1
|
Xu Z, Li R, Ding K, Wang Y, Zhuang Y. An insight into the in vivo antitumor therapeutic potential of indole-(fused) pyri(mi)dine hybrids. Future Med Chem 2025:1-19. [PMID: 40366787 DOI: 10.1080/17568919.2025.2504336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
Cancer can invade and destroy any part of the body, representing a grand social, public health, and economic challenge. Chemotherapy plays a crucial role in cancer treatment, and in recent decades, hundreds of anticancer chemotherapeutics have been introduced. Nevertheless, multidrug resistance and side effects are the main obstacles to successful cancer therapy, highlighting the pressing requirement for the development of new chemotherapeutics to address the above issues. Indole hybrids not only have the potential to surmount drug resistance and adverse effects caused by individual components but also can enhance efficacy and improve pharmacokinetic characteristics since hybrid molecules can concurrently regulate multiple targets within cancer cells. Moreover, numerous indole hybrids exemplified by mobocertinib (indole-pyrimidine hybrid) and osimertinib (indole-quinazoline hybrid) have already been utilized in clinical cancer treatment. Therefore, indole hybrids have emerged as valuable scaffolds for the treatment and eradication of cancer. This review aims to elucidate the current landscape of indole-(fused) pyri(mi)dine hybrids, including indole-quinolines/quinolinones, indole-pyridines, indole-pyrimidines, and indole-fused pyrimidines, with in vivo antitumor therapeutic potential, offering effective candidates for in-depth preclinical evaluations, encompassing articles published from 2021 onward.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, China
| | - Rongqiang Li
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Kexin Ding
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Yiling Wang
- Wisconsin Lutheran High School Milwaukee, WI, USA
| | - Yafei Zhuang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
2
|
Zhao S, Xu Z. Development of indole hybrids for potential lung cancer treatment-part I: nitrogen-containing six-membered aromatic heterocycles. Future Med Chem 2025; 17:839-855. [PMID: 40156457 PMCID: PMC12026046 DOI: 10.1080/17568919.2025.2485675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Lung cancer is the most prevalent invasive malignancy and the leading cause of cancer-related death. Chemotherapy is vital for lung cancer therapy, but multidrug resistance is responsible for the majority of lung cancer fatalities, creating an imperative demand to develop novel chemotherapeutics. Indole is a valuable anti-lung cancer pharmacophore since its derivatives could act on lung cancer cells through various mechanisms. Notably, indole hybrids could inhibit multiple targets simultaneously and have the potential to overcome the shortcomings of traditional chemotherapeutics. Moreover, many indole hybrids such as the indole-pyrimidine hybrid osimertinib and the indole-hydroxamic acid hybrid panobinostat, are either under clinical evaluations or have already been approved for lung cancer therapy. This indicates that the rational design of indole hybrids represents a highly prospective approach for the development of new anti-lung cancer chemotherapeutic agents. This review focuses on exploring the anti-lung cancer therapeutic potential of indole hybrids and delves into their action mechanisms as well as structure-activity correlations, covering articles published between 2021 and present. The ultimate goal is to offer a foundation for the rational design of indole hybrids in the future.
Collapse
Affiliation(s)
- Shijia Zhao
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, China
| | - Zhi Xu
- Chengdu Dexinchen Technology Co. Ltd., Chengdu, Sichuan, China
| |
Collapse
|
3
|
Rallabandi NC, Panpatil D, Gahtory D, Navik U, Kumar R. EGFR molecular degraders: preclinical successes and the road ahead. Future Med Chem 2025; 17:633-636. [PMID: 39928493 PMCID: PMC11938961 DOI: 10.1080/17568919.2025.2463871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/03/2025] [Indexed: 02/12/2025] Open
Affiliation(s)
- Naveen Chand Rallabandi
- Department of Pharmaceutical Sciences and Natural Products, Central university of Punjab, Bathinda, India
| | - Dayanand Panpatil
- Department of Pharmaceutical Sciences and Natural Products, Central university of Punjab, Bathinda, India
- Department of Medicinal Chemistry, Integral Biosciences, Noida, India
| | | | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Raj Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central university of Punjab, Bathinda, India
| |
Collapse
|
4
|
Cordani N, Nova D, Sala L, Abbate MI, Colonese F, Cortinovis DL, Canova S. Proteolysis Targeting Chimera Agents (PROTACs): New Hope for Overcoming the Resistance Mechanisms in Oncogene-Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2024; 25:11214. [PMID: 39456995 PMCID: PMC11508910 DOI: 10.3390/ijms252011214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a disease with a poor prognosis despite the advances in therapies. NSCLC with actionable oncogenic alterations represent a subgroup of diseases for which tyrosine kinase inhibitors (TKIs) have shown relevant and robust impact on prognosis, both in early and advanced stages. While the introduction of powerful TKIs increases the ratio of potentially curable patients, the disease does develop resistance over time through either secondary mutations or bypass activating tracks. Therefore, new treatment strategies are being developed to either overcome this inevitable resistance or to prevent it, and proteolysis targeting chimera agents (PROTACs) are among them. They consist of two linked molecules that bind to a target protein and an E3 ubiquitin ligase that causes ubiquitination and degradation of proteins of interest. In this paper, we review the rationale for PROTAC therapy and the current development of PROTACs for oncogene-addicted lung cancer. Moreover, we critically analyze the strengths and limitations of this promising technique that may help pave the way for future perspectives.
Collapse
Affiliation(s)
- Nicoletta Cordani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Daniele Nova
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Luca Sala
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Maria Ida Abbate
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Francesca Colonese
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Diego Luigi Cortinovis
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| | - Stefania Canova
- Medical Oncology Unit, Fondazione Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, 20900 Monza, Italy; (D.N.); (L.S.); (M.I.A.); (F.C.)
| |
Collapse
|
5
|
Das D, Xie L, Hong J. Next-generation EGFR tyrosine kinase inhibitors to overcome C797S mutation in non-small cell lung cancer (2019-2024). RSC Med Chem 2024:d4md00384e. [PMID: 39246743 PMCID: PMC11376191 DOI: 10.1039/d4md00384e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for the major portion (80-85%) of all lung cancer cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are commonly used as the targeted therapy for EGFR-mutated NSCLC. The FDA has approved first-, second- and third-generation EGFR-TKIs as therapeutics options. Osimertinib, the third-generation irreversible EGFR-TKI, has been approved for the treatment of NSCLC patients with the EGFRT790M mutation. However, due to the EGFRC797S mutation in the kinase domain of EGFR, resistance to osimertinib is observed and that limits the long-term effectiveness of the drug. The C797S mutation is one of the major causes of drug resistance against the third-generation EGFR TKIs. The C797S mutations including EGFR double mutations (19Del/C797S or L858R/C797S) and or EGFR triple mutations (19Del/T790M/C797S or L858R/T790M/C797S) cause major resistance to the third-generation EGFR-TKIs. Therefore, the discovery and development of fourth-generation EGFR-TKIs to target triple mutant EGFR with C797S mutation is a challenging topic in medicinal chemistry research. In this review, we discuss the discovery of novel fourth-generation EGFR TKIs, medicinal chemistry approaches and the strategies to overcome the C797S mutations. In vitro activities of EGFR-TKIs (2019-2024) against mutant EGFR TK, anti-proliferative activities, structural modifications, binding modes of the inhibitors and in vivo efficacies in animal models are discussed here.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Lingzhi Xie
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co. Ltd., Sangtiandao Science Innovation Park No. 1 Huayun Road, SIP Suzhou 215123 P. R. China
| |
Collapse
|
6
|
Wang Q, Zhu Y, Pei J. Targeting EGFR with molecular degraders as a promising strategy to overcome resistance to EGFR inhibitors. Future Med Chem 2024; 16:1923-1944. [PMID: 39206853 PMCID: PMC11485768 DOI: 10.1080/17568919.2024.2389764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal activation of EGFR is often associated with various malignant tumors, making it an important target for antitumor therapy. However, traditional targeted inhibitors have several limitations, such as drug resistance and side effects. Many studies have focused on the development of EGFR degraders to overcome this resistance and enhance the therapeutic effect on tumors. Proteolysis targeting chimeras (PROTAC) and Lysosome-based degradation techniques have made significant progress in degrading EGFR. This review provides a summary of the structural and function of EGFR, the resistance, particularly the research progress and activity of EGFR degraders via the proteasome and lysosome. Furthermore, this review aims to provide insights for the development of the novel EGFR degraders.
Collapse
Affiliation(s)
- Qiangfeng Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
7
|
Zhu Y, Ye X, Wu Y, Shen H, Cai Z, Xia F, Min W, Hou Y, Wang L, Wang X, Xiao Y, Yang P. Design, Synthesis, and Biological Evaluation of Novel EGFR PROTACs Targeting C797S Mutation. J Med Chem 2024; 67:7283-7300. [PMID: 38676656 DOI: 10.1021/acs.jmedchem.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The epidermal growth factor receptor (EGFR) tertiary C797S mutation is an important cause of resistance to Osimertinib, which seriously hinders the clinical application of Osimertinib. Developing proteolysis-targeting chimeras (PROTACs) targeting EGFR mutants can offer a promising strategy to overcome drug resistance. In this study, some novel PROTACs targeting C797S mutation were designed and synthesized based on a new EGFR inhibitor and displayed a potent degradation effect in H1975-TM cells harboring EGFRL858R/T790M/C797S. The representative compound C6 exhibited a DC50 of 10.2 nM against EGFRL858R/T790M/C797S and an IC50 of 10.3 nM against H1975-TM. Furthermore, C6 also showed potent degradation activity against various main EGFR mutants, including EGFRDel19/T790M/C797S. Mechanistic studies revealed that the protein degradation was achieved through the ubiquitin-proteasome system. Finally, C6 inhibited tumor growth in the H1975-TM xenograft tumor model effectively and safely. This study identifies a novel and potent EGFR PROTAC to overcome Osimertinib resistance mediated by C797S mutation.
Collapse
Affiliation(s)
- Yasheng Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuquan Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxing Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Zeyu Cai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Vorderbruggen M, Velázquez-Martínez CA, Natarajan A, Karpf AR. PROTACs in Ovarian Cancer: Current Advancements and Future Perspectives. Int J Mol Sci 2024; 25:5067. [PMID: 38791105 PMCID: PMC11121112 DOI: 10.3390/ijms25105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy. The majority of patients diagnosed with advanced ovarian cancer will relapse, at which point additional therapies can be administered but, for the most part, these are not curative. As such, a need exists for the development of novel therapeutic options for ovarian cancer patients. Research in the field of targeted protein degradation (TPD) through the use of proteolysis-targeting chimeras (PROTACs) has significantly increased in recent years. The ability of PROTACs to target proteins of interest (POI) for degradation, overcoming limitations such as the incomplete inhibition of POI function and the development of resistance seen with other inhibitors, is of particular interest in cancer research, including ovarian cancer research. This review provides a synopsis of PROTACs tested in ovarian cancer models and highlights PROTACs characterized in other types of cancers with potential high utility in ovarian cancer. Finally, we discuss methods that will help to enable the selective delivery of PROTACs to ovarian cancer and improve the pharmacodynamic properties of these agents.
Collapse
Affiliation(s)
- Makenzie Vorderbruggen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Adam R. Karpf
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA; (M.V.); (A.N.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA
| |
Collapse
|
9
|
Shen J, Chen L, Liu J, Li A, Zheng L, Chen S, Li Y. EGFR degraders in non-small-cell lung cancer: Breakthrough and unresolved issue. Chem Biol Drug Des 2024; 103:e14517. [PMID: 38610074 DOI: 10.1111/cbdd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
The epidermal growth factor receptor (EGFR) has been well validated as a therapeutic target for anticancer drug discovery. Osimertinib has become the first globally accessible third-generation EGFR inhibitor, representing one of the most advanced developments in non-small-cell lung cancer (NSCLC) therapy. However, a tertiary Cys797 to Ser797 (C797S) point mutation has hampered osimertinib treatment in patients with advanced EGFR-mutated NSCLC. Several classes of fourth-generation EGFR inhibitors were consequently discovered with the aim of overcoming the EGFRC797S mutation-mediated resistance. However, no clinical efficacy data of the fourth-generation EGFR inhibitors were reported to date, and EGFRC797S mutation-mediated resistance remains an "unmet clinical need." Proteolysis-targeting chimeric molecules (PROTACs) obtained from EGFR-TKIs have been developed to target drug resistance EGFR in NSCLC. Some PROTACs are from nature products. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition, and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the resistance, and mutations of EGFR, and then mainly focus on the recent advances of EGFR-targeting degraders along with its advantages and outstanding challenges.
Collapse
Affiliation(s)
- Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jihu Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Anzhi Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lüyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Sheng Chen
- Jiangxi Chiralsyn Biological Medicine Co., Ltd, Ganzhou, Jiangxi, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Wang X, Qin ZL, Li N, Jia MQ, Liu QG, Bai YR, Song J, Yuan S, Zhang SY. Annual review of PROTAC degraders as anticancer agents in 2022. Eur J Med Chem 2024; 267:116166. [PMID: 38281455 DOI: 10.1016/j.ejmech.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Following nearly two decades of development, significant advancements have been achieved in PROTAC technology. As of the end of 2022, more than 20 drugs have entered clinical trials, with ARV-471 targeting estrogen receptor (ER) showing remarkable progress by entering phase III clinical studies. In 2022, significant progress has been made on multiple targets. The first reversible covalent degrader designed to target the KRASG12C mutant protein, based on cyclopropionamide, has been reported. Additionally, the activity HDCA1 degrader surpassed submicromolar levels during the same year. A novel FEM1B covalent ligand called EN106 was also discovered, expanding the range of available ligands. Furthermore, the first PROTAC drug targeting SOS1 was reported. Additionally, the first-in-class degraders that specifically target BRD4 isoforms (BRD4 L and BRD4 S) have recently been reported, providing a valuable tool for further investigating the biological functions of these isoforms. Lastly, a breakthrough was also achieved with the first degrader targeting both CDK9 and Cyclin T1. In this review, we aimed to update the PROTAC degraders as potential anticancer agents covering articles published in 2022. The design strategies, degradation effects, and anticancer activities were highlighted, which might provide an updated sight to develop novel PROTAC degraders with great potential as anticancer agents as well as favorable drug-like properties.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Long Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Ru Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Errani F, Invernizzi A, Herok M, Bochenkova E, Stamm F, Corbeski I, Romanucci V, Di Fabio G, Zálešák F, Caflisch A. Proteolysis Targeting Chimera Degraders of the METTL3-14 m 6A-RNA Methyltransferase. JACS AU 2024; 4:713-729. [PMID: 38425900 PMCID: PMC10900215 DOI: 10.1021/jacsau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Methylation of adenine N6 (m6A) is the most frequent RNA modification. On mRNA, it is catalyzed by the METTL3-14 heterodimer complex, which plays a key role in acute myeloid leukemia (AML) and other types of blood cancers and solid tumors. Here, we disclose the first proteolysis targeting chimeras (PROTACs) for an epitranscriptomics protein. For designing the PROTACs, we made use of the crystal structure of the complex of METTL3-14 with a potent and selective small-molecule inhibitor (called UZH2). The optimization of the linker started from a desfluoro precursor of UZH2 whose synthesis is more efficient than that of UZH2. The first nine PROTAC molecules featured PEG- or alkyl-based linkers, but only the latter showed cell penetration. With this information in hand, we synthesized 26 PROTACs based on UZH2 and alkyl linkers of different lengths and rigidity. The formation of the ternary complex was validated by a FRET-based biochemical assay and an in vitro ubiquitination assay. The PROTACs 14, 20, 22, 24, and 30, featuring different linker types and lengths, showed 50% or higher degradation of METTL3 and/or METTL14 measured by Western blot in MOLM-13 cells. They also showed substantial degradation on three other AML cell lines and prostate cancer cell line PC3.
Collapse
Affiliation(s)
- Francesco Errani
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Annalisa Invernizzi
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Marcin Herok
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Elena Bochenkova
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Fiona Stamm
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Ivan Corbeski
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Valeria Romanucci
- Università
degli Studi di Napoli Federico II, Via Cintia 4, Napoli I-80126, Italia
| | - Giovanni Di Fabio
- Università
degli Studi di Napoli Federico II, Via Cintia 4, Napoli I-80126, Italia
| | - František Zálešák
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
12
|
Basu B, Kal S, Karmakar S, Basu M, Ghosh MK. E3 ubiquitin ligases in lung cancer: Emerging insights and therapeutic opportunities. Life Sci 2024; 336:122333. [PMID: 38061537 DOI: 10.1016/j.lfs.2023.122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Aim In this review, we have attempted to provide the readers with an updated account of the role of a family of proteins known as E3 ligases in different aspects of lung cancer progression, along with insights into the deregulation of expression of these proteins during lung cancer. A detailed account of the therapeutic strategies involving E3 ligases that have been developed or currently under development has also been provided in this review. MATERIALS AND METHODS: The review article employs extensive literature search, along with differential gene expression analysis of lung cancer associated E3 ligases using the DESeq2 package in R, and the Gene Expression Profiling Interactive Analysis (GEPIA) database (http://gepia.cancer-pku.cn/). Protein expression analysis of CPTAC lung cancer samples was carried out using the UALCAN webtool (https://ualcan.path.uab.edu/index.html). Assessment of patient overall survival (OS) in response to high and low expression of selected E3 ligases was performed using the online Kaplan-Meier plotter (https://kmplot.com/analysis/index.php?p=background). KEY FINDINGS: SIGNIFICANCE: The review provides an in-depth understanding of the role of E3 ligases in lung cancer progression and an up-to-date account of the different therapeutic strategies targeting oncogenic E3 ligases for improved lung cancer management.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN -743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
13
|
Chen X, Zhou Y, Zhao Y, Tang W. Targeted degradation of extracellular secreted and membrane proteins. Trends Pharmacol Sci 2023; 44:762-775. [PMID: 37758536 PMCID: PMC10591793 DOI: 10.1016/j.tips.2023.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
Targeted protein degradation (TPD) involving chimeric molecules has emerged as one of the most promising therapeutic modalities in recent years. Among various reported TPD strategies, proteolysis-targeting chimeras (PROTACs) stand out as a significant breakthrough in small-molecule drug discovery and have garnered the most attention to date. However, PROTACs are mainly capable of depleting intracellular proteins. Given that many important therapeutic targets such as cytokines, growth factors, and numerous receptors are membrane proteins or secreted extracellularly, there is interest in the development of novel strategies to degrade these protein categories. We review advances in this emerging area and provide insights to enhance the development of novel TPDs targeting extracellular proteins.
Collapse
Affiliation(s)
- Xuankun Chen
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Yaxian Zhou
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Yuan Zhao
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Wang C, Zhang Y, Chen W, Wang Y, Xing D. Epidermal growth factor receptor PROTACs as an effective strategy for cancer therapy: A review. Biochim Biophys Acta Rev Cancer 2023; 1878:188927. [PMID: 37245798 DOI: 10.1016/j.bbcan.2023.188927] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein that mediates cellular signaling pathways involved in cell proliferation, angiogenesis, apoptosis, and metastatic spread, is an important oncogenic drug target. Targeting the intracellular and extracellular domains of the EGFR has been authorized for a number of small-molecule TKIs and mAbs, respectively. However, their clinical application is limited by EGFR catalytic structural domain alterations, cancer heterogeneity, and persistent drug resistance. To bypass these limitations, protease-targeted chimeras (PROTACs) are emerging as an emerging and promising anti-EGFR therapy. PROTACs compensate for the limitations of traditional occupancy-driven small molecules by exploiting intracellular protein destruction processes. Recently, a mushrooming number of heterobifunctional EGFR PROTACs have been created using wild-type (WT) and mutated EGFR TKIs. PROTACs outperformed EGFR TKIs in terms of cellular inhibition, potency, toxicity profiles, and anti-drug resistance. Herein, we present a comprehensive overview of the development of PROTACs targeting EGFR for cancer therapy, while also highlighting the challenges and opportunities associated with the field.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Li P, Li B, Yang N, Xu T, Zheng Z. The next generation of EGFR inhibitors: a patenting perspective of PROTACs based EGFR degraders. Expert Opin Ther Pat 2023; 33:477-492. [PMID: 37873645 DOI: 10.1080/13543776.2023.2262176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Abnormal expression of epidermal growth factor receptor (EGFR) contributes to tumor development, especially in non-small cell lung cancer (NSCLC). Although multiple inhibitors have been developed to target diverse EGFR mutations and several have been approved, the inevitable drug resistance and side effect remain a challenge, which motivates novel strategies. Proteolysis-targeting chimeras (PROTACs) have been gaining momentum for their potential as novel therapeutics for human diseases by triggering protein degradation. To date, various potent and specific EGFR PROTACs have been discovered and some of them have entered clinical trials. AREAS COVERED This review provides an overview of EGFR degraders in patents from 2016 to 2022. It provides an update of the discovery strategies, chemical structures, and molecular profiling of all available EGFR PROTACs. SciFinder, PubMed, Web of Science, EPO, and CNIPA databases were used for searching the literature and patents for EGFR PROTACs. EXPERT OPINION By employing the PROTAC technology, highly potent and selective EGFR degraders based on four generation EGFR inhibitors have been developed, which offer a new strategy to target EGFR mutations and overcome the drug resistance. Despite the satisfactory result in vitro and in vivo studies, their therapeutic value awaits more rigorous preclinical testing and clinical investigation.
Collapse
Affiliation(s)
- Pengyun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bingkun Li
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Yang
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tingting Xu
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhibing Zheng
- National Engineering Research Center for Strategic Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
16
|
Li S, Chen T, Liu J, Zhang H, Li J, Wang Z, Shang G. PROTACs: Novel tools for improving immunotherapy in cancer. Cancer Lett 2023; 560:216128. [PMID: 36933781 DOI: 10.1016/j.canlet.2023.216128] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Posttranslational modifications (PTMs), such as phosphorylation, methylation, ubiquitination, and acetylation, are important in governing protein expression levels. Proteolysis targeting chimeras (PROTACs) are novel structures designed to target a protein of interest (POI) for ubiquitination and degradation, leading to the selective reduction in the expression levels of the POI. PROTACs have exhibited great promise due to their ability to target undruggable proteins, including several transcription factors. Recently, PROTACs have been characterized to improve anticancer immunotherapy via the regulation of specific proteins. In this review, we describe how the PROTACs target several molecules, including HDAC6, IDO1, EGFR, FoxM1, PD-L1, SHP2, HPK1, BCL-xL, BET proteins, NAMPT, and COX-1/2, to regulate immunotherapy in human cancers. PROTACs may provide potential treatment benefits by enhancing immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - He Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Jiatong Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China; The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
17
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
18
|
Li JW, Zheng G, Kaye FJ, Wu L. PROTAC therapy as a new targeted therapy for lung cancer. Mol Ther 2023; 31:647-656. [PMID: 36415148 PMCID: PMC10014230 DOI: 10.1016/j.ymthe.2022.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Despite recent advances in molecular therapeutics, lung cancer is still a leading cause of cancer deaths. Currently, limited targeted therapy options and acquired drug resistance present significant barriers in the treatment of patients with lung cancer. New strategies in drug development, including those that take advantage of the intracellular ubiquitin-proteasome system to induce targeted protein degradation, have the potential to advance the field of personalized medicine for patients with lung cancer. Specifically, small molecule proteolysis targeting chimeras (PROTACs), consisting of two ligands connected by a linker that bind to a target protein and an E3 ubiquitin ligase, have been developed against many cancer targets, providing promising opportunities for advanced lung cancer. In this review, we focus on the rationale for PROTAC therapy as a new targeted therapy and the current status of PROTAC development in lung cancer.
Collapse
Affiliation(s)
- Jennifer W Li
- Department of Medicine, Brown University, Providence, RI 02912, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Frederic J Kaye
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA; UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
19
|
Li D, Yu D, Li Y, Yang R. A bibliometric analysis of PROTAC from 2001 to 2021. Eur J Med Chem 2022; 244:114838. [DOI: 10.1016/j.ejmech.2022.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022]
|