1
|
Hamm B, Rosenthal LJ. Psychiatric Etiologies and Approaches in Altered Mental Status Presentations: Insights from Consultation Liaison Psychiatry. Semin Neurol 2024; 44:606-620. [PMID: 39362314 DOI: 10.1055/s-0044-1791226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Consultation liaison psychiatrists are frequently asked to evaluate patients with altered mental status (AMS). Psychiatrists have unique perspectives and approaches to care for confused patients, particularly optimizing facilitation of care and maintaining vigilance for diagnostic overshadowing. Psychiatrists also offer expertise in primary psychiatric illnesses that can overlap with AMS, and the most common etiology of AMS is delirium. In this article, we provide a consultation liaison psychiatrist perspective on AMS and related psychiatric conditions in addition to delirium. Manic and psychotic episodes have primary and secondary etiologies, with some symptoms that can overlap with delirium. Catatonia, neuroleptic malignant syndrome, and serotonin syndrome are potentially fatal emergencies, and require prompt index of suspicion to optimize clinical outcomes. Trauma sequelae, functional neurologic disorders, and dissociative disorders can present as puzzling cases that require psychiatric facilitation of care. Additionally, AMS is sometimes due to substance intoxication and withdrawal in the hospital. A nonstigmatizing approach to evaluation and management of delirium and AMS can ensure optimal patient care experiences and outcomes.
Collapse
Affiliation(s)
- Brandon Hamm
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa J Rosenthal
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
2
|
Sharif AF, Almulhim MNM, Almosabeh HMA, Alshammasy MEA, Aljeshi AMA, Mufti TMA, AlNasser S, Al-Mulhim KA, AlMubarak YA. Predictors of Serotonin Syndrome in Acute Poisoning with 5-Hydroxytryptamine Modulators. TOXICS 2024; 12:550. [PMID: 39195652 PMCID: PMC11360237 DOI: 10.3390/toxics12080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
5-Hydroxytryptamine (5-HT) modulators are commonly prescribed medications with potentially life-threatening outcomes, particularly serotonin syndrome (SS). Early prediction of SS is critical not only to avoid lethal drug combinations but also to initiate appropriate treatment. The present work aimed to recognize the significant predictors of SS through a retrospective cross-sectional study that was conducted among patients exposed to an overdose of 5-HT modulators and admitted to a poison control center where 112 patients were enrolled. Of them, 21 patients were diagnosed with SS, and 66.7% of patients with SS were exposed to long-term co-ingestion. There was a noticeable surge in SS between April and May, and 52.4% of patients who suffered from SS were admitted after suicidal exposure (p < 0.05). Patients with SS showed severe presentation indicated by high-grade poison severity scores (PSS) and low Glasgow coma scales (GCS). PSS was a significant predictor of SS with an area under the curve of 0.879. PCO2, pulse, GCS, HCO3, and erythrocytic count were other significant predictors of SS. Combinations of serotonergic agents increase the likelihood of developing SS. Clinicians should be vigilant when prescribing a combination of serotonergic therapy, particularly for patients on illicit sympathomimetic and over-the-counter medications like dextromethorphan.
Collapse
Affiliation(s)
- Asmaa F. Sharif
- Department of Clinical Medical Sciences, College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, El Bahr St., Tanta 31111, Egypt
| | - Mubarak Nasir M. Almulhim
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Hadi Mohamed A. Almosabeh
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Mohammed Essam A. Alshammasy
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Ali Mohammed A. Aljeshi
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Taher Mohammed A. Mufti
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Shahd AlNasser
- Saudi Food and Drug Authority, Hittin, Riyadh 13513, Saudi Arabia;
| | - Khalid A. Al-Mulhim
- Emergency Medicine Department, King Fahad Medical City, Sulimaniyah, Riyadh 12231, Saudi Arabia; (K.A.A.-M.); (Y.A.A.)
| | - Yousef A. AlMubarak
- Emergency Medicine Department, King Fahad Medical City, Sulimaniyah, Riyadh 12231, Saudi Arabia; (K.A.A.-M.); (Y.A.A.)
| |
Collapse
|
3
|
Feng Z, Hu Z, Li L, Yu M, Zhang Y, Jing P, Xu X, Wu J, Hu Y, Xu X. Assessing NH300094, a novel dopamine and serotonin receptor modulator with cognitive enhancement property for treating schizophrenia. Front Pharmacol 2024; 15:1298061. [PMID: 38327987 PMCID: PMC10848157 DOI: 10.3389/fphar.2024.1298061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
Background: Schizophrenia is a serious psychiatric disorder that significantly affects the quality of life of patients. The objective of this study is to discover a novel antipsychotic candidate with highly antagonistic activity against both serotonin and dopamine receptors, demonstrating robust efficacy in animal models of positive, negative, and cognitive symptoms of schizophrenia. Methods: In the present study, we examined the activity of antipsychotic drug (NH300094) on 5-HT2A, 5-HT2C, 5-HT1A, 5-HT1B, 5-HT7, H1, M1, Alpha1A, D2L, D2S, Alpha2A, D3 receptor functional assay in vitro. In addition, multiple animal models, including dizocilpine (MK-801) induced hyper-locomotion; APO induced climbing; Conditioned Avoidance Response (CAR); DOI-Induced Head Twitch; Forced swimming test; Scopolamine induced cognitive impairment model, were used to verify the antipsychotic activity of NH300094 in preclinical. Results: In vitro functional assays have indicated that NH300094 is a potent antagonist of 5-HT receptors and dopamine receptors, with higher relative antagonistic activity against 5-HT2A receptor (5-HT2A IC50 = 0.47 nM) than dopamine receptors (D2L IC50 = 1.04 nM; D2S IC50 = 11.71 nM; D3 IC50 = 31.55 nM). Preclinical in vivo pharmacological study results showed that NH300094 was effective in multiple models, which is more extensive than the clinic drug Risperidone. Furthermore, the safety window for extrapyramidal side effects of NH300094 is significantly wider than that of Risperidone (For NH300094, mice catalepsy model ED50/ Mice MK-801 model ED50 = 104.6-fold; for Risperidone, mice catalepsy model ED50/ Mice MK-801 model ED50 = 12.9-fold), which suggests a potentially better clinical safety profile for NH300094. Conclusion: NH300094 is a novel potent serotonin and dopamine receptors modulator, which has good safety profile and therapeutic potential for the treatment of schizophrenia with cognition disorders.
Collapse
Affiliation(s)
- Zijin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Zhijing Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Lei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Minquan Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Yiting Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Peng Jing
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Xiangqing Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| | - Xiangyang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Vojtechova I, Tuckova K, Juza R, Stuchlik A, Kelemen E, Korabecny J, Soukup O, Petrasek T. Dopaminergic and glutamatergic models of psychosis show differential sensitivity to aripiprazole and a novel experimental compound modulating D 2/5-HT receptor activity. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110819. [PMID: 37379895 DOI: 10.1016/j.pnpbp.2023.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Dopamine type 2 receptors (D2Rs) constitute the main molecular target in the pharmacotherapy of schizophrenia. However, the second and third generation of antipsychotics comprises multi-target ligands, also binding serotonin type 3 receptors (5-HT3Rs) and other receptor classes as well. Here, we examined two experimental compounds (marked compound K1697 and K1700) from the group of 1,4-di-substituted aromatic piperazines, previously described in the study of Juza et al., 2021, and compared them with the chosen reference antipsychotic, aripiprazole. Their efficacy against schizophrenia-like behavior was tested in two different models of psychosis in the rat, induced by acute administration of either amphetamine (1.5 mg/kg) or dizocilpine (0.1 mg/kg), reflecting the dopaminergic and glutamatergic hypotheses of schizophrenia. The two models exhibited broadly similar behavioral manifestations: hyperlocomotion, disrupted social behavior and impaired prepulse inhibition of the startle response. However, they differed in their treatment responses as hyperlocomotion and prepulse inhibition deficit in the dizocilpine model were resistant to antipsychotic treatment, unlike the amphetamine model. One of the experimental compounds, K1700, ameliorated all the observed schizophrenia-like behaviors in the amphetamine model with an efficacy comparable to or greater than aripiprazole. Whereas social impairments caused by dizocilpine were strongly suppressed by aripiprazole, K1700 was less efficient. Taken together, K1700 showed antipsychotic properties comparable to those of aripiprazole, although the efficacy of the two drugs differed in specific domains of behavior and was also model-dependent. Our present results highlight the differences in these two schizophrenia models and their responsiveness to pharmacotherapy, and confirm compound K1700 as a promising drug candidate.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Radomir Juza
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ales Stuchlik
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Eduard Kelemen
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
5
|
Kashyap K, Mahapatra PP, Ahmed S, Buyukbingol E, Siddiqi MI. Identification of Potential Aldose Reductase Inhibitors Using Convolutional Neural Network-Based in Silico Screening. J Chem Inf Model 2023; 63:6261-6282. [PMID: 37788831 DOI: 10.1021/acs.jcim.3c00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Aldose reductase (ALR2) is a notable enzyme of the polyol pathway responsible for aggravating diabetic neuropathy complications. The first step begins when it catalyzes the reduction of glucose to sorbitol with NADPH as a coenzyme. Elevated concentrations of sorbitol damage the tissues, leading to complications like neuropathy. Though considerable effort has been pushed toward the successful discovery of potent inhibitors, its discovery still remains an elusive task. To this end, we present a 3D convolutional neural network (3D-CNN) based ALR2 inhibitor classification technique by dealing with snapshots of images captured from 3D chemical structures with multiple rotations as input data. The CNN-based architecture was trained on the 360 sets of image data along each axis and further prediction on the Maybridge library by each of the models. Subjecting the retrieved hits to molecular docking leads to the identification of the top 10 molecules with high binding affinity. The hits displayed a better blood-brain barrier penetration (BBB) score (90% with more than four scores) as compared to standard inhibitors (38%), reflecting the superior BBB penetrating efficiency of the hits. Followed by molecular docking, the biological evaluation spotlighted five compounds as promising ALR2 inhibitors and can be considered as a likely prospect for further structural optimization with medicinal chemistry efforts to improve their inhibition efficacy and consolidate them as new ALR2 antagonists in the future. In addition, the study also demonstrated the usefulness of scaffold analysis of the molecules as a method for investigating the significance of structurally diverse compounds in data-driven studies. For reproducibility and accessibility purposes, all of the source codes used in our study are publicly available.
Collapse
Affiliation(s)
- Kushagra Kashyap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pinaki Prasad Mahapatra
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Erdem Buyukbingol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|