1
|
Malik A, Huda NU, Tahir SS, Warsi Z, Arif R, Khan MA, Rasheed S. Identification of new 1,2,3-Triazole analogues of sulfanilamide as inhibitors of the carbonic anhydrase II enzyme: Comprehensive in-vitro and in-vivo analyses. Int J Biol Macromol 2025; 303:140426. [PMID: 39894100 DOI: 10.1016/j.ijbiomac.2025.140426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/14/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Carbonic anhydrases (CAs) play a vital role in various physiological processes by catalyzing the reversible hydration of CO2 into HCO3-, hence maintaining the fluid and pH balance. Overexpression of carbonic anhydrases II (CA II) is associated with diseases, such as glaucoma, and epilepsy; therefore, it is considered as an important clinical target. Therapeutically used CA inhibitors exhibit several undesirable effects; therefore, there is an urgent need to identify new, safe, and effective inhibitors of the CAs. Keeping in view the importance of CA II inhibition, a library of new 1,3-disubstituted-1,2,3-triazole analogues of sulfanilamide is synthesized via Click chemistry, starting from sulfanilamide azide and different substituted propargyl ethers, incorporating benzyl and heteroarylmethyl moieties. The new derivatives showed significant CA II inhibitory activity (IC50 ranging between 0.19 0.66 μM) when compared with the standard inhibitor, acetazolamide (0.13 ± 0.01 μM). Among all, compounds 16 and 17 showed the most potent activity (IC50 = 0.19 μM) followed by compounds 23, and 18 (IC50 = 0.24 ± 0.014 and 0.26 ± 0.04 μM, respectively). Kinetics studies showed that all compounds are competitive inhibitors of bCA II enzyme (Ki ranging between 0.14-0.68 μM). Additionally, molecular docking studies revealed that all compounds formed network of interactions with the active site residues of the bCA II enzyme. All compounds were found to be non-toxic against BJ Human fibroblast cells. From in-vivo studies, we found that CA activity was significantly inhibited by the intraperitoneal administration of compounds 16 and 17 for up to 5 h. In conclusion, new 1,2,3-triazole analogues of sulfanilamide were identified as good CA II inhibitors.
Collapse
Affiliation(s)
- Aqsa Malik
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Noor Ul Huda
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syeda Sarah Tahir
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zoha Warsi
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rida Arif
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maria Aqeel Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Saima Rasheed
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Singh P, Arifuddin M, Supuran CT, Nerella SG. Carbonic anhydrase inhibitors: Structural insights and therapeutic potential. Bioorg Chem 2025; 156:108224. [PMID: 39893992 DOI: 10.1016/j.bioorg.2025.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Carbonic anhydrase inhibitors (CAIs) have garnered significant attention in recent years due to their critical role in managing various diseases, including glaucoma, epilepsy, cancer, and other conditions linked to carbonic anhydrase (CA) isoforms. This review highlights the recent advancements in the design and development of CAIs, focusing on diverse chemical classes such as indoles, sulfocoumarins, 1,2,3-triazoles, urea derivatives, chalcones, quinolines, and pyridines. Each class presents unique structural features and mechanisms of action, contributing to the selective inhibition of specific CA isoforms. The ongoing exploration of these compounds has not only enhanced our understanding of CA inhibition but also opened new avenues for therapeutic applications, paving the way for the development of novel drugs that tackle pressing healthcare challenges.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad 500 032, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Sridhar Goud Nerella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD 20892, USA(2).
| |
Collapse
|
3
|
Warapande V, Meng F, Bozan A, Graff DE, Fromer JC, Mughal K, Mohideen FK, Shivangi, Paruchuri S, Johnston ML, Sharma P, Crea TR, Rudraraju RS, George A, Folvar C, Nelson AM, Neiditch MB, Zimmerman MD, Coley CW, Freundlich JS. Identification of Antituberculars with Favorable Potency and Pharmacokinetics through Structure-Based and Ligand-Based Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636334. [PMID: 39974961 PMCID: PMC11838534 DOI: 10.1101/2025.02.03.636334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Drug discovery is inherently challenged by a multiple criteria decision making problem. The arduous path from hit discovery through lead optimization and preclinical candidate selection necessitates the evolution of a plethora of molecular properties. In this study, we focus on the hit discovery phase while beginning to address multiple criteria critical to the development of novel therapeutics to treat Mycobacterium tuberculosis infection. We develop a hybrid structure- and ligand-based pipeline for nominating diverse inhibitors targeting the β-ketoacyl synthase KasA by employing a Bayesian optimization-guided docking method and an ensemble model for compound nominations based on machine learning models for in vitro antibacterial efficacy, as characterized by minimum inhibitory concentration (MIC), and mouse pharmacokinetic (PK) plasma exposure. The application of our pipeline to the Enamine HTS library of 2.1M molecules resulted in the selection of 93 compounds, the experimental validation of which revealed exceptional PK (41%) and MIC (19%) success rates. Twelve compounds meet hit-like criteria in terms of MIC and PK profile and represent promising seeds for future drug discovery programs.
Collapse
|
4
|
Bendi A, Taruna, Rajni, Kataria S, Singh L, Kennedy JF, Supuran CT, Raghav N. Chemistry of heterocycles as carbonic anhydrase inhibitors: A pathway to novel research in medicinal chemistry review. Arch Pharm (Weinheim) 2024; 357:e2400073. [PMID: 38683875 DOI: 10.1002/ardp.202400073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Nowadays, the scientific community has focused on dealing with different kinds of diseases by exploring the chemistry of various heterocycles as novel drugs. In this connection, medicinal chemists identified carbonic anhydrases (CA) as one of the biologically active targets for curing various diseases. The widespread distribution of these enzymes and the high degree of homology shared by the different isoforms offer substantial challenges to discovering potential drugs. Medicinal and synthetic organic chemists have been continuously involved in developing CA inhibitors. This review explored the chemistry of different heterocycles as CA inhibitors using the last 11 years of published research work. It provides a pathway for young researchers to further explore the chemistry of a variety of synthetic as well as natural heterocycles as CA inhibitors.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Bengaluru, Karnataka, India
| | - Taruna
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Rajni
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Sweety Kataria
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | - Lakhwinder Singh
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, India
| | | | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Neutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
5
|
Al-Matarneh CM, Nicolescu A, Marinas IC, Chifiriuc MC, Shova S, Silion M, Pinteala M. Novel antimicrobial iodo-dihydro-pyrrole-2-one compounds. Future Med Chem 2023; 15:1369-1391. [PMID: 37577781 DOI: 10.4155/fmc-2023-0121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Aim: A series of new hybrid molecules with two iodine atoms on the sides were synthesized. Methods: A one-pot, two-component method with trifluoroacetic acid as an effective catalyst to obtain dihydro-pyrrol-2-one compounds was developed. Short reaction times, a cheap catalyst, high yields and clean work-up are benefits of this method. Results: The chemical structures of the newly synthesized compounds were verified through spectroscopic techniques. Their antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans was tested in vitro. Conclusion: NC- and OH- radicals confer broad-spectrum antimicrobial activity, including against Gram-positive and Gram-negative bacteria and yeasts. Compounds 3g >7 and >9 were most active on the two bacterial species, while 3l >9 and >3i were most active against the fungal strain.
Collapse
Affiliation(s)
- Cristina M Al-Matarneh
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, Bucharest, 050095, Romania
- Center of Advanced Research in Bionanoconjugates & Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Alina Nicolescu
- NMR Laboratory "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Ioana C Marinas
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, Bucharest, 050095, Romania
| | - Mariana C Chifiriuc
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, Bucharest, 050095, Romania
| | - Sergiu Shova
- Department of Inorganic Polymers "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Mihaela Silion
- Physics of Polymers & Polymeric Materials Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| | - Mariana Pinteala
- Center of Advanced Research in Bionanoconjugates & Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi, 700487, Romania
| |
Collapse
|
6
|
Hussain Z, Mahmood A, Shah Q, Imran A, Mughal EU, Khan W, Baig A, Iqbal J, Mumtaz A. Synthesis and Evaluation of Amide and Thiourea Derivatives as Carbonic Anhydrase (CA) Inhibitors. ACS OMEGA 2022; 7:47251-47264. [PMID: 36570246 PMCID: PMC9773353 DOI: 10.1021/acsomega.2c06513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Series of sulfonamide-substituted amide (9-11), benzamide (12-15), and 1,3-disubstituted thiourea (17-26) derivatives were synthesized from a common precursor, i.e., substituted benzoyl chlorides. Structures of all of the synthesized compounds were characterized by spectroscopic techniques (1H nuclear magnetic resonance (NMR),13C NMR, and Fourier transform infrared spectroscopy (FTIR)). All of the amide (9-15) and thiourea (17-26) derivatives were screened against human carbonic anhydrases, hCA-II, hCA IX, and hCA-XII. Sulfonamide-substituted amides 9, 11, and 12 were found to be excellent selective inhibitors with IC50 values of 0.18 ± 0.05, 0.17 ± 0.05, and 0.58 ± 0.05 μM against hCA II, hCA IX, and hCA XII, respectively. Compound 9 was found to be highly selective for hCA II and about 6-fold more potent as compared to the standard antagonist, acetazolamide. Safe toxicity profiling of the most potent and selective compounds was determined against normal BHK-21 and HEK-293 T cells. Molecular docking studies were performed, which described the type of interactions between the synthesized compounds and enzyme proteins. In addition, in silico absorption, distribution, metabolism, and excretion (ADME) studies were performed, which showed that all of the synthesized molecules fulfilled the druggability criteria.
Collapse
Affiliation(s)
- Zahid Hussain
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Abid Mahmood
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Qasim Shah
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Aqeel Imran
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | | | - Wajiha Khan
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Ayesha Baig
- Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| | - Jamshed Iqbal
- Center
for Advance Drug Research, COMSATS University
Islamabad, Abbottabad
Campus, Abbottabad22060, Pakistan
| | - Amara Mumtaz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad22060, Pakistan
| |
Collapse
|
7
|
Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228028. [PMID: 36432129 PMCID: PMC9697818 DOI: 10.3390/molecules27228028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
A novel series of twenty-five rhodamine-linked benzenesulfonamide derivatives (7a-u and 9a-d) were synthesized and screened for their inhibitory action against four physiologically relevant human (h) carbonic anhydrase (CA) isoforms, namely hCA I, hCA II, hCA IX, and hCA XII. All the synthesized molecules showed good to excellent inhibition against all the tested isoforms in the nanomolar range due to the presence of the sulfonamide as a zinc binding group. The target compounds were developed from indol-3-ylchalcone-linked benzenesulfonamide where the indol-3-ylchalcone moiety was replaced with rhodanine-linked aldehydes or isatins to improve the inhibition. Interestingly, the molecules were slightly more selective towards hCA IX and XII compared to hCA I and II. The most potent and efficient ones against hCA I were 7h (KI 22.4 nM) and 9d (KI 35.8 nM) compared to the standard drug AAZ (KI 250.0 nM), whereas in case of hCA II inhibition, the derivatives containing the isatin nucleus as a tail were preferred. Collectively, all compounds were endowed with better inhibition against hCA IX compared to AAZ (KI 25.8 nM) as well as strong potency against hCA XII. Finally, these newly synthesized molecules could be taken as potential leads for the development of isoform selective hCA IX and XII inhibitors.
Collapse
|
8
|
Hui Q, Zhang L, Feng J, Zhang L. Discovery of 2-Phenylquinoline-4-Carboxylic Acid Derivatives as Novel Histone Deacetylase Inhibitors. Front Chem 2022; 10:937225. [PMID: 35910736 PMCID: PMC9333195 DOI: 10.3389/fchem.2022.937225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Inhibition of histone deacetylases (HDACs) has been extensively studied in the development of anticancer drugs. In the discovery of potent HDAC inhibitors with novel structures, the 2-substituted phenylquinoline-4-carboxylic acid group was introduced to the cap moiety of HDAC inhibitors. In total, 30 compounds were synthesized with hydroxamic acid or hydrazide zinc-binding groups. In the enzyme inhibitory test, active compound D28 and its analog D29 exhibited significant HDAC3 selectivity against HDAC1, 2, 3, and 6. However, compared with D28, the hydrazide-bearing compounds (D29 and D30) with remarkably improved enzyme inhibitory activities did not exhibit significant antiproliferative potency in the in vitro anticancer study. Further K562 cell-based mechanistic results revealed that induction of G2/M cell cycle arrest and promotion of apoptosis make important contributions to the anticancer effects of molecule D28. Collectively, an HDAC3 selective inhibitor (D28) with potent in vitro anticancer activity was developed as a lead compound for the treatment of cancer.
Collapse
Affiliation(s)
- Qian Hui
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
- *Correspondence: Lei Zhang,
| |
Collapse
|