1
|
Palisse A, Cheung T, Blokhuis A, Cogswell T, Martins BS, Riemens R, Schellekens R, Battocchio G, Jansen C, Cottee MA, Ornell K, Sacchetto C, Leon L, van Hoek-Emmelot M, Bostock M, Brauer BL, Beaumont K, Lucas SCC, Ahmed S, Blackwell JH, Börjesson U, Gohlke A, Gramatikov IMT, Hargreaves D, van Hoeven V, Kantae V, Kupcova L, Milbradt AG, Seneviratne U, Su N, Vales J, Wang H, White MJ, Kinzel O. Structure-Based Discovery of a Series of Covalent, Orally Bioavailable, and Selective BFL1 Inhibitors. J Med Chem 2024; 67:22055-22079. [PMID: 39641779 DOI: 10.1021/acs.jmedchem.4c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BFL1, a member of the antiapoptotic BCL2 family, has been relatively understudied compared to its counterparts despite evidence of its overexpression in various hematological malignancies. Across two articles, we describe the development of BFL1 in vivo tools. The first article describes the hit identification from a covalent fragment library and the subsequent evolution from the hit to compound 6.22 This work reports the structure-based optimization of compound 6 into a series of BFL1 inhibitors selective over the other BCL2 family members, with low nanomolar cellular activity when combined with AZD5991, exemplified by compound 20. Compound 20 demonstrated a cell death phenotype in SUDHL1 and OCILY10 cell lines and in the in vivo study, BFL1 stabilization and cleaved caspase 3 activation were observed in a dose-dependent manner. In addition, the enzymatic turnover studies with the BFL1 protein showed that compound 20 stabilized the protein, extending the half-life to 10.8 h.
Collapse
Affiliation(s)
- Adeline Palisse
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Tony Cheung
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Aileen Blokhuis
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Thomas Cogswell
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Bruna S Martins
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Rick Riemens
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Rick Schellekens
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Giovanni Battocchio
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Chimed Jansen
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Matthew A Cottee
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Kimberly Ornell
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Claudia Sacchetto
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Leonardo Leon
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Maaike van Hoek-Emmelot
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Mark Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Brooke Leann Brauer
- Chemical Biology and Proteomics, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Samiyah Ahmed
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Vera van Hoeven
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Vasudev Kantae
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lea Kupcova
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Uthpala Seneviratne
- Chemical Biology and Proteomics, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - John Vales
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Haiyun Wang
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Michael J White
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Olaf Kinzel
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| |
Collapse
|
2
|
Lucas SCC, Blackwell JH, Börjesson U, Hargreaves D, Milbradt AG, Bostock MJ, Ahmed S, Beaumont K, Cheung T, Demanze S, Gohlke A, Guerot C, Haider A, Kantae V, Kauffman GW, Kinzel O, Kupcova L, Lainchbury MD, Lamb ML, Leon L, Palisse A, Sacchetto C, Storer RI, Su N, Thomson C, Vales J, Chen Y, Hu X. Structure-Based Optimization of a Series of Covalent, Cell Active Bfl-1 Inhibitors. J Med Chem 2024; 67:16455-16479. [PMID: 39291659 DOI: 10.1021/acs.jmedchem.4c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Bfl-1, a member of the Bcl-2 family of proteins, plays a crucial role in apoptosis regulation and has been implicated in cancer cell survival and resistance to venetoclax therapy. Due to the unique cysteine residue in the BH3 binding site, the development of covalent inhibitors targeting Bfl-1 represents a promising strategy for cancer treatment. Herein, the optimization of a covalent cellular tool from a lead-like hit using structure based design is described. Informed by a reversible X-ray fragment screen, the strategy to establish interactions with a key glutamic acid residue (Glu78) and optimize binding in a cryptic pocket led to a 1000-fold improvement in biochemical potency without increasing reactivity of the warhead. Compound (R,R,S)-26 has a kinact/KI of 4600 M-1 s-1, shows <1 μM caspase activation in a cellular assay and cellular target engagement, and has good physicochemical properties and a promising in vivo profile.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Mark J Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Samiyah Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - Tony Cheung
- Oncology Bioscience, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Sylvain Demanze
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Carine Guerot
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Afreen Haider
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Vasudev Kantae
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Gregory W Kauffman
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Olaf Kinzel
- Medicinal Chemistry, Oncology R&D, Acerta B.V., a Member of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Lea Kupcova
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - Michelle L Lamb
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Leonardo Leon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Adeline Palisse
- Medicinal Chemistry, Oncology R&D, Acerta B.V., a Member of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Claudia Sacchetto
- Bioscience, Oncology R&D, Acerta B.V., a Member of the AstraZeneca Group, Oss 5349, The Netherlands
| | - R Ian Storer
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Nancy Su
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Clare Thomson
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - John Vales
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Yunhua Chen
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Xiaolong Hu
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| |
Collapse
|
3
|
Lou J, Zhou Q, Lyu X, Cen X, Liu C, Yan Z, Li Y, Tang H, Liu Q, Ding J, Lu Y, Huang H, Xie H, Zhao Y. Discovery of a Covalent Inhibitor That Overcame Resistance to Venetoclax in AML Cells Overexpressing BFL-1. J Med Chem 2024; 67:10795-10830. [PMID: 38913996 DOI: 10.1021/acs.jmedchem.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Clinical and biological studies have shown that overexpression of BFL-1 is one contributing factor to venetoclax resistance. The resistance might be overcome by a potent BFL-1 inhibitor, but such an inhibitor is rare. In this study, we show that 56, featuring an acrylamide moiety, inhibited the BFL-1/BID interaction with a Ki value of 105 nM. More interestingly, 56 formed an irreversible conjugation adduct at the C55 residue of BFL-1. 56 was a selective BFL-1 inhibitor, and its MCL-1 binding affinity was 10-fold weaker, while it did not bind BCL-2 and BCL-xL. Mechanistic studies showed that 56 overcame venetoclax resistance in isogenic AML cell lines MOLM-13-OE and MV4-11-OE, which both overexpressed BFL-1. More importantly, 56 and venetoclax combination promoted stronger apoptosis induction than either single agent. Collectively, our data show that 56 overcame resistance to venetoclax in AML cells overexpressing BFL-1. These attributes make 56 a promising candidate for future optimization.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/chemistry
- Sulfonamides/chemical synthesis
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/chemistry
- Drug Resistance, Neoplasm/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Line, Tumor
- Minor Histocompatibility Antigens/metabolism
- Apoptosis/drug effects
- Drug Discovery
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jianfeng Lou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qianqian Zhou
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Xinyi Cen
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Yan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Haotian Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Qiupei Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
| | - Jian Ding
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ye Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - He Huang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hua Xie
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd. Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
4
|
Lucas SCC, Milbradt AG, Blackwell JH, Bonomo S, Brierley A, Cassar DJ, Freeman J, Hadfield TE, Morrill LA, Riemens R, Sarda S, Schiesser S, Wiktelius D, Ahmed S, Bostock MJ, Börjesson U, De Fusco C, Guerot C, Hargreaves D, Hewitt S, Lamb ML, Su N, Whatling R, Wheeler M, Kettle JG. Design of a Lead-Like Cysteine-Targeting Covalent Library and the Identification of Hits to Cys55 of Bfl-1. J Med Chem 2024; 67:11209-11225. [PMID: 38916990 DOI: 10.1021/acs.jmedchem.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Covalent hit identification is a viable approach to identify chemical starting points against difficult-to-drug targets. While most researchers screen libraries of <2k electrophilic fragments, focusing on lead-like compounds can be advantageous in terms of finding hits with improved affinity and with a better chance of identifying cryptic pockets. However, due to the increased molecular complexity, larger numbers of compounds (>10k) are desirable to ensure adequate coverage of chemical space. Herein, the approach taken to build a library of 12k covalent lead-like compounds is reported, utilizing legacy compounds, robust library chemistry, and acquisitions. The lead-like covalent library was screened against the antiapoptotic protein Bfl-1, and six promising hits that displaced the BIM peptide from the PPI interface were identified. Intriguingly, X-ray crystallography of lead-like compound 8 showed that it binds to a previously unobserved conformation of the Bfl-1 protein and is an ideal starting point for the optimization of Bfl-1 inhibitors.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Silvia Bonomo
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Andrew Brierley
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Doyle J Cassar
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jared Freeman
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolic Disorders (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Thomas E Hadfield
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lucas A Morrill
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Rick Riemens
- Medicinal Chemistry, Oncology R&D, Acerta B. V., a Part of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Sunil Sarda
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Stefan Schiesser
- Medicinal Chemistry, Research and Early Development, Respiratory and Immunology (R&I), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Daniel Wiktelius
- Compound Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Samiyah Ahmed
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Mark J Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, SE-43183, Sweden
| | - Claudia De Fusco
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Carine Guerot
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Sarah Hewitt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Michelle L Lamb
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Ryan Whatling
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Matthew Wheeler
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jason G Kettle
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| |
Collapse
|
5
|
Lucas SCC, Blackwell JH, Börjesson U, Hargreaves D, Milbradt AG, Ahmed S, Bostock MJ, Guerot C, Gohlke A, Kinzel O, Lamb ML, Selmi N, Stubbs CJ, Su N, Su Q, Luo H, Xiong T, Zuo X, Bazzaz S, Bienstock C, Centrella PA, Denton KE, Gikunju D, Guié MA, Guilinger JP, Hupp C, Keefe AD, Satoh T, Zhang Y, Rivers EL. Identification and Evaluation of Reversible Covalent Binders to Cys55 of Bfl-1 from a DNA-Encoded Chemical Library Screen. ACS Med Chem Lett 2024; 15:791-797. [PMID: 38894895 PMCID: PMC11181504 DOI: 10.1021/acsmedchemlett.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55.
Collapse
Affiliation(s)
- Simon C. C. Lucas
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - J. Henry Blackwell
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Ulf Börjesson
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - David Hargreaves
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Alexander G. Milbradt
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Samiyah Ahmed
- Discovery
Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Mark J. Bostock
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Carine Guerot
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Andrea Gohlke
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Olaf Kinzel
- Medicinal
Chemistry, Oncology, R&D, Acerta B.V.,
a member of the AstraZeneca Group, Oss 5349, The Netherlands
| | - Michelle L. Lamb
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nidhal Selmi
- Compound
Synthesis and Management, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Christopher J. Stubbs
- Mechanistic
and Structural Biology, Discovery Sciences, R&DAstraZeneca, Cambridge CB2 0AA, U.K.
| | - Nancy Su
- Mechanistic
and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Qibin Su
- Medicinal
Chemistry, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Haiou Luo
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Ting Xiong
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Xiaoqian Zuo
- Pharmaron Beijing Co., Ltd., Beijing 100176, P. R. China
| | - Sana Bazzaz
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | | | | | - Kyle E. Denton
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Diana Gikunju
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | | | | | | | | | - Takashi Satoh
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Ying Zhang
- X-Chem Inc., Waltham, Massachusetts 02453, United States
| | - Emma L. Rivers
- Hit
Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| |
Collapse
|
6
|
Gupta SRR, Mittal P, Kundu B, Singh A, Singh IK. Silibinin: an inhibitor for a high-expressed BCL-2A1/BFL1 protein, linked with poor prognosis in breast cancer. J Biomol Struct Dyn 2023; 42:12122-12132. [PMID: 37837418 DOI: 10.1080/07391102.2023.2268176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Breast cancer (BC) accounts for 30% of all diagnosed cases of cancer in women and remains a leading cause of cancer-related deaths among women worldwide. The current study looks for a protein from the anti-apoptotic/pro-survival BCL-2 family whose overexpression reduces survivability in BC patients and a potential inhibitor for the protein. We found BCL-2A1/BFL1 protein with high expression linked to low survivability in BC. The protein shows prognosis in 8 out of 29 categories, whereas no other family member manifests this property. Out of 7379 compounds, three small molecules (CHEMBL9509, CHEMBL2104550 and CHEMBL3545011) form an H-bond with BCL-2A1/BFL1 protein's unique residue Cys55. Of the three small molecules, we found CHEMBL9509 (Silibinin) to be a potent inhibitor. The compound forms a stable H-bond with the residue Cys55 with the lowest binding energy compared to the other two compounds. It remains stable in the BH3 binding region for more than 100 ns, whereas the other two detach from the region. Additionally, the compound is found to be better than Venetoclax and Nematoclax. We firmly believe in the compound CHEMBL9509 potency to halt BC's progression by inhibiting the BCL-2A1/BFL1 protein, increasing patients' survivability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shradheya R R Gupta
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pooja Mittal
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
| | - Bishwajit Kundu
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi (South Campus), New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
- Norris Comprehensive Cancer Center, Division of Medical Oncology, University of Southern California, Los Angeles, USA
- Institute of Eminence, Delhi School of Public Health, University of Delhi, Delhi, India
| |
Collapse
|
7
|
Synthesis and Biological Evaluation of Sclareolide-Indole Conjugates and Their Derivatives. Molecules 2023; 28:molecules28041737. [PMID: 36838727 PMCID: PMC9961340 DOI: 10.3390/molecules28041737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Sclareolide is a sesquiterpene lactone isolated from various plant sources in tons every year and is commercially used as a flavor ingredient in the cosmetic and food industries. Antitumor and antiviral activities of sclareolide have been previously reported. However, biological studies of sclareolide synthetic analogous are few. In view of these, we developed a robust synthetic method that allows the assembly of 36 novel sclareolide-indole conjugates and their derivatives. The synthetic method was based on TiCl4-promoted nucleophilic substitution of sclareolide-derived hemiacetal 4, while electron-rich aryles including indoles, polyphenol ethers, and pyrazolo [1,5-a]pyridine were good substrates. The stereochemistry of the final products was confirmed by single-crystal X-ray diffraction analysis, while the antiproliferative activities of selected final products were tested in K562 and MV4-11 cancer cell lines. Cytometric flow analysis shows that lead compounds 8k- and 10-induced robust apoptosis in MV4-11 cancer cells, while they exhibited weak impact on cell cycle progression. Taken together, our study suggests that sclareolide could be a good template and substrate for the synthesis of novel antiproliferative compounds.
Collapse
|
8
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
9
|
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022; 12:985363. [PMID: 36313628 PMCID: PMC9597512 DOI: 10.3389/fonc.2022.985363] [Citation(s) in RCA: 346] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Apoptosis, as a very important biological process, is a response to developmental cues or cellular stress. Impaired apoptosis plays a central role in the development of cancer and also reduces the efficacy of traditional cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family have pro- or anti-apoptotic activities and have been studied intensively over the past decade for their importance in regulating apoptosis, tumorigenesis, and cellular responses to anticancer therapy. Since the inflammatory response induced by apoptosis-induced cell death is very small, at present, the development of anticancer drugs targeting apoptosis has attracted more and more attention. Consequently, the focus of this review is to summarize the current research on the role of BCL-2 family proteins in regulating apoptosis and the development of drugs targeting BCL-2 anti-apoptotic proteins. Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis was also explored. All the findings indicate the potential of BCL-2 family proteins in the therapy of cancer.
Collapse
Affiliation(s)
- Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhong Wei
- Gastrointestinal Surgery, Anhui Provincial Hospital, Hefei, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Last but not least: BFL-1 as an emerging target for anti-cancer therapies. Biochem Soc Trans 2022; 50:1119-1128. [PMID: 35900226 PMCID: PMC9444066 DOI: 10.1042/bst20220153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
BFL-1 is an understudied pro-survival BCL-2 protein. The expression of BFL-1 is reported in many cancers, but it is yet to be clarified whether high transcript expression also always correlates with a pro-survival function. However, recent applications of BH3-mimetics for the treatment of blood cancers identified BFL-1 as a potential resistance factor in this type of cancer. Hence, understanding the role of BFL-1 in human cancers and how its up-regulation leads to therapy resistance has become an area of great clinical relevance. In addition, deletion of the murine homologue of BFL-1, called A1, in mice showed only minimal impacts on the well-being of these animals, suggesting drugs targeting BFL-1 would exhibit limited on-target toxicities. BFL-1 therefore represents a good clinical cancer target. Currently, no effective BFL-1 inhibitors exist, which is likely due to the underappreciation of BFL-1 as a potential target in the clinic and lack of understanding of the BFL-1 protein. In this review, the roles of BFL-1 in the development of different types of cancers and drug resistant mechanisms are discussed and some recent advances in the generation of BFL-1 inhibitors highlighted.
Collapse
|