1
|
Gupta A, Parveen D, Azam F, Shaquiquzzaman M, Akhter M, Jaremko M, Emwas AH, Khan MA, Parvez S, Khanna S, Palit R, Jahangir U, Alam MM. Mechanistic insights into novel cyano-pyrimidine pendant chalcone derivatives as LSD1 inhibitors by docking, ADMET, MM/GBSA, and molecular dynamics simulation. Biochem Biophys Rep 2025; 41:101937. [PMID: 40028038 PMCID: PMC11871483 DOI: 10.1016/j.bbrep.2025.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Accepted: 01/26/2025] [Indexed: 03/05/2025] Open
Abstract
Cancer presents a formidable and complex foe, standing as one of the foremost contributors to disease-related fatalities across the globe. According to data from the Global Cancer Observatory (GLOBOCAN), projections indicate a staggering 28.4 million cases of cancer, encompassing both new diagnoses and deaths, by 2040. Therefore, developing effective and comprehensive treatment approaches for cancer patients is essential and the conventional approved treatments for cancers are associated with various harmful side effects. Our study aims to address the critical and widespread need for alternative therapies that can effectively combat cancer with minimal side effects. The present contribution outlines a targeted approach using Lysine Specific Demethylase 1 (LSD1) to evaluate novel cyano-pyrimidine pendant chalcone derivatives as potential antiproliferative agents. Two sets of novel cyano-pyrimidine pendant chalcone derivatives were produced, and molecular docking was performed on the LSD1 protein. The ligands A1 and B1 belonging to series A and B, respectively, were found to have the highest docking scores of -11.095 and -10.773 kcal/mol, in that order. The ADME and toxicity studies of the ligands showed promising responses with respect to various pharmacokinetic and physicochemical parameters. The Molecular dynamics (MD) simulation results indicated effective diffusion of both complexes inside the protein cavity, facilitated by prominent interactions with various amino acids. Additionally, the complexes displayed high relative binding free energy. The computational screening of ligands indicates that ligands A1 and B1 exhibit potential for further exploration using various in vitro and in vivo techniques. These ligands may then serve as promising leads in the discovery of cancer drugs. The in-silico screening of the novel library of cyano-pyrimidine pendant chalcone derivatives was performed with a combination of molecular docking, MM-GBSA, ADME, toxicity and MD simulation. Molecular docking and MM-GBSA were conducted using the Glide and Prime tools, respectively, of the Schrödinger suite 12.8. The ligands were analysed for ADME using the Swiss ADME, while toxicity risks were evaluated using Osiris Property Explorer. Additionally, a 400ns MD simulation of LIGA1 and LIGB1 against the protein LSD1 was performed using the Desmond tool of Schrödinger suite 12.8 to validate the docking results and analyse the behaviour and stability of the complexes.
Collapse
Affiliation(s)
- Amisha Gupta
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Darakhshan Parveen
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
| | - M. Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Kingdom of Saudi Arabia
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 62, India
| | - Suruchi Khanna
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rituparna Palit
- Department of Pharmaceutical Chemistry, RKGIT, AKTU, Uttar Pradesh, India
| | - Umar Jahangir
- Department of Amraz-e-Jild, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - M. Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
2
|
Guo Z, He M, Liu N, Yang Y, Sun R, Wang J, Wang Q. In vitro functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma. Front Immunol 2025; 15:1521778. [PMID: 39872520 PMCID: PMC11770093 DOI: 10.3389/fimmu.2024.1521778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
Background Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy. Purpose We propose to develop and validate in vitro the function of novel CAR-T cells for the treatment of DLBCL, which simultaneously express an anti-CD19 CAR with lysine-specific demethylase 1 (LSD1) short hairpin (sh)RNA to prevent depletion and prolong the survival of CAR-T cells. Methods We designed an shRNA sequence targeting LSD1 mRNA, and created a vector with the following elements: the U6 promoter driving expression of the LSD1 shRNA sequence, the EF1a promoter driving a second-generation anti-CD19 CAR sequence encoding an anti-CD19 single-chain variable fragment (FMC63), the CD8 hinge and transmembrane structural domains, the CD28 co-stimulatory structural domain, and the CD3ζ-activating structural domain. The MFG-LSD1 shRNA anti-CD19 CAR plasmid was first constructed, then packaged in retroviral vectors and transduced into human primary peripheral blood mononuclear cell-derived T cells to generate the corresponding CAR-T cells. We examined by flow cytometry the efficiency of two CAR-T cells in killing U-2932 cells (a human DLBCL line) upon co-culture with RNAU6 anti-CD19 CAR-T cells or LSD1 shRNA anti-CD19 CAR-T cells. We analyzed Ki-67 staining of the CAR-T cells by flow cytometry on days 0, 5, and 10, and counted the cells to assess expansion. We also used flow cytometry to detect the central memory T cell (TCM) proportion. Results We detected the expression of the CAR in the CAR-T cells by flow cytometry, and observed transduction rates of 31.5% for RNAU6 anti-CD19 CAR-T cells and 60.7% for LSD1 shRNA anti-CD19 CAR-T cells. The killing efficiency of LSD1 shRNA anti-CD19 CAR-T cells was significantly higher than that of RNAU6 anti-CD19 CAR-T cells at the low effector target ratio. We further found that LSD1 shRNA anti-CD19 CAR-T cells secreted more IFN-γ and granzyme B than RNAU6 anti-CD19 CAR-T cells. CAR-T cells proliferated after U-2932 cell stimulation and were able to sustain proliferation. After stimulation via U-2932 cell co-culture, both RNAU6 anti-CD19 CAR-T and LSD1 shRNA anti-CD19 CAR-T populations had increased proportions of cells with the TCM phenotype, with a higher percentage among LSD1 shRNA anti-CD19 CAR-T cells. Conclusion We developed a novel, feasible CD19-LSD1 shRNA CAR-T cell strategy for the treatment of DLBCL. Our in vitro assay results showed that LSD1 shRNA anti-CD19 CAR-T cells more effectively killed target cells than RNAU6 anti-CD19 CAR-T cells, and developed a higher proportion of TCM phenotype cells. LSD1 shRNA anti-CD19 CAR-T cells may represent a potential treatment for DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Histone Demethylases/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Antigens, CD19/immunology
- Immunotherapy, Adoptive/methods
- RNA, Small Interfering/genetics
- Cell Line, Tumor
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Zhi Guo
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Department of Hematology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Mingxin He
- Department of Hematology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Ning Liu
- Department of Hematology, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yiqing Yang
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Rui Sun
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Jianxun Wang
- Shenzhen Cell Valley Biomedical Co., LTD, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Yang Q, Wei S, Qiu C, Han C, Du Z, Wu N. KDM1A epigenetically enhances RAD51 expression to suppress the STING-associated anti-tumor immunity in esophageal squamous cell carcinoma. Cell Death Dis 2024; 15:882. [PMID: 39638799 PMCID: PMC11621790 DOI: 10.1038/s41419-024-07275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Histone lysine demethylase LSD1, also known as KDM1A, has been found to regulate multiple cancer hallmarks since it was first identified in 2004. Recently, it has emerged as a promising target for stimulating anti-tumor immunity, specifically boosting T cell activity. However, it remains unclear whether and how it remodels the tumor microenvironment to drive oncogenic processes in esophageal squamous cell carcinoma (ESCC). In this study, protein levels in ESCC tissues were evaluated by immunostaining of tissue microarrays. Cell growth was assessed by colony formation assays in vitro and subcutaneous xenograft models in vivo. High-throughput transcriptomics and spatial immune proteomics were performed using bulk RNA sequencing and digital spatial profiling techniques, respectively. Epigenetic regulation of RAD51 by methylated histone proteins was analyzed using chromatin immunoprecipitated quantitative PCR assays. Finally, our clinical data indicate that KDM1A precisely predicts the overall survival of patients with early-stage ESCC. Inhibition of KDM1A blocked the growth of ESCC cells in vitro and in vivo. Mechanistically, our transcriptomics and spatial immune proteomics data, together with rescue assays, demonstrated that KDM1A specifically removes methyl residues from the histone protein H3K9me2, a transcription repressive marker, thus reducing its enrichment at the promoter of RAD51 to epigenetically reactivate its transcription. Additionally, it significantly inhibits the expression of NF-κB signaling-dependent proinflammatory genes IL-6 and IL-1B through RAD51, thus blocking the STING-associated anti-tumor immunity in stromal tumor-infiltrating lymphocytes (sTIL). Overall, our findings not only indicate that KDM1A is a promising target for ESCC patients at early stages but also provide novel mechanistic insights into its spatial regulation of STING-associated anti-tumor immunity in sTILs to drive the oncogenic processes in ESCC. The translation of these findings will ultimately guide more appropriate combinations of spatial immunotherapies with KDM1A inhibitors to improve the overall survival of specific subgroups in ESCC.
Collapse
Affiliation(s)
- Qingyuan Yang
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shiyin Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise City, Guangxi, China
| | - Cen Qiu
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjie Han
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Hua Shan Hospital of Fudan University, Shanghai, China
| | - Ning Wu
- Department of Cardiothoracic Surgery, Hua Shan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Gu M, Xu X, Wang X, Wang Y, Zhao Y, Hu X, Zhu L, Deng Z, Han C. Target Ligand Separation and Identification of Isoforsythiaside as a Histone Lysine-Specific Demethylase 1 Covalent Inhibitor Against Breast Cancer Metastasis. J Med Chem 2024; 67:19874-19888. [PMID: 39499621 DOI: 10.1021/acs.jmedchem.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Histone lysine-specific demethylase 1 (LSD1) is hyperactive in breast cancer, which is associated with the metastasis of the tumor. Current irreversible LSD1 inhibitors are all synthesized by covalently binding to the flavin adenine dinucleotide cofactor, which often have side effects due to the high affinity for a variety of targets. Here, we identified isoforsythiaside (IFA), a natural phenylpropanoid glycoside isolated from Forsythia suspensa, as a novel covalent inhibitor of LSD1. The target ligand fishing technique and LC-MS/MS analysis identified that IFA could covalently bind to the Ser817 residue of LSD1 by α,β-unsaturated ketone moiety to block the amine oxidase-like domain of LSD1. Moreover, RBMS3/Twist1/MMP2, the downstream signaling pathway of LSD1, was activated after IFA treatment to inhibit the metastasis of MDA-MB-231 cells in vitro and in vivo. This study provided novel molecular templates for development of LSD1 covalence-binding inhibitor and laid a foundation for developing agents against breast carcinoma metastasis for targeting LSD1.
Collapse
Affiliation(s)
- Mengzhen Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoqing Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoping Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxian Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Zhenzhong Deng
- Department of Oncology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Yu Z, Li P, Gao D, Hu Y, Xia F, Liu L, Liu J, Liu W, Zhang H. Inhibition of LSD1 via SP2509 attenuated the progression of rheumatoid arthritis. Immunol Res 2024; 72:797-810. [PMID: 38722530 DOI: 10.1007/s12026-024-09486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 08/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia, pannus formation, and cartilage and bone destruction. Lysine-specific demethylase 1 (LSD1), an enzyme involved in transcriptional regulation, has an unclear role in synovial inflammation, fibroblast-like synoviocytes migration, and invasion during RA pathogenesis. In this study, we observed increased LSD1 expression in RA synovial tissues and in TNF-α-stimulated MH7A cells. SP2509, an LSD1 antagonist, directly reduced LSD1 expression and reversed the elevated levels of proteins associated with inflammation, apoptosis, proliferation, and autophagy induced by TNF-α. Furthermore, SP2509 inhibited the migratory capacity of MH7A cells, which was enhanced by TNF-α. In CIA models, SP2509 treatment ameliorated RA development, reducing the expression of pro-inflammatory cytokines and alleviating joint pathological symptoms. These findings underscore the significance of LSD1 in RA and propose the therapeutic potential of SP2509.
Collapse
Affiliation(s)
- Ziliang Yu
- Department of Orthopaedics, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Nantong, 226000, Jiangsu, China
| | - Peipei Li
- Department of Operating Room, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, 226000, Jiangsu, China
| | - Dagong Gao
- Department of Orthopaedics, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Nantong, 226000, Jiangsu, China
| | - Yalong Hu
- Department of Orthopaedics, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Nantong, 226000, Jiangsu, China
| | - Fei Xia
- Department of Orthopaedics, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Nantong, 226000, Jiangsu, China
| | - Lei Liu
- Department of Orthopaedics, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Nantong, 226000, Jiangsu, China
| | - Jian Liu
- Department of Orthopaedics, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Nantong, 226000, Jiangsu, China
| | - Wei Liu
- Department of Orthopaedics, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Nantong, 226000, Jiangsu, China.
| | - Haiping Zhang
- Department of Orthopaedics, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Nantong, 226000, Jiangsu, China.
| |
Collapse
|
6
|
Senanayaka D, Zeng D, Deniz E, Priyankara IK, Helmbreck J, Schneider O, Mardikar A, Uren A, Reiter NJ. Anticancer Drugs of Lysine Specific Histone Demethylase-1 (LSD1) Display Variable Inhibition on Nucleosome Substrates. Biochemistry 2024; 63:1369-1375. [PMID: 38742921 DOI: 10.1021/acs.biochem.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lysine specific demethylase-1 (LSD1) serves as a regulator of transcription and represents a promising epigenetic target for anticancer treatment. LSD1 inhibitors are in clinical trials for the treatment of Ewing's sarcoma (EWS), acute myeloid leukemia, and small cell lung cancer, and the development of robust inhibitors requires accurate methods for probing demethylation, potency, and selectivity. Here, the inhibition kinetics on the H3K4me2 peptide and nucleosome substrates was examined, comparing the rates of demethylation in the presence of reversible [CC-90011 (PD) and SP-2577 (SD)] and irreversible [ORY-1001 (ID) and tranylcypromine (TCP)] inhibitors. Inhibitors were also subject to viability studies in three human cell lines and Western blot assays to monitor H3K4me2 nucleosome levels in EWS (TC-32) cells, enabling a correlation of drug potency, inhibition in vitro, and cell-based studies. For example, SP-2577, a drug in clinical trials for EWS, inhibits activity on small peptide substrates (Ki = 60 ± 20 nM) using an indirect coupled assay but does not inhibit demethylation on H3K4me2 peptides or nucleosomes using direct Western blot approaches. In addition, the drug has no effect on H3K4me2 levels in TC-32 cells. These data show that SP-2577 is not an LSD1 enzyme inhibitor, although the drug may function independent of demethylation due to its cytotoxic selectivity in TC-32 cells. Taken together, this work highlights the pitfalls of using coupled assays to ascribe a drug's mode of action, emphasizes the use of physiologically relevant substrates in epigenetic drug targeting strategies, and provides insight into the development of substrate-selective inhibitors of LSD1.
Collapse
Affiliation(s)
- Dulmi Senanayaka
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233. United States
| | - Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233. United States
| | - Emre Deniz
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, D.C. 20007, United States
| | - Indunil K Priyankara
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233. United States
| | - Joceline Helmbreck
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233. United States
| | - Owen Schneider
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233. United States
| | - Aashay Mardikar
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233. United States
| | - Aykut Uren
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, D.C. 20007, United States
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233. United States
| |
Collapse
|
7
|
Fan Z, Liu X, Wang N, Yu S, Bi C, Si Y, Ling X, Liu C, Wang J, Sun H. Utilizing a structure-based virtual screening approach to discover potential LSD1 inhibitors. J Cancer Res Clin Oncol 2024; 150:253. [PMID: 38748285 PMCID: PMC11096237 DOI: 10.1007/s00432-024-05784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Lysine-specific demethylase 1 (LSD1) is highly expressed in a variety of malignant tumors, rendering it a crucial epigenetic target for anti-tumor therapy. Therefore, the inhibition of LSD1 activity has emerged as a promising innovative therapeutic approach for targeted cancer treatment. METHODS In our study, we employed innovative structure-based drug design methods to meticulously select compounds from the ZINC15 database. Utilizing virtual docking, we evaluated docking scores and binding modes to identify potential inhibitors. To further validate our findings, we harnessed molecular dynamic simulations and conducted meticulous biochemical experiments to deeply analyze the binding interactions between the protein and compounds. RESULTS Our results showcased that ZINC10039815 exhibits an exquisite binding mode with LSD1, fitting perfectly into the active pocket and forming robust interactions with multiple critical residues of the protein. CONCLUSIONS With its significant inhibitory effect on LSD1 activity, ZINC10039815 emerges as a highly promising candidate for the development of novel LSD1 inhibitors.
Collapse
Affiliation(s)
- Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Jiangyangzhonglu No. 136, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, China
| | - Xiaofeng Liu
- Internal Medicine Department, Haian Hospital of Traditional Chinese Medicine, Nantong, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Jiangyangzhonglu No. 136, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, China
| | - Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Jiangyangzhonglu No. 136, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Jiangyangzhonglu No. 136, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, China
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Jiangyangzhonglu No. 136, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, China
| | - Xinyue Ling
- Institute of Translational Medicine, Medical College, Yangzhou University, Jiangyangzhonglu No. 136, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, China
| | - Chenxu Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Jiangyangzhonglu No. 136, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, China
| | - Jingcheng Wang
- Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Jiangyangzhonglu No. 136, Yangzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, China.
| |
Collapse
|
8
|
Yang X. Research progress of LSD1-based dual-target agents for cancer therapy. Bioorg Med Chem 2024; 101:117651. [PMID: 38401457 DOI: 10.1016/j.bmc.2024.117651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone lysine demethylase that is significantly overexpressed or dysregulated in different cancers and plays important roles in cell growth, invasion, migration, immune escape, angiogenesis, gene regulation, and transcription. Therefore, it is a superb target for the discovery of novel antitumor agents. However, because of their innate and acquired resistance and low selectivity, LSD1 inhibitors are associated with limited therapeutic efficacy and high toxicity. Furthermore, LSD1 inhibitors synergistically improve the efficacy of additional antitumor drugs, which encourages numerous medicinal chemists to innovate and develop new-generation LSD1-based dual-target agents. This review discusses the theoretical foundation of the design of LSD1-based dual-target agents and summarizes their possible applications in treating cancers.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang 453003, China.
| |
Collapse
|
9
|
Nisco A, Carvalho TMA, Tolomeo M, Di Molfetta D, Leone P, Galluccio M, Medina M, Indiveri C, Reshkin SJ, Cardone RA, Barile M. Increased demand for FAD synthesis in differentiated and stem pancreatic cancer cells is accomplished by modulating FLAD1 gene expression: the inhibitory effect of Chicago Sky Blue. FEBS J 2023; 290:4679-4694. [PMID: 37254652 DOI: 10.1111/febs.16881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
FLAD1, along with its FAD synthase (FADS, EC 2.7.7.2) product, is crucial for flavin homeostasis and, due to its role in the mitochondrial respiratory chain and nuclear epigenetics, is closely related to cellular metabolism. Therefore, it is not surprising that it could be correlated with cancer. To our knowledge, no previous study has investigated FLAD1 prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Thus, in the present work, the FAD synthesis process was evaluated in two PDAC cell lines: (a) PANC-1- and PANC-1-derived cancer stem cells (CSCs), presenting the R273H mutation in the oncosuppressor p53, and (b) MiaPaca2 and MiaPaca2-derived CSCs, presenting the R248W mutation in p53. As a control, HPDE cells expressing wt-p53 were used. FADS expression/activity increase was found with malignancy and even more with stemness. An increased FAD synthesis rate in cancer cell lines is presumably demanded by the increase in the FAD-dependent lysine demethylase 1 protein amount as well as by the increased expression levels of the flavoprotein subunit of complex II of the mitochondrial respiratory chain, namely succinate dehydrogenase. With the aim of proposing FADS as a novel target for cancer therapy, the inhibitory effect of Chicago Sky Blue on FADS enzymatic activity was tested on the recombinant 6His-hFADS2 (IC50 = 1.2 μm) and PANC-1-derived CSCs' lysate (IC50 = 2-10 μm). This molecule was found effective in inhibiting the growth of PANC-1 and even more of its derived CSC line, thus assessing its role as a potential chemotherapeutic drug.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Tiago M A Carvalho
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Michele Galluccio
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), University of Zaragoza, Spain
| | - Cesare Indiveri
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| |
Collapse
|
10
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Bandini C, Mereu E, Paradzik T, Labrador M, Maccagno M, Cumerlato M, Oreglia F, Prever L, Manicardi V, Taiana E, Ronchetti D, D’Agostino M, Gay F, Larocca A, Besse L, Merlo GR, Hirsch E, Ciarrocchi A, Inghirami G, Neri A, Piva R. Lysin (K)-specific demethylase 1 inhibition enhances proteasome inhibitor response and overcomes drug resistance in multiple myeloma. Exp Hematol Oncol 2023; 12:71. [PMID: 37563685 PMCID: PMC10413620 DOI: 10.1186/s40164-023-00434-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable plasma cell malignancy, accounting for approximately 1% of all cancers. Despite recent advances in the treatment of MM, due to the introduction of proteasome inhibitors (PIs) such as bortezomib (BTZ) and carfilzomib (CFZ), relapses and disease progression remain common. Therefore, a major challenge is the development of novel therapeutic approaches to overcome drug resistance, improve patient outcomes, and broaden PIs applicability to other pathologies. METHODS We performed genetic and drug screens to identify new synthetic lethal partners to PIs, and validated candidates in PI-sensitive and -resistant MM cells. We also tested best synthetic lethal interactions in other B-cell malignancies, such as mantle cell, Burkitt's and diffuse large B-cell lymphomas. We evaluated the toxicity of combination treatments in normal peripheral blood mononuclear cells (PBMCs) and bone marrow stromal cells (BMSCs). We confirmed the combo treatment' synergistic effects ex vivo in primary CD138+ cells from MM patients, and in different MM xenograft models. We exploited RNA-sequencing and Reverse-Phase Protein Arrays (RPPA) to investigate the molecular mechanisms of the synergy. RESULTS We identified lysine (K)-specific demethylase 1 (LSD1) as a top candidate whose inhibition can synergize with CFZ treatment. LSD1 silencing enhanced CFZ sensitivity in both PI-resistant and -sensitive MM cells, resulting in increased tumor cell death. Several LSD1 inhibitors (SP2509, SP2577, and CC-90011) triggered synergistic cytotoxicity in combination with different PIs in MM and other B-cell neoplasms. CFZ/SP2509 treatment exhibited a favorable cytotoxicity profile toward PBMCs and BMSCs. We confirmed the clinical potential of LSD1-proteasome inhibition in primary CD138+ cells of MM patients, and in MM xenograft models, leading to the inhibition of tumor progression. DNA damage response (DDR) and proliferation machinery were the most affected pathways by CFZ/SP2509 combo treatment, responsible for the anti-tumoral effects. CONCLUSIONS The present study preclinically demonstrated that LSD1 inhibition could provide a valuable strategy to enhance PI sensitivity and overcome drug resistance in MM patients and that this combination might be exploited for the treatment of other B-cell malignancies, thus extending the therapeutic impact of the project.
Collapse
Affiliation(s)
- Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Department of Physical Chemistry, Rudjer Boskovic Insitute, Zagreb, Croatia
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Monica Maccagno
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Michela Cumerlato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federico Oreglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Veronica Manicardi
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Taiana
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Domenica Ronchetti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia D’Agostino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Francesca Gay
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Alessandra Larocca
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| | - Lenka Besse
- Experimental Oncology and Hematology, Department of Oncology and Hematology, St. Gallen Cantonal Hospital, St. Gallen, Switzerland
- Scientific Directorate, Azienda-USL IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giorgio Roberto Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Giorgio Inghirami
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Antonino Neri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY USA
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
- Città Della Salute e della Scienza Hospital, Turin, Italy
| |
Collapse
|
12
|
Huang G, Cierpicki T, Grembecka J. 2-Aminobenzothiazoles in anticancer drug design and discovery. Bioorg Chem 2023; 135:106477. [PMID: 36989736 PMCID: PMC10718064 DOI: 10.1016/j.bioorg.2023.106477] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/22/2023]
Abstract
Cancer is one of the major causes of mortality and morbidity worldwide. Substantial research efforts have been made to develop new chemical entities with improved anticancer efficacy. 2-Aminobenzothiazole is an important class of heterocycles containing one sulfur and two nitrogen atoms, which is associated with a broad spectrum of medical and pharmacological activities, including antitumor, antibacterial, antimalarial, anti-inflammatory, and antiviral activities. In recent years, an extraordinary collection of potent and low-toxicity 2-aminobenzothiazole compounds have been discovered as new anticancer agents. Herein, we provide a comprehensive review of this class of compounds based on their activities against tumor-related proteins, including tyrosine kinases (CSF1R, EGFR, VEGFR-2, FAK, and MET), serine/threonine kinases (Aurora, CDK, CK, RAF, and DYRK2), PI3K kinase, BCL-XL, HSP90, mutant p53 protein, DNA topoisomerase, HDAC, NSD1, LSD1, FTO, mPGES-1, SCD, hCA IX/XII, and CXCR. In addition, the anticancer potentials of 2-aminobenzothiazole-derived chelators and metal complexes are also described here. Moreover, the design strategies, mechanism of actions, structure-activity relationships (SAR) and more advanced stages of pre-clinical development of 2-aminobenzothiazoles as new anticancer agents are extensively reviewed in this article. Finally, the examples that 2-aminobenzothiazoles showcase an advantage over other heterocyclic systems are also highlighted.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Li M, Liu M, Han W, Wang Z, Han D, Patalano S, Macoska JA, Balk SP, He HH, Corey E, Gao S, Cai C. LSD1 Inhibition Disrupts Super-Enhancer-Driven Oncogenic Transcriptional Programs in Castration-Resistant Prostate Cancer. Cancer Res 2023; 83:1684-1698. [PMID: 36877164 PMCID: PMC10192194 DOI: 10.1158/0008-5472.can-22-2433] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The lysine demethylase LSD1 (also called KDM1A) plays important roles in promoting multiple malignancies including both hematologic cancers and solid tumors. LSD1 targets histone and nonhistone proteins and can function as a transcriptional corepressor or coactivator. LSD1 has been reported to act as a coactivator of androgen receptor (AR) in prostate cancer and to regulate the AR cistrome via demethylation of its pioneer factor FOXA1. A deeper understanding of the key oncogenic programs targeted by LSD1 could help stratify prostate cancer patients for treatment with LSD1 inhibitors, which are currently under clinical investigation. In this study, we performed transcriptomic profiling in an array of castration-resistant prostate cancer (CRPC) xenograft models that are sensitive to LSD1 inhibitor treatment. Impaired tumor growth by LSD1 inhibition was attributed to significantly decreased MYC signaling, and MYC was found to be a consistent target of LSD1. Moreover, LSD1 formed a network with BRD4 and FOXA1 and was enriched at super-enhancer regions exhibiting liquid-liquid phase separation. Combining LSD1 inhibitors with BET inhibitors exhibited strong synergy in disrupting the activities of multiple drivers in CRPC, thereby inducing significant growth repression of tumors. Importantly, the combination treatment showed superior effects than either inhibitor alone in disrupting a subset of newly identified CRPC-specific super-enhancers. These results provide mechanistic and therapeutic insights for cotargeting two key epigenetic factors and could be rapidly translated in the clinic for CRPC patients. SIGNIFICANCE LSD1 drives prostate cancer progression by activating super-enhancer-mediated oncogenic programs, which can be targeted with the combination of LSD1 and BRD4 inhibitors to suppress the growth of CRPC.
Collapse
Affiliation(s)
- Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Washington 98109, USA
| | - Zifeng Wang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Jill A. Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G1L7, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, M5G1L7, Canada
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington 98195, USA
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, USA
| |
Collapse
|
14
|
Duan Y, Yu T, Jin L, Zhang S, Shi X, Zhang Y, Zhou N, Xu Y, Lu W, Zhou H, Zhu H, Bai S, Hu K, Guan Y. Discovery of novel, potent, and orally bioavailable HDACs inhibitors with LSD1 inhibitory activity for the treatment of solid tumors. Eur J Med Chem 2023; 254:115367. [PMID: 37086699 DOI: 10.1016/j.ejmech.2023.115367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Histone deacetylases (HDACs) and lysine-specific demethylase 1 (LSD1) are attractive targets for epigenetic cancer therapy. There is an intimate interplay between the two enzymes. HDACs inhibitors have shown synergistic anticancer effects in combination with LSD1 inhibitors in several types of cancer. Herein, we describe the discovery of compound 5e, a highly potent HDACs inhibitor (HDAC1/2/6/8; IC50 = 2.07/4.71/2.40/107 nM) with anti-LSD1 potency (IC50 = 1.34 μM). Compound 5e exhibited marked antiproliferative activity in several cancer cell lines. 5e effectively induced mitochondrial apoptosis with G2/M phase arrest, inhibiting cell migration and invasion in MGC-803 and HCT-116 cancer cells. It also showed good liver microsomal stability and acceptable pharmacokinetic parameters in SD rats. More importantly, orally administered compound 5e demonstrated higher in vivo antitumor efficacy than SAHA in the MGC-803 (TGI = 71.5%) and HCT-116 (TGI = 57.6%) xenograft tumor models accompanied by good tolerability. This study provides a novel lead compound with dual inhibitory activity against HDACs and LSD1 to further develop epigenetic drugs for solid tumor therapy. Further optimization is needed to improve the LSD1 activity to achieve dual inhibitors with balanced potency on LSD1 and HDACs.
Collapse
Affiliation(s)
- Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Tong Yu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Linfeng Jin
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Shaojie Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Xiaojing Shi
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, 450052, Zhengzhou, Henan Province, PR China
| | - Yizhe Zhang
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Nanqian Zhou
- Department of Ultrasonography, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, 450003, Zhengzhou, Henan Province, PR China
| | - Yongtao Xu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Wenfeng Lu
- School of Medical Engineering, Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Huimin Zhou
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Huijuan Zhu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China
| | - Kua Hu
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| | - Yuanyuan Guan
- School of Pharmacy, Xinxiang Medical University, 453003, Xinxiang, Henan Province, PR China.
| |
Collapse
|
15
|
Ma QS, Zhang YF, Li CY, Zhang WX, Yuan L, Niu JB, Song J, Zhang SY, Liu HM. Discovery of novel tranylcypromine-based derivatives as LSD1 inhibitors for gastric cancer treatment. Eur J Med Chem 2023; 251:115228. [PMID: 36881982 DOI: 10.1016/j.ejmech.2023.115228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
As an important epigenetic regulator, histone lysine specific demethylase 1 (LSD1) has become an attractive target for the discovery of anticancer agents. In this work, a series of tranylcypromine-based derivatives were designed and synthesized. Among them, compound 12u exhibited the most potent inhibitory potency on LSD1 (IC50 = 25.3 nM), and also displayed good antiproliferative effects on MGC-803, KYSE450 and HCT-116 cells with IC50 values of 14.3, 22.8 and 16.3 μM, respectively. Further studies revealed that compound 12u could directly act on LSD1 and inhibit LSD1 in MGC-803 cells, thereby significantly increasing the expression levels of mono-/bi-methylation of H3K4 and H3K9. In addition, compound 12u could induce apoptosis and differentiation, inhibit migration and cell stemness in MGC-803 cells. All these findings suggested that compound 12u was an active tranylcypromine-based derivative as a LSD1 inhibitor that inhibited gastric cancer.
Collapse
Affiliation(s)
- Qi-Sheng Ma
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Fan Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | | | - Wei-Xin Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Shan L, Li Z, Chen H, Ge M, Sun Y, Sun Y, Li Y, Li H, Fu L, Liu H. 6-Heterocyclic carboxylic ester derivatives of gliotoxin lead to LSD1 inhibitors in gastric cancer cells. Bioorg Chem 2023; 131:106150. [PMID: 36508940 DOI: 10.1016/j.bioorg.2022.106150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 02/02/2023]
Abstract
Gliotoxin is a representative compound of the epipolythiodioxopiperazine (ETP) class of fungal metabolites. Histone Lysine Specific Demethylase 1 (LSD1) is highly expressed in a variety of cancers. Herein, a series of 6-heterocyclic carboxylic ester derivatives of gliotoxin was designed and synthesized as new LSD1 inhibitors and their biological evaluations in human gastric MGC-803 and HGC-27 cells were carried out. All of the derivatives effectively suppressed the enzymatic activities of LSD1. In particular, compound 4e exhibited excellent LSD1 inhibition with IC50 = 62.40 nM, as well as anti-proliferation against MGC-803 and HGC-27 cells with IC50 values of 0.31 μM and 0.29 μM, respectively. 4e also had a remarkable capacity to inhibit the colony formation, suppress migration and induce the apoptosis of these two cancer cell lines. In sum, our findings identified and characterized the 6-heterocyclic carboxylic ester derivatives of gliotoxin as potent and cellular active LSD1 inhibitors, which may provide a novel chemotype of LSD1 inhibitors for gastric cancer treatment.
Collapse
Affiliation(s)
- Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoxiang Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Huabin Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Ge
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Yaru Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China
| | - Hongyu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ling Fu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Al-Anazi M. Synthesis, anticancer, and docking of new thiadiazolyl-triazole analogues hybridized with thiazolidinone/thiophene. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|