1
|
Xu B, Yang L, Jiang R, Tao G, Zhi S, Sun L, Wu Y, Shi Y. Discovery of a novel quinoline RIP1 inhibitor and its treatment of acute liver injury in mice. Bioorg Chem 2025; 159:108365. [PMID: 40088687 DOI: 10.1016/j.bioorg.2025.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Necroptosis is closely associated with the development of inflammatory diseases, including acute liver injury. However, the precise role of necroptosis-related signature proteins in acute liver injury remains incompletely understood. Previously, our group investigated Compound o1, a RIP1 inhibitor, but its antinecroptosis activity and RIP1 binding affinity were suboptimal. In this study, we sought to address these two critical scientific challenges. Through a scaffold-hopping strategy, we identified a series of novel quinoline-like RIP1 inhibitors, among which N-1 exhibited the most potent antinecroptosis activity and the strongest RIP1 binding affinity. N-1 effectively inhibited necrosome formation by blocking phosphorylation in the RIP1/RIP3/MLKL signaling pathway. In a TNF-induced hypothermia mouse model of systemic inflammatory response syndrome (SIRS), N-1 significantly improved the survival rate of mice in a dose-dependent manner. Our study further revealed that RIP1, RIP3, and MLKL are expressed in normal liver tissues, whereas their phosphorylated forms (pRIP1, pRIP3, and pMLKL) are absent. In contrast, liver tissues from mice with CCl4-induced acute liver injury exhibited high expression levels of pRIP1, pRIP3, and pMLKL, indicating that necroptosis is associated with liver injury. N-1 significantly inhibited the phosphorylation of RIP1, RIP3, and MLKL, while restoring key liver damage markers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). These findings suggest that targeting necroptosis may represent a promising therapeutic strategy for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Bin Xu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Linghui Yang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Ruiqi Jiang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Guojing Tao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Shumeng Zhi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Lei Sun
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yanran Wu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| | - Ying Shi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China.
| |
Collapse
|
2
|
Liu B, Zhao L, Tan Y, Yao X, Liu H, Zhang Q. Discovery and Characterization of Novel Receptor-Interacting Protein Kinase 1 Inhibitors Using Deep Learning and Virtual Screening. ACS Chem Neurosci 2025; 16:1617-1630. [PMID: 40181215 DOI: 10.1021/acschemneuro.5c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) serves as a critical mediator of cell necroptosis and represents a promising therapeutic target for various human neurodegenerative diseases and inflammatory diseases. Nonetheless, the RIPK1 inhibitors currently reported are inadequate for clinical research due to suboptimal inhibitory activities or lack of selectivity. Consequently, there is a need for the discovery of novel RIPK1 kinase inhibitors. In this study, we integrated a deep learning model, specifically the fingerprint graph attention network (FP-GAT), with molecular docking-based virtual screening to identify potential RIPK1 inhibitors from a library comprising 13 million compounds. Out of 43 compounds procured, two compounds (designated as 24 and 41) demonstrated enzyme inhibition activity exceeding 50% at a concentration of 10 μM against RIPK1. The half-maximal inhibitory concentrations (IC50) for compounds 24 and 41 were determined to be 2.01 and 2.95 μM, respectively. Furthermore, these compounds exhibited protective effects in an HT-29 cell model of TSZ-induced necroptosis, with half-maximal effective concentrations (EC50) of 6.77 μM for compound 24 and 68.70 μM for compound 41. Finally, molecular dynamics simulations and binding free energy calculations were conducted to elucidate the molecular mechanism of compounds 24 and 41 binding to RIPK1. The results show that Met92, Met95, Ala155, and Asp156 are key residues for novel RIPK1 inhibitors. In summary, this work discovered two hit compounds targeting RIPK1, which can be further structurally modified to become promising lead compounds.
Collapse
Affiliation(s)
- Bo Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| | - Likun Zhao
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| | - Yi Tan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| | - Xiaojun Yao
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| | - Huanxiang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| | - Qianqian Zhang
- Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR 999078, China
| |
Collapse
|
3
|
Xin Y, Dai P, Shao H, Zhuang C, Li J. Discovery of novel biaryl benzoxazepinones as dual-mode receptor-interacting protein kinase-1 (RIPK1) inhibitors. Bioorg Med Chem 2024; 100:117611. [PMID: 38309200 DOI: 10.1016/j.bmc.2024.117611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Systemic inflammatory response syndrome (SIRS), an exaggerated defense response of the organism to a noxious stressor, involves a massive inflammatory cascade that ultimately leads to reversible or irreversible end-organ dysfunction and even death. Suppressing RIPK1, a key protein in necroptosis pathway, has been proven to be an effective therapeutic strategy for inflammation and SIRS. In this study, a series of novel biaryl benzoxazepinone RIPK1 inhibitors were designed and synthesized by introducing different aryl substituents at the C7 position of benzoxazepinone. As a result, p-cyanophenyl substituted analog 19 exhibited the most potent in vitro anti-necroptotic effect in HT-29 cells (EC50 = 1.7 nM) and superior protection against temperature loss and death in mice in the TZ-induced SIRS model compared to GSK'772. What's more, in vivo analysis of the levels of inflammatory factors in mice also revealed that compound 19 had better anti-inflammatory activity than GSK'772.
Collapse
Affiliation(s)
- YuFeng Xin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pengcheng Dai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongming Shao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jiao Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China.
| |
Collapse
|
4
|
Zhang C, Chen Y, Li Y, Shi N, Teng Y, Li N, Tang M, Ma Z, Deng D, Chen L. Discovery of 4-amino-1,6-dihydro-7H-pyrrolo[2,3-d]pyridazin-7-one derivatives as potential receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitors. Eur J Med Chem 2024; 265:116076. [PMID: 38171150 DOI: 10.1016/j.ejmech.2023.116076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulatory factor in the necroptosis signaling pathway, and is considered an attractive therapeutic target for treating multiple inflammatory diseases. Herein, we describe the design, synthesis, and structure-activity relationships of 4-amino-1,6-dihydro-7H-pyrrolo [2,3-d]pyridazin-7-one derivatives as RIPK1 inhibitors. Among them, 13c showed favorable RIPK1 kinase inhibition activity with an IC50 value of 59.8 nM, and high RIPK1 binding affinity compared with other regulatory kinases of necroptosis (RIPK1 Kd = 3.5 nM, RIPK3 Kd = 1700 nM, and MLKL Kd > 30,000 nM). 13c efficiently blocked TNFα-induced necroptosis in both human and murine cells (EC50 = 1.06-4.58 nM), and inhibited TSZ-induced phosphorylation of the RIPK1/RIPK3/MLKL pathway. In liver microsomal assay studies, the clearance rate and half-life of 13c were 18.40 mL/min/g and 75.33 min, respectively. 13c displayed acceptable pharmacokinetic characteristics, with oral bioavailability of 59.55%. In TNFα-induced systemic inflammatory response syndrome, pretreatment with 13c could effectively protect mice from loss of body temperature and death. Overall, these compounds are promising candidates for future optimization studies.
Collapse
Affiliation(s)
- Chufeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yulian Chen
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yong Li
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Na Shi
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yaxin Teng
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Na Li
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ziyan Ma
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dexin Deng
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China.
| |
Collapse
|
5
|
Bai Y, Qiao Y, Li M, Yang W, Chen H, Wu Y, Zhang H. RIPK1 inhibitors: A key to unlocking the potential of necroptosis in drug development. Eur J Med Chem 2024; 265:116123. [PMID: 38199165 DOI: 10.1016/j.ejmech.2024.116123] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Within the field of medical science, there is a great deal of interest in investigating cell death pathways in the hopes of discovering new drugs. Over the past two decades, pharmacological research has focused on necroptosis, a cell death process that has just been discovered. Receptor-interacting protein kinase 1 (RIPK1), an essential regulator in the cell death receptor signalling pathway, has been shown to be involved in the regulation of important events, including necrosis, inflammation, and apoptosis. Therefore, researching necroptosis inhibitors offers novel ways to treat a variety of disorders that are not well-treated by the therapeutic medications now on the market. The research and medicinal potential of RIPK1 inhibitors, a promising class of drugs, are thoroughly examined in this study. The journey from the discovery of Necrostatin-1 (Nec-1) to the recent advancements in RIPK1 inhibitors is marked by significant progress, highlighting the integration of traditional medicinal chemistry approaches with modern technologies like high-throughput screening and DNA-encoded library technology. This review presents a thorough exploration of the development and therapeutic potential of RIPK1 inhibitors, a promising class of compounds. Simultaneously, this review highlights the complex roles of RIPK1 in various pathological conditions and discusses potential inhibitors discovered through diverse pathways, emphasizing their efficacy against multiple disease models, providing significant guidance for the expansion of knowledge about RIPK1 and its inhibitors to develop more selective, potent, and safe therapeutic agents.
Collapse
Affiliation(s)
- Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Qiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenzhen Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haile Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanqing Wu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Honghua Zhang
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore.
| |
Collapse
|
6
|
Fang JJ, Yao HZ, Zhuang C, Chen FE. Insight from Linker Investigations: Discovery of a Novel Phenylbenzothiazole Necroptosis Inhibitor Targeting Receptor-Interacting Protein Kinase 1 (RIPK1) from a Phenoxybenzothiazole Compound with Dual RIPK1/3 Targeting Activity. J Med Chem 2023; 66:15288-15308. [PMID: 37917221 DOI: 10.1021/acs.jmedchem.3c01351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Necroptosis, a regulated cell death form, is a critical contributor in various inflammatory diseases. We previously identified a phenoxybenzothiazole SZM-610 as a RIPK1 and RIPK3 necroptosis inhibitor. We conducted extensive studies to investigate different chemical components' effects on antinecroptosis activity and RIPK1/3 activity. This study focused on replacing the linker in phenoxybenzothiazoles to assess its impact. Remarkably, compound 10, bearing a novel 3,2'-phenylbenzothiazole scaffold, exhibited fourfold more potent nanomolar activity than SZM-610. Unlike SZM-610, this compound inhibited RIPK1 (Kd = 17 nM) and eliminated RIPK3 inhibition at 5000 nM. Various linkages confirmed the 3,2'-phenylbenzothiazole superior potency. Moreover, this compound specifically inhibited necroptosis by inhibiting RIPK1, RIPK3, and MLKL phosphorylation. In a TNF-induced inflammatory model, it dose-dependently (1.25-5 mg/kg) protected mice from hypothermia and death, surpassing SZM-610's effectiveness. These findings highlight 3,2'-phenylbenzothiazole as a promising lead structure for developing drugs targeting necroptosis-related diseases.
Collapse
Affiliation(s)
- Jing-Jie Fang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hou-Zong Yao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
7
|
Cui N, Li S, Zhang Y, Yin F, Chen X, Luo Z, Wan S, Li X, Kong L, Wang X. Discovery of Sibiriline derivatives as novel receptor-interacting protein kinase 1 inhibitors. Eur J Med Chem 2023; 250:115190. [PMID: 36801518 DOI: 10.1016/j.ejmech.2023.115190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Receptor-interacting protein kinase 1 (RIPK1), a vital protein of the necroptosis pathway, plays a pivotal role in various inflammatory diseases. Sibiriline has been reported to be a potent ATP-competitive RIPK1 inhibitor, but its anti-necroptotic effects are limited. A series of structural analogues of Sibiriline were synthesized and evaluated for their anti-necroptotic activity. Comprehensive structure-activity relationship (SAR) was performed to left azaindole and right substituents of benzene of Sibiriline, respectively. The optimal compound KWCN-41, specifically inhibiting cell necroptosis but not apoptosis, protects cell survival by blocking the necroptotic pathway, which inhibits the phosphorylation of essential proteins of the necroptosis. It also prevented the development of inflammation and reduced the level of inflammatory factors in mice. KWCN-41 is expected to be a lead compound for further studies in inflammatory diseases.
Collapse
Affiliation(s)
- Ningjie Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Siyuan Wan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinxin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Quan D, Hou R, Shao H, Zhang X, Yu J, Zhang W, Yuan H, Zhuang C. Structure-Based Design of Novel Alkynyl Thio-Benzoxazepinone Receptor-Interacting Protein Kinase-1 Inhibitors: Extending the Chemical Space from the Allosteric to ATP Binding Pockets. J Med Chem 2023; 66:3073-3087. [PMID: 36724216 DOI: 10.1021/acs.jmedchem.2c02067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Systemic inflammatory response syndrome (SIRS), characterized by severe systemic inflammation, represents a major cause of health loss, potentially leading to multiple organ failure, shock, and death. Exploring potent RIPK1 inhibitors is an effective therapeutic strategy for SIRS. Recently, we described thio-benzoxazepinones as novel RIPK1 inhibitors and confirmed their anti-inflammatory activity. Herein, we further synthesized novel thio-benzoxazepinones by introducing substitutions on the benzene ring by an alkynyl bridge in order to extend the chemical space from the RIPK1 allosteric to ATP binding pockets. The in vitro cell and kinase assays found that compounds 2 and 29 showed highly potent activity against necroptosis (EC50 = 3.7 and 3.2 nM) and high RIPK1 inhibitory activity (Kd = 9.7 and 70 nM). Prominently, these two analogues possessed better in vivo anti-inflammatory effects than the clinical candidate GSK'772 and effectively blocked hypothermia and deaths in a TNFα-induced SIRS model.
Collapse
Affiliation(s)
- Danni Quan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruilin Hou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Hongming Shao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xinqi Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
Xu Y, Liang C, Zhang W, Yu J, Xing C, Liu H, Zhuang C. Profiling of the chemical space on the phenyl group of substituted benzothiazole RIPK3 inhibitors. Bioorg Chem 2023; 131:106339. [PMID: 36599218 DOI: 10.1016/j.bioorg.2022.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Necroptosis is confirmed as a precisely programmed cell death that is activated in caspase-deficient conditions. Receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed-lineage kinase domain-like pseudokinase (MLKL) are the key regulators involved in the signaling pathway. However, accumulating evidence suggests that RIPK1 also works in apoptosis and inflammation pathways independent of necroptosis. Differently, RIPK3 signals necroptosis independent of RIPK1. Thus, identification of specific RIPK3 inhibitors is of great importance for the drug development associated with necroptosis. The benzothiazole carboxamide is a privileged scaffold as RIPK3 inhibitors developed by our group recently. In this study, we work on the phenyl group in-between of benzothiazole and carboxamide to profile the chemical space. Finally, a chlorinated derivative XY-1-127 was found to specifically inhibit necroptosis rather than apoptosis with an EC50 value of 676.8 nM and target RIPK3 with a Kd of 420 nM rather than RIPK1 (Kd = 4300 nM). It was also confirmed to block the formation of necrosome by inhibiting RIPK3 phosphorylation at 1 μM in necroptosis cells. This work discovers the chemical space insights on the phenyl group of the substituted benzothiazole RIPK3 inhibitors and provides a new lead compound for further development.
Collapse
Affiliation(s)
- Yue Xu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Caiquan Liang
- Department of Otolaryngology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Huanhai Liu
- Department of Otolaryngology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
10
|
Sun Y, Xu L, Shao H, Quan D, Mo Z, Wang J, Zhang W, Yu J, Zhuang C, Xu K. Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease. J Med Chem 2022; 65:14957-14969. [DOI: 10.1021/acs.jmedchem.2c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hongming Shao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Danni Quan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zixin Mo
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jue Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ke Xu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| |
Collapse
|