1
|
Slon E, Slon B, Kowalczuk D. Azulene and Its Derivatives as Potential Compounds in the Therapy of Dermatological and Anticancer Diseases: New Perspectives against the Backdrop of Current Research. Molecules 2024; 29:2020. [PMID: 38731510 PMCID: PMC11085646 DOI: 10.3390/molecules29092020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The scientific article focuses on the role of azulene and its derivatives in the therapy of dermatological diseases, presenting the latest laboratory and clinical research as well as prospects for further studies. In a synthetic literature review, various databases such as PubMed, Scopus, Web of Science, and the Database of Polish Scientific Journals were queried to select relevant articles concerning azulene. The conclusions drawn from the thematic analysis of the studies emphasize the multifaceted pharmacological actions of azulene and its derivatives including their anti-inflammatory properties, potential anticancer effects, photoprotective abilities, alleviation of itching, management of atopic dermatitis, and treatment of erectile dysfunction. However, there are certain limitations associated with the application of unmodified azulene on the skin, particularly related to photodecomposition and the generation of reactive oxygen species under UV radiation. These effects, in turn, necessitate further research on the safety of azulene and azulene-derived substances, especially regarding their long-term use and potential application in phototherapy. The authors of this work emphasize the necessity of conducting further preclinical and clinical studies to fully understand the mechanisms of action. Incorporating azulene and its derivatives into the therapy of dermatological disorders may represent an innovative approach, thereby opening new treatment avenues for patients.
Collapse
Affiliation(s)
- Emilia Slon
- Chair and Department of Medicinal Chemistry, Faculty of Pharmacy, The Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
- A-Sense Sp. z o.o., Moscickiego 1, 24-100 Pulawy, Poland;
| | - Bartosz Slon
- A-Sense Sp. z o.o., Moscickiego 1, 24-100 Pulawy, Poland;
| | - Dorota Kowalczuk
- Chair and Department of Medicinal Chemistry, Faculty of Pharmacy, The Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
2
|
Konarska A, Weryszko-Chmielewska E, Sulborska-Różycka A, Kiełtyka-Dadasiewicz A, Dmitruk M, Gorzel M. Herb and Flowers of Achillea millefolium subsp. millefolium L.: Structure and Histochemistry of Secretory Tissues and Phytochemistry of Essential Oils. Molecules 2023; 28:7791. [PMID: 38067521 PMCID: PMC10708006 DOI: 10.3390/molecules28237791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Achillea millefolium L. herb and flowers have high biological activity; hence, they are used in medicine and cosmetics. The aim of this study was to perform morpho-anatomical analyses of the raw material, including secretory tissues, histochemical assays of the location of lipophilic compounds, and quantitative and qualitative analysis of essential oil (EO). Light and scanning electron microscopy techniques were used to analyse plant structures. The qualitative analyses of EO were carried out using gas chromatography-mass spectrometry (GC/MS). The results of this study showed the presence of exogenous secretory structures in the raw material, i.e., conical cells (papillae) on the adaxial surface of petal teeth and biseriate glandular trichomes on the surface flowers, bracts, stems, and leaves. Canal-shaped endogenous secretory tissue was observed in the stems and leaves. The histochemical assays revealed the presence of total, acidic, and neutral lipids as well as EO in the glandular trichome cells. Additionally, papillae located at the petal teeth contained neutral lipids. Sesquiterpenes were detected in the glandular trichomes and petal epidermis cells. The secretory canals in the stems were found to contain total and neutral lipids. The phytochemical assays demonstrated that the A. millefolium subsp. millefolium flowers contained over 2.5-fold higher amounts of EO (6.1 mL/kg) than the herb (2.4 mL/kg). The EO extracted from the flowers and herb had a similar dominant compounds: β-pinene, bornyl acetate, (E)-nerolidol, 1,8-cineole, borneol, sabinene, camphor, and α-pinene. Both EO samples had greater amounts of monoterpenes than sesquiterpenes. Higher amounts of oxygenated monoterpenes and oxygenated sesquiterpenoids were detected in the EO from the herb than from the flowers.
Collapse
Affiliation(s)
- Agata Konarska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Elżbieta Weryszko-Chmielewska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Aneta Sulborska-Różycka
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland;
| | - Marta Dmitruk
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland; (A.K.); (E.W.-C.); (M.D.)
| | - Małgorzata Gorzel
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland;
- Faculty of Health Sciences, Vincent Pol University in Lublin, 20-816 Lublin, Poland
| |
Collapse
|
3
|
Shoji T, Sasahara N, Hamasaki A, Mori S, Okujima T, Sekiguchi R, Ito S. Synthesis, Structural, and Optical Properties of Azuleno[1,2- c]pyran-1-ones: Bro̷nsted Acid-Mediated Cyclization of 2-Azulenylalkynes. J Org Chem 2023. [PMID: 37906944 DOI: 10.1021/acs.joc.3c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Pyrones and their aromatic ring-fused derivatives have gained significant attention due to their diverse biological activities and potential as foundational frameworks for advanced materials. In this paper, we describe a proficient approach for the preparation of azuleno[1,2-c]pyran-1-ones, which are difficult to produce by using conventional methods. The synthesis was achieved through Bro̷nsted acid-mediated cyclization of 2-azulenylalkynes. The structural and optical properties of azuleno[1,2-c]pyran-1-ones were characterized by single-crystal X-ray analysis, NMR, UV/vis, and fluorescence spectroscopies. Under acidic conditions, these compounds displayed notable spectral alterations and emission, distinct from their spectra in neutral medium. These results suggest that azuleno[1,2-c]pyran-1-ones hold great potential for applications in organic electronic materials and fluorescent pH sensors.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan
| | - Nichika Sasahara
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Atom Hamasaki
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama 790-8577, Japan
| | - Tetsuo Okujima
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Ryuta Sekiguchi
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| |
Collapse
|
4
|
Shoji T, Takeuchi M, Uda M, Ariga Y, Yamazaki A, Sekiguchi R, Ito S. Synthesis of Azuleno[2,1- b]quinolones and Quinolines via Brønsted Acid-Catalyzed Cyclization of 2-Arylaminoazulenes. Molecules 2023; 28:5785. [PMID: 37570755 PMCID: PMC10420867 DOI: 10.3390/molecules28155785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Quinolone and quinoline derivatives are frequently found as substructures in pharmaceutically active compounds. In this paper, we describe a procedure for the synthesis of azuleno[2,1-b]quinolones and quinolines from 2-arylaminoazulene derivatives, which are readily prepared via the aromatic nucleophilic substitution reaction of a 2-chloroazulene derivative with several arylamines. The synthesis of azuleno[2,1-b]quinolones was established by the Brønsted acid-catalyzed intramolecular cyclization of 2-arylaminoazulene derivatives bearing two ester groups at the five-membered ring. The halogenative aromatization of azuleno[2,1-b]quinolones with POCl3 yielded azuleno[2,1-b]quinolines with a chlorine substituent at the pyridine moiety. The aromatic nucleophilic substitution reaction of azuleno[2,1-b]quinolines bearing chlorine substituent with secondary amines was also investigated to afford the aminoquinoline derivatives. These synthetic methodologies reported in this paper should be valuable in the development of new pharmaceuticals based on the azulene skeleton.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan
| | - Mutsumi Takeuchi
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Mayumi Uda
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Yukino Ariga
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Akari Yamazaki
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Ryuta Sekiguchi
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan; (R.S.); (S.I.)
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan; (R.S.); (S.I.)
| |
Collapse
|
5
|
Leino TO, Turku A, Urvas L, Adhikari K, Oksanen J, Steynen Y, Yli-Kauhaluoma J, Xhaard H, Kukkonen JP, Wallén EAA. Azulene as a biphenyl mimetic in orexin/hypocretin receptor agonists. Bioorg Med Chem 2023; 88-89:117325. [PMID: 37209639 DOI: 10.1016/j.bmc.2023.117325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
Azulene is a rare ring structure in drugs, and we investigated whether it could be used as a biphenyl mimetic in known orexin receptor agonist Nag 26, which is binding to both orexin receptors OX1 and OX2 with preference towards OX2. The most potent azulene-based compound was identified as an OX1 orexin receptor agonist (pEC50 = 5.79 ± 0.07, maximum response = 81 ± 8% (s.e.m. of five independent experiments) of the maximum response to orexin-A in Ca2+ elevation assay). However, the azulene ring and the biphenyl scaffold are not identical in their spatial shape and electron distribution, and their derivatives may adopt different binding modes in the binding site.
Collapse
Affiliation(s)
- Teppo O Leino
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland; Department of Chemistry and NanoScience Center, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland.
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland
| | - Lauri Urvas
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Karuna Adhikari
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Jouni Oksanen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Yana Steynen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Jyrki P Kukkonen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, FI-00014 University of Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FI-00014 University of Helsinki, Finland
| | - Erik A A Wallén
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
6
|
Brogyányi T, Kaplánek R, Kejík Z, Hosnedlová B, Antonyová V, Abramenko N, Veselá K, Martásek P, Vokurka M, Richardson DR, Jakubek M. Azulene hydrazide-hydrazones for selective targeting of pancreatic cancer cells. Biomed Pharmacother 2022; 155:113736. [PMID: 36156366 DOI: 10.1016/j.biopha.2022.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022] Open
Abstract
Dysregulation of iron homeostasis is one of the important processes in the development of many oncological diseases, such as pancreatic cancer. Targeting it with specific agents, such as an iron chelator, are promising therapeutic methods. In this study, we tested the cytotoxicity of novel azulene hydrazide-hydrazone-based chelators against pancreatic cancer cell lines (MIA PaCa-2, PANC-1, AsPC-1). All prepared chelators (compounds 4-6) showed strong cytotoxicity against pancreatic cancer cell lines and high selectivity for cancer cell lines compared to the healthy line. Their cytotoxicity is lower than thiosemicarbazone-based chelators Dp44mT and DpC, but significantly higher than hydroxamic acid-based chelator DFO. The chelator tested showed mitochondrial and lysosomal co-localization and its mechanism of action was based on the induction of hypoxia-inducible factor-1-alpha (HIF-1α), N-myc downstream-regulated gene-1 (NDRG1) and transferrin receptor 1 (TfR1). This strongly implies that the cytotoxic effect of tested chelators could be associated with mitophagy induction. Lipinski's rule of five analyses was performed to determine whether the prepared compounds had properties ensuring their bioavailability. In addition, the drug-likeness and drug-score were calculated and discussed.
Collapse
Affiliation(s)
- Tereza Brogyányi
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Božena Hosnedlová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Veronika Antonyová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD, Australia
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00 Prague, Czech Republic.
| |
Collapse
|
7
|
Effect of intermittency factor on singlet oxygen and PGE2 formation in azulene-mediated photodynamic therapy: A preliminary study. Biochem Biophys Rep 2022; 31:101290. [PMID: 35677631 PMCID: PMC9168118 DOI: 10.1016/j.bbrep.2022.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
In photodynamic therapy, intermittent irradiation modes that incorporate an interval between pulses are believed to decrease the effect of hypoxia by permitting an interval of re-oxygenation. The effect of the irradiation intermittency factor (the ratio of the irradiation pulse time to the total irradiation time) on singlet oxygen formation and inflammatory cytokine production was examined using azulene as a photosensitizer. Effects of difference intermittency factor on singlet oxygen formation and inflammatory cytokine were examined. Azulene solutions (1/10 μM) were irradiated with a 638-nm 500 mW diode laser in fractionation (intermittency factor of 5 or 9) or continuous mode using 50 mW/cm2 at 4 or 8 J/cm2. Singlet oxygen measurement was performed using a dimethyl anthracene probe. Peripheral blood mononuclear cells (PBMC) were stimulated by 10 ng/ml rhTNF-α for 6 h, before addition of 1 and 10 μM azulene solutions and irradiation. PGE2 measurement was undertaken using a human PGE2 ELISA kit. Kruskal-Wallis with Dunn Bonferroni test was used for statistical analyses at p < 0.05.Irradiation of 1 μM azulene+4 J/cm2+intermittency factor of 9 increased singlet oxygen 3-fold (p < 0.0001). Irradiation of 10 μM azulene at either 4 J/cm2+intermittency of 9 or 8 J/cm2+intermittency factor of 5 reduced PGE2 expression in PBMCs to non-inflamed levels. Thus, at 50 mW/cm2, 10 μM azulene-mediated photodynamic therapy with a high intermittency factor and a low energy density generated sufficient singlet oxygen to suppress PGE2 in Inflamed PBMCs. Different intermittency factors can stimulate ROS formation differently. Relative high intermittency factor with azulene induces high ROS formation. Relative high intermittency factor with low energy density inhibits PGE2 production. Azulene-based photodynamic therapy suppresses inflammation.
Collapse
|