1
|
Sang Y, Huang W, Lin J, Yang L, Zhou Y, Yu C, Sun X, Yu H, Kong X. Fluorinated sulfonamide-flavonoid derivatives as novel Keap1-Nrf2 inhibitors: Potent induction of cytoprotective gene HO-1 in vivo. Eur J Med Chem 2025; 291:117650. [PMID: 40262300 DOI: 10.1016/j.ejmech.2025.117650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a key regulator in cellular defense against oxidative stress. While flavonoids have been identified as Nrf2 activators by inhibiting Keap1-Nrf2 protein-protein interaction (PPI), their limited bioactivity presents significant challenges for therapeutic applications. To compensate for this shortcoming, 28 sulfonamide-flavonoid analogues targeting the Keap1-Nrf2 PPI were synthesized by a fragment-based approach. Among these, SG16, which incorporates a fluorine atom, exhibited potent Nrf2-activated capacity and notable anti-inflammatory properties. In AML12 hepatocytes, SG16 significantly enhanced the expression of antioxidant genes by promoting Nrf2 nuclear translocation. In an acute liver injury (ALI) mouse model, SG16 treatment led to a substantial, hundredfold upregulation of the cytoprotective gene HO-1 mRNA. Meanwhile, a dose-dependent decline in ALT, AST, and inflammatory cytokine levels was observed, reflecting improved liver function. Histopathological evaluations, including hematoxylin and eosin (HE) staining, TUNEL, myeloperoxidase (MPO) activity assessment, and F4/80 macrophage marker analysis, consistently demonstrated substantial attenuation of liver tissue damage following SG16 treatment. Moreover, Co-IP assays combined with experiments in Nrf2 knockout mice suggested that the novel sulfonamide-containing flavonoids are a promising class of Nrf2-targeted therapeutic candidates, warranting further exploration for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Yali Sang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weifang Huang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Yang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuge Zhou
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang Yu
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hong Yu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Zhao Z, Lu H, Wang J, Wu T, Xu S, Ge Y, You Q, Jiang Z, Lu M. Discovery of β-amino acid substituted naphthalene sulfonamide derivatives as potent Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) protein-protein interaction inhibitors for ulcerative colitis management. Eur J Med Chem 2025; 288:117384. [PMID: 39965408 DOI: 10.1016/j.ejmech.2025.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of cellular defense system against oxidative insults. Directly inhibiting the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 protein-protein interaction (PPI) has emerged as a promising approach to activate Nrf2 for the treatment of diseases associated with oxidative stress. Herein, we identified β-amino acids as privileged structural fragments for designing novel naphthalene sulfonamide-based Keap1-Nrf2 PPI inhibitors. Comprehensive structure-activity relationship (SAR) exploration identified compound 19 as the optimal inhibitor with an IC50 of 0.55 μM for disrupting the Keap1-Nrf2 interaction and a Kd of 0.50 μM for binding to Keap1. Further studies demonstrated that 19 effectively activated the Nrf2-regulated cytoprotective system and provided protective effects against dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in both in vitro and in vivo models. These findings highlight the potential of β-amino acid substituted naphthalene sulfonamide Keap1-Nrf2 inhibitor 19 as a prospective therapeutic agent for UC via Keap1 targeting.
Collapse
Affiliation(s)
- Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongjin Lu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Junjie Wang
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tingting Wu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shicheng Xu
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuxin Ge
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, 215123, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, 215123, China.
| |
Collapse
|
3
|
Luo Y, Yang Z, Zhang Y, Jiang S, Zhu J, Li X, You Q, Lu M. Patenting perspective on Keap1 inhibitors (2019-2024). Expert Opin Ther Pat 2025; 35:325-356. [PMID: 39909720 DOI: 10.1080/13543776.2025.2462844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Kelch-like ECH-associated protein 1 (Keap1), an E3 ligase negatively regulating the nuclear factor erythroid 2-related factor 2 (Nrf2), has emerged as an auspicious drug target for treating ailments associated with oxidative stress and inflammation. Discovery of Keap1 inhibitors have attracted significant interest. AREAS COVERED This review covers patents on Keap1 inhibitors from 2019 to 2024, providing a comprehensive analysis of their structural characteristics, optimization strategies, pharmacological properties and clinical progress. EXPERT OPINION Extensive efforts have been devoted to enhance potency and drug-like properties of Keap1 inhibitors. Strategies such as ROS-cleavable prodrug design, bivalent inhibition and PROTACs are emerging. As the range of drug types and applications expands, Keap1 inhibitors are becoming a sagacious option for disease treating.
Collapse
Affiliation(s)
- Yongfu Luo
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Ziyu Yang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Yuan Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Shutong Jiang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Jingyu Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Xiangyang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Department of Research and development, Microcell Pharmaceutical (Suzhou) Co., Ltd, Suzhou, China
| | - Qidong You
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| |
Collapse
|
4
|
Chen C, Tang D, Xu S, Xiang L, Wang B, Yao Y, Li Z, Lin S, Li S, Shi X, Gu C, Gao W. The promotion of non-small cell lung cancer progression by collagen and calcium binding EGF domain 1 is mediated through the regulation of ERK/JNK/P38 phosphorylation by reactive oxygen species. Mol Carcinog 2024; 63:1467-1485. [PMID: 38726928 DOI: 10.1002/mc.23736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/18/2024] [Indexed: 07/10/2024]
Abstract
Reactive oxygen species (ROS) are metabolic by-products of cells, and abnormal changes in their levels are often associated with tumor development. Our aim was to determine the role of collagen and calcium binding EGF domain 1 (CCBE1) in oxidative stress and tumorigenesis in non-small cell lung cancer cells (NSCLC). We investigated the tumorigenic potential of CCBE1 in NSCLC using in vitro and in vivo models of CCBE1 overexpression and knockdown. Immunohistochemical staining results showed that the expression of CCBE1 in cancer tissues was significantly higher than that in adjacent tissues. Cell counting Kit 8, clonal formation, wound healing, and transwell experiments showed that CCBE1 gene knockdown significantly inhibited the migration, invasion, and proliferation of NSCLC cell lines. In terms of mechanism, the silencing of CCBE1 can significantly promote the morphological abnormalities of mitochondria, significantly increase the intracellular ROS level, and promote cell apoptosis. This change of oxidative stress can affect cell proliferation, migration, and invasion by regulating the phosphorylation level of ERK/JNK/P38 MAPK. Specifically, the downregulation of CCBE1 inhibits the phosphorylation of ERK/P38 and promotes the phosphorylation of JNK in NSCLC, and this regulation can be reversed by the antioxidant NAC. In vivo experiments confirmed that downregulating CCBE1 gene could inhibit the growth of NSCLC in BALB/c nude mice. Taken together, our results confirm the tumorigenic role of CCBE1 in promoting tumor invasion and migration in NSCLC, and reveal the molecular mechanism by which CCBE1 regulates oxidative stress and the ERK/JNK/P38 MAPK pathway.
Collapse
Affiliation(s)
- Chunji Chen
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Dongfang Tang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Shangwei Xu
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lujie Xiang
- Nursing Department of Xinhong Community Health Service Center, Shanghai, China
| | - Bin Wang
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanshan Yao
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zheng Li
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Siyun Lin
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Saitian Li
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Gu
- Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Gao
- Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
5
|
Lee S, Ali AR, Abed DA, Nguyen MU, Verzi MP, Hu L. Structural modification of C2-substituents on 1,4-bis(arylsulfonamido)benzene or naphthalene-N,N'-diacetic acid derivatives as potent inhibitors of the Keap1-Nrf2 protein-protein interaction. Eur J Med Chem 2024; 265:116104. [PMID: 38159482 PMCID: PMC10794003 DOI: 10.1016/j.ejmech.2023.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The Keap1-Nrf2-ARE signaling pathway is an attractive therapeutic target for the prevention and treatment of oxidative stress-associated diseases by activating the cellular expression of cytoprotective enzymes and proteins. Small molecule inhibitors can directly disrupt the Keap1-Nrf2 protein-protein interaction (PPI), resulting in elevated levels of Nrf2 protein and subsequent stimulation of related antioxidant responses. Previously, we found that 1,4-bis(arylsulfonamido)benzene or naphthalene-N,N'-diacetic acid derivatives with an ether type C2-substituent on the benzene or naphthalene core exhibited potent inhibitory activities with IC50's in the submicromolar or nanomolar range. We here describe a more detailed structure-activity relationship study around the C2 substituents containing various polar linkers shedding new insight on their binding interactions with the Keap1 Kelch domain. The key observation from our findings is that the substituents at the C2-position of the benzene or naphthalene scaffold impact their inhibitory potencies in biochemical assays as well as activities in cell culture. The biochemical FP and TR-FRET assays revealed that the naphthalene derivatives 17b and 18 with an additional carboxylate at the C2 were the most active inhibitors against Keap1-Nrf2 PPI. In the cell-based assay, the two compounds were shown to be potent Nrf2 activators of the transcription of the Nrf2-dependent genes, such as HMOX2, GSTM3, and NQO1.
Collapse
Affiliation(s)
- Sumi Lee
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, United States
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, United States
| | - Dhulfiqar Ali Abed
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, United States
| | - Mai-Uyen Nguyen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Life Sciences Building Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, United States
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Life Sciences Building Rutgers University, 145 Bevier Road, Piscataway, NJ, 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, United States
| | - Longqin Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, United States; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, United States.
| |
Collapse
|
6
|
Hushpulian DM, Kaidery NA, Dutta D, Sharma SM, Gazaryan I, Thomas B. Emerging small molecule inhibitors of Bach1 as therapeutic agents: Rationale, recent advances, and future perspectives. Bioessays 2024; 46:e2300176. [PMID: 37919861 PMCID: PMC11260292 DOI: 10.1002/bies.202300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
The transcription factor Nrf2 is the master regulator of cellular stress response, facilitating the expression of cytoprotective genes, including those responsible for drug detoxification, immunomodulation, and iron metabolism. FDA-approved Nrf2 activators, Tecfidera and Skyclarys for patients with multiple sclerosis and Friedreich's ataxia, respectively, are non-specific alkylating agents exerting side effects. Nrf2 is under feedback regulation through its target gene, transcriptional repressor Bach1. Specifically, in Parkinson's disease and other neurodegenerative diseases with Bach1 dysregulation, excessive Bach1 accumulation interferes with Nrf2 activation. Bach1 is a heme sensor protein, which, upon heme binding, is targeted for proteasomal degradation, relieving the repression of Nrf2 target genes. Ideally, a combination of Nrf2 stabilization and Bach1 inhibition is necessary to achieve the full therapeutic benefits of Nrf2 activation. Here, we discuss recent advances and future perspectives in developing small molecule inhibitors of Bach1, highlighting the significance of the Bach1/Nrf2 signaling pathway as a promising neurotherapeutic strategy.
Collapse
Affiliation(s)
- Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninski prospect 33, Moscow, Russia
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Debashis Dutta
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sudarshana M. Sharma
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Irina Gazaryan
- Department of Chemical Enzymology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, 861 Bedford Road, Pleasantville, NY, USA
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, South Carolina, USA
- Departments of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Drug Discovery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
7
|
Barreca M, Qin Y, Cadot MEH, Barraja P, Bach A. Advances in developing noncovalent small molecules targeting Keap1. Drug Discov Today 2023; 28:103800. [PMID: 37852355 DOI: 10.1016/j.drudis.2023.103800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Kelch-like ECH-associated protein 1 (Keap1) is a drug target for diseases involving oxidative stress and inflammation. There are three covalent Keap1-binding drugs on the market, but noncovalent compounds that inhibit the interaction between Keap1 and nuclear factor erythroid 2-related factor 2 (Nrf2) represent an attractive alternative. Both compound types prevent degradation of Nrf2, leading to the expression of antioxidant and antiinflammatory proteins. However, their off-target profiles differ as do their exact pharmacodynamic effects. Here, we discuss the opportunities and challenges of targeting Keap1 with covalent versus noncovalent inhibitors. We then provide a comprehensive overview of current noncovalent Keap1-Nrf2 inhibitors, with a focus on their pharmacological effects, to examine the therapeutic potential for this compound class.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Yuting Qin
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Marie Elodie Hélène Cadot
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Zhao Z, Dong R, You Q, Jiang Z. Medicinal Chemistry Insights into the Development of Small-Molecule Kelch-Like ECH-Associated Protein 1-Nuclear Factor Erythroid 2-Related Factor 2 (Keap1-Nrf2) Protein-Protein Interaction Inhibitors. J Med Chem 2023. [PMID: 37441735 DOI: 10.1021/acs.jmedchem.3c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Oxidative stress has been implicated in a wide range of pathological conditions. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a central role in regulating the cellular defense system against oxidative and electrophilic insults. Nonelectrophilic inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and Nrf2 has become a promising approach to activate Nrf2. Recently, multiple drug discovery strategies have facilitated the development of small-molecule Keap1-Nrf2 PPI inhibitors with potent activity and favorable drug-like properties. In this Perspective, we summarize the latest progress of small-molecule Keap1-Nrf2 PPI inhibitors from medicinal chemistry insights and discuss future prospects and challenges in this field.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Abed DA, Ali AR, Lee S, Nguyen MU, Verzi MP, Hu L. Optimization of the C2 substituents on the 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acid scaffold for better inhibition of Keap1-Nrf2 protein-protein interaction. Eur J Med Chem 2023; 252:115302. [PMID: 36989811 PMCID: PMC10101933 DOI: 10.1016/j.ejmech.2023.115302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Direct inhibition of the protein-protein interaction (PPI) between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) reduces the ubiquitination and subsequent degradation of Nrf2, leading to Nrf2 accumulation in the cytosol and the nuclear translocation of Nrf2. Once inside the nucleus, Nrf2 binds to and activates the expression of antioxidant response element (ARE) genes involved in redox homeostasis and detoxification. Herein, we report a series of 1,4-bis(arylsulfonamido)naphthalene-N,N'-diacetic acid analogs with varying C2 substituents to explore the structure-activity relationships at this position of the central naphthalene core. The Keap1-binding activities were first screened with a fluorescence polarization (FP) assay followed by further evaluation of the more potent compounds using a more sensitive time-resolved fluorescence energy transfer (TR-FRET) assay. It was found that compound 24a with C2-phthalimidopropyl group was the most potent in this series showing an IC50 of 2.5 nM in the TR-FRET assay with a Ki value in the subnanomolar range. Our docking study indicated that the C2-phthalimidopropyl group in compound 24a provided an extra hydrogen bonding interaction with the key residue Arg415 that may be responsible for the observed boost in binding affinity. In addition, compounds 12b, 15, and 24a were shown to activate the Nrf2 signaling pathway in NCM460D cells resulting in elevated mRNA levels of GSTM3, HMOX1 and NQO1 by 2.4-11.7 fold at 100 μM as compared to the vehicle control.
Collapse
Affiliation(s)
- Dhulfiqar Ali Abed
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Sumi Lee
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Mai-Uyen Nguyen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Life Sciences Building Rutgers University, 145 Bevier Road Piscataway, NJ, 08854, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Life Sciences Building Rutgers University, 145 Bevier Road Piscataway, NJ, 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Longqin Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
10
|
Qi Z, Tong Y, Luo H, Chen M, Zhou N, Chen L. Neuroprotective effect of a Keap1-Nrf2 Protein-Protein Inter-action inhibitor on cerebral Ischemia/Reperfusion injury. Bioorg Chem 2023; 132:106350. [PMID: 36681044 DOI: 10.1016/j.bioorg.2023.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Oxidative stress has been confirmed to be closely related to the occurrence and development of cerebral ischemic/reperfusion (I/R). The Keap1-Nrf2 pathway is widely recognized as a defensive system to maintain cellular redox homeostasis. Targeting Keap1-Nrf2 interaction by small molecules to release Nrf2 should be a promising strategy to treat cerebral I/R injury. The piperazinyl-naphthalenesulfonamide 6 K was reported to be a Keap1-Nrf2 protein-protein interaction inhibitor, showing promising antioxidative effect. Herein, this study is to investigate whether 6 K could prevent brain from I/R injury. The related mechanism of oxidative stress was also elucidated using in vivo mice middle cerebral artery occlusion (MCAO) model and in vitro SH-SY5Y oxygen-glucose deprivation/reperfusion (OGD/R) model. The results indicated that treatment of 6 K markedly decreased infarct volume, apoptotic neurons and oxidative damage and promoted neurologic recovery in vivo. The cell model revealed that the reactive oxygen species (ROS) was decreased, and cell viability was increased. Western blots and immunofluorescence staining demonstrated that compound treatment promoted Nrf2 release and nuclear translocation. The downstream protective enzymes were significantly enhanced at both in vivo and in vitro levels. Collectively, 6 K is a promising protective agent against cerebral I/R injury through activation of Nrf2 to suppress oxidative stress.
Collapse
Affiliation(s)
- Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Hao Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China
| | - Nan Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China.
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, China; National Center for Neurological Disorders, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, China; Neurosurgical Institute of Fudan University, China; Shanghai Clinical Medical Center of Neurosurgery, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, China.
| |
Collapse
|
11
|
Zhao Z, Dong R, Cui K, You Q, Jiang Z. An updated patent review of Nrf2 activators (2020-present). Expert Opin Ther Pat 2023; 33:29-49. [PMID: 36800917 DOI: 10.1080/13543776.2023.2178299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION The nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor that controls the expression of numerous cytoprotective genes and regulates cellular defense system against oxidative insults. Thus, activating the Nrf2 pathway is a promising strategy for the treatment of various chronic diseases characterized by oxidative stress. AREAS COVERED This review first discusses the biological effects of Nrf2 and the regulatory mechanism of Kelch-like ECH-associated protein 1-Nrf2-antioxidant response element (Keap1-Nrf2-ARE) pathway. Then, Nrf2 activators (2020-present) are summarized based on the mechanism of action. The case studies consist of chemical structures, biological activities, structural optimization, and clinical development. EXPERT OPINION Extensive efforts have been devoted to developing novel Nrf2 activators with improved potency and drug-like properties. These Nrf2 activators have exhibited beneficial effects in in vitro and in vivo models of oxidative stress-related chronic diseases. However, some specific problems, such as target selectivity and brain blood barrier (BBB) permeability, still need to be addressed in the future.
Collapse
Affiliation(s)
- Ziquan Zhao
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruitian Dong
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Keni Cui
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Sun Y, Zheng L, Yang B, Ge S, Li Q, Zhang M, Shen S, Ying Y. Design, synthesis and evaluation of novel small molecules acting as Keap1-Nrf2 protein-protein interaction inhibitors. J Enzyme Inhib Med Chem 2022; 37:2575-2588. [PMID: 36128875 PMCID: PMC9518255 DOI: 10.1080/14756366.2022.2124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Direct interference with Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 protein-protein interaction (PPI) has recently been introduced as an attractive approach to control life-threatening diseases like myocarditis. The present study aimed to investigate the potential application in myocarditis of a series of novel non-naphthalene derivatives as potential Keap1-Nrf2 PPI inhibitors. Our results indicated that the optimal compound K22 displayed the highest metabolic stability and showed notable Keap1-Nrf2 PPI inhibitory activities in vitro. K22 effectively triggered Nrf2 activation and increased the protein and mRNA expression of Nrf2-regulated genes in H9c2 cells. Moreover, pre-treatment with K22 was shown to mitigate LPS-induced damage to H9c2 cells, causing a marked decrease in the levels of inflammatory factors as well as reactive oxygen species (ROS). Furthermore, K22 was also shown to be non-mutagenic in the Ames test. Overall, our findings suggest that K22 may be a promising drug lead as a Keap1-Nrf2 PPI inhibitor for myocarditis treatment.
Collapse
Affiliation(s)
- Yunfeng Sun
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lulu Zheng
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bo Yang
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuyu Ge
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiang Li
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mingwan Zhang
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shenghui Shen
- Department of Cardiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yin Ying
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.,Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Borgelt L, Haacke N, Lampe P, Qiu X, Gasper R, Schiller D, Hwang J, Sievers S, Wu P. Small-molecule screening of ribonuclease L binders for RNA degradation. Biomed Pharmacother 2022; 154:113589. [PMID: 36029542 DOI: 10.1016/j.biopha.2022.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022] Open
Abstract
Small molecules targeting the ubiquitous latent ribonuclease (RNase L), which has limited sequence specificity toward single-stranded RNA substrates, hold great potential to be developed as broad-spectrum antiviral drugs by modulating the RNase L-mediated innate immune responses. The recent development of proximity-inducing bifunctional molecules, as described in the strategy of ribonuclease targeting chimeras, demonstrated that small-molecule RNase L activators can function as the essential RNase L-recruiting component to design bifunctional molecules for targeted RNA degradation. However, only a single screening study on small-molecule RNase L activators with poor potency has been reported to date. Herein, we established a FRET assay and conducted a screening of 240,000 small molecules to identify new RNase L activators with improved potency. The extremely low hit rate of less than 0.03% demonstrated the challenging nature of RNase L activation by small molecules available from current screening collections. A few hit compounds induced enhanced thermal stability of RNase L upon binding, although validation assays did not lead to the identification of compounds with significantly improved RNase L activating potency. The sulfonamide compound 17 induced a thermal shift of ~ 0.9 °C upon binding to RNase L, induced significant apoptosis in cancer cells, and showed single-digit micromolar inhibitory activity against cancer cell proliferation. This study paves the way for future structural optimization for the development of small-molecule RNase L binders.
Collapse
Affiliation(s)
- Lydia Borgelt
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Neele Haacke
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Philipp Lampe
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Compound Management and Screening Center, Dortmund 44227, Germany
| | - Xiaqiu Qiu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Damian Schiller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Jimin Hwang
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Compound Management and Screening Center, Dortmund 44227, Germany
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany.
| |
Collapse
|
14
|
Liu G, Hou R, Xu L, Zhang X, Yan J, Xing C, Xu K, Zhuang C. Crystallography-Guided Optimizations of the Keap1-Nrf2 Inhibitors on the Solvent Exposed Region: From Symmetric to Asymmetric Naphthalenesulfonamides. J Med Chem 2022; 65:8289-8302. [PMID: 35687391 DOI: 10.1021/acs.jmedchem.2c00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directly inhibiting the Keap1-Nrf2 protein-protein interaction has been investigated as a promising strategy to activate Nrf2 for anti-inflammation. We previously reported a naphthalensulfonamide Keap1-Nrf2 inhibitor NXPZ-2, but have not determined the exact binding mode with Keap1. This symmetric naphthalenesulfonamide compound has relatively low solubility. Herein, we first determined a crystal complex (resolution: 2.3 Å) of human Keap1 Kelch domain with NXPZ-2. Further optimizations on the solvent exposed region obtained asymmetric naphthalenesulfonamides and three crystal structures of Keap1 in complex with designed compounds. Among them, the asymmetric piperazinyl-naphthalenesulfonamide 6k with better aqueous solubility showed the best KD2 value of 0.21 μM to block the interaction. The productions of ROS and NO and the expression of TNF-α were inhibited by 6k in the in vitro model. This compound could relieve inflammations by significantly increasing the Nrf2 nuclear translocation in the LPS-induced ALI model with promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Guodong Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruilin Hou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lijuan Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xinqi Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianyu Yan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Ke Xu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|