerra Morais
- Agrochemical Graduate Program, Federal University of Espírito Santo, Alegre, Espirito Santo, 29500-000, Brazil.
| | - Rodrigo Scherer
- Pharmaceutical Sciences Graduate Program, Universidade Vila Velha, Comissário José Dantas de Melo St., 21, Boa Vista, Vila Velha, Espírito Santo, 29102-770, Brazil.
| |
Collapse
|
4
|
Shi WY, Zhang SL. Copper/O 2-Mediated Oxidative C-C Activation of Nitriles for Selective Acylation-Bromination of Anilines. J Org Chem 2024; 89:6929-6936. [PMID: 38717970 DOI: 10.1021/acs.joc.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
This study reports selective dual amino acylation and C-H bromination of aniline compounds enabled by Cu/O2 catalyst systems. This method involves crucial oxidation-induced C-CN bond cleavage of α-methylene nitriles to generate an acylcyanide intermediate that is facilely intercepted by anilines. After amino acylation, the Cu(II) precatalyst in combination with NBS generates Cu(III)-Br in situ that engages in selective electrophilic para- or ortho-C-H bromination. The substrate scope, mechanistic aspects, and late-stage functionalization of biologically active anilines are studied. This study shows the synthetic potential of oxidative C-CN bond activation of nitriles for the development of valuable reactions.
Collapse
Affiliation(s)
- Wei-Yu Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Eldehna WM, Mahmoud ST, Elshnawey ER, Elsayed ZM, Majrashi TA, El-Ashrey MK, Rashed M, Hemeda LR, Shoun AA, Elkaeed EB, El Hassab MA, Abdel-Aziz MM, Shahin MI. Novel indolinone-tethered benzothiophenes as anti-tubercular agents against MDR/XDR M. tuberculosis: Design, synthesis, biological evaluation and in vivo pharmacokinetic study. Bioorg Chem 2024; 143:107009. [PMID: 38070474 DOI: 10.1016/j.bioorg.2023.107009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
Joining the global effort to eradicate tuberculosis, one of the deadliest infectious killers in the world, we disclose in this paper the design and synthesis of new indolinone-tethered benzothiophene hybrids 6a-i and 7a-i as potential anti-tubercular agents. The MICs were determined in vitro for the synthesized compounds against the sensitive M. tuberculosis strain ATCC 25177. Potent compounds 6b, 6d, 6f, 6h, 7a, 7b, 7d, 7f, 7h and 7i were furtherly assessed versus resistant MDR-TB and XDR-TB. Structure activity relationship investigation of the synthesized compounds was illustrated, accordingly. Superlative potency was unveiled for compound 6h (MIC = 0.48, 1.95 and 7.81 µg/mL for ATCC 25177 sensitive TB strain, resistant MDR-TB and XDR-TB, respectively). Moreover, validated in vivo pharmacokinetic study was performed for the most potent derivative 6h revealing superior pharmacokinetic profile over the reference drug. For further exploration of the anti-tubercular mechanism of action, molecular docking was carried out for the former compound in DprE1 active site as one of the important biological targets of TB. The binding mode and the docking score uncovered exceptional binding when compared to the co-crystallized ligand suggesting that it maybe the underlying target for its outstanding anti-tubercular potency.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt.
| | - Sally Tarek Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt
| | - Esraa R Elshnawey
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Mohamed K El-Ashrey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo, 11562, Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, 46612, Egypt
| | - Mahmoud Rashed
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Loah R Hemeda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Aly A Shoun
- Microbiology and Immunology Department, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Mahmoud A El Hassab
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University, Ras-Sedr, South Sinai, 46612, Egypt
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Mai I Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
6
|
Al-Warhi T, Rashad NM, Almahli H, Abdel-Aziz MM, Elsayed ZM, Shahin MI, Eldehna WM. Design and synthesis of benzo[b]thiophene-based hybrids as novel antitubercular agents against MDR/XDR Mycobacterium tuberculosis. Arch Pharm (Weinheim) 2024; 357:e2300529. [PMID: 37946574 DOI: 10.1002/ardp.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
In an effort to support the global fight against tuberculosis (TB), which is widely recognized as the most lethal infectious disease worldwide, we present the design and synthesis of new benzo[b]thiophene-based hybrids as promising candidates for the management of multidrug-resistant (MDR)/extensively drug-resistant (XDR) Mycobacterium tuberculosis. The isatin motif was incorporated into the target hybrids as it represents a privileged scaffold in antitubercular drug discovery. Since lipophilicity plays a pivotal role in the anti-TB agents' activity, the lipophilicity of the target hybrids was manipulated via the development of two series of N-1 methyl and N-1 benzyl substituted isatins (6a-h and 9a-h, respectively). Screening of the target hybrids was first performed against drug-sensitive M. tuberculosis (ATCC 25177). The structure-activity relationship outputs highlighted that incorporation of 3-unsubstituted benzo[b]thiophene and 5-methoxy isatin moieties was favorable for the antimycobacterial activity. Thereafter, the most potent molecules (6b-h, 9c-e, and 9h) were evaluated against the resistant strains MDR-TB (ATCC 35822) as well as against XDR-TB (RCMB 2674) where they displayed promising activity. To evaluate the safety of the target hybrids, an sulforhodamine B assay was conducted to determine their possible cytotoxic effects on VERO cells.
Collapse
Affiliation(s)
- Tarfah Al-Warhi
- Department of Chemistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nermeen M Rashad
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Marwa M Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Zainab M Elsayed
- Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mai I Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|