1
|
Mohsin N, Khalid S, Rasool N, Aman L, Kanwal A, Imran M. Metallo-Organic Complexes Containing Transition Metals; Synthetic Approaches and Pharmaceutical Aspects. Chempluschem 2025:e202400748. [PMID: 39988561 DOI: 10.1002/cplu.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Coordination compounds offer a flexible framework for the thoughtful design of novel therapeutic-metallodrugs because of the unique properties of metal ions, such as their ability to coordinate with a wide range of organic ligands, variable oxidation states, a wide range of geometries, and coordination numbers. The pharmaceutical potential of a metal ion and associated substances is validated by the prevalence of various disease states linked to a metal ion's excess or deficiency within the biological system. Researchers have sought more selective, efficacious metallodrugs that cause fewer adverse effects. Attempts have resulted in considering a large range of organic ligands, preferably polydentate ligands with demonstrated biological activity, and a large range of metals from the periodic table, primarily from the d-block. In this review, we have outlined the key coordination complexes comprising N-, O-, and S-donor ligands reported in the last six years to demonstrate the potential applications of these metallo-organic complexes. The synthetic pathways of ligands, their complexes, and their potential for therapeutic applications are highlighted.
Collapse
Affiliation(s)
- Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Labiqa Aman
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
2
|
Dixit T, Negi M, Venkatesh V. Mitochondria Localized Anticancer Iridium(III) Prodrugs for Targeted Delivery of Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors and Cytotoxic Iridium(III) Complex. Inorg Chem 2024; 63:24709-24723. [PMID: 39667040 DOI: 10.1021/acs.inorgchem.4c03950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is an antiapoptotic oncoprotein overexpressed in several malignancies and acts as one of the promising therapeutic targets for cancer. Even though there are several small molecule based Mcl-1 inhibitors reported, the delivery of Mcl-1 inhibitor at the target site is quite challenging. In this regard, we developed a series of mitochondria targeting luminescent cyclometalated iridium(III) prodrugs bearing Mcl-1 inhibitors via ester linkage due to the presence of Mcl-1 protein in the outer mitochondrial membrane. Among the synthesized prodrugs, IrThpy@L2 was found to exhibit the potent cytotoxicity (IC50 = 30.93 nM) against HCT116 cell line when compared with bare Mcl-1 inhibitors (IC50 > 100 μM). Mechanistic studies further revealed that IrThpy@L2 quickly gets internalized inside the mitochondria of HCT116 cells and undergoes activation in the presence of overexpressed esterase which leads to the release of two cytotoxic species i.e. Mcl-1 inhibitors (I-2) and cytotoxic iridium(III) complex (IrThpy@OH). The improved cytotoxicity of IrThpy@L2 is due to the mitochondria targeting ability of iridium(III) prodrug, subsequent esterase activated release of I-2 to inhibit Mcl-1 protein and IrThpy@OH to generate reactive oxygen species (ROS). After prodrug activation, the released cytotoxic species cause mitochondrial membrane depolarization, activate a cascade of mitochondria-mediated cell death events, and arrest the cell cycle in S-phase which leads to apoptosis. The potent anticancer activity of IrThpy@L2 was further evident from the drastic morphological changes, size reduction in the solid tumor mimicking 3D multicellular tumor spheroids (MCTS) of HCT116.
Collapse
Affiliation(s)
- Tejal Dixit
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
3
|
Yang J, Zhu X, Kong D, Wang Y, Yang Y, Liu Y, Yin H. Significant enhancement of anticancer effect of iridium (III) complexes encapsulated in liposomes. J Inorg Biochem 2024; 261:112706. [PMID: 39197384 DOI: 10.1016/j.jinorgbio.2024.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
In this study, the ligand EIPP (5-ethoxy-2-(1H-imidazo[4,5-f] [1,10] phenanthrolin-2-yl)phenol) and [Ir(ppy)2(EIPP)](PF6)] (5a, ppy = 2-phenylpyridine) and [Ir(piq)2(EIPP)](PF6)] (5b, piq = 1-phenylisoquinoline) were synthesized and they were entrapped into liposomes to produce 5alipo and 5blipo. 5a and 5b were characterized via HRMS, NMR, UV-vis and IR. The cytotoxicity of 5a, 5b, 5alipo and 5blipo on cancer and non-cancer cells was estimated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). MTT assay demonstrated that 5a and 5b did not show any significant cellular activity but their liposome-encapsulated 5alipo and 5blipo had significant toxic effects. The mechanism of 5alipo, 5blipo-inducing apoptosis was explored by studying cellular uptake, mitochondrial localization, mitochondrial membrane potential, cytochrome C, glutathione (GSH), malondialdehyde (MDA) and protein immunoblotting. The results demonstrated that 5alipo and 5blipo caused a release of cytochrome C, downregulated the expression of Bcl-2, upregulated the expression of BAX, activated caspase 3, and downregulated PARP expression. It was shown that 5alipo and 5blipo could inhibit cancer cell proliferation in G2/M phase by regulating p53 and p21 proteins. Additionally, 5alipo and 5blipo induced autophagy through an adjustment from LC3-I to LC3-II and caused ferroptosis. The in vivo antitumor activity of 5alipo was examined in detail.
Collapse
Affiliation(s)
- Jiawan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuqi Zhu
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Defei Kong
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Zhou L, Li J, Chen J, Yao X, Zeng X, Liu Y, Wang Y, Wang X. Anticancer activity and mechanism studies of photoactivated iridium(III) complexes toward lung cancer A549 cells. Dalton Trans 2024; 53:15176-15189. [PMID: 39221457 DOI: 10.1039/d4dt01677g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cyclometalated iridium(III) compounds have been widely explored due to their outstanding photo-physical properties and multiple anticancer activities. In this paper, three cyclometalated iridium(III) compounds [Ir(ppy)2(DBDIP)]PF6 (5a), [Ir(bzq)2(DBDIP)]PF6 (5b), and [Ir(piq)2(DBDIP)]PF6 (5c) (ppy: 2-phenylpyridine; bzq: benzo[h]quinoline; piq: 1-phenylisoquinoline, and DBDIP: 2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) were synthesized and the mechanism of antitumor activity was investigated. Compounds photoactivated by visible light show strong cytotoxicity against tumor cells, especially toward A549 cells. Biological experiments such as migration, cellular localization, mitochondrial membrane potential and permeability, reactive oxygen species (ROS) and calcium ion level detection were performed, and they demonstrated that the compounds induced the apoptosis of A549 cells through a mitochondrial pathway. At the same time, oxidative stress caused by ROS production increases the release of damage-related molecules and the expression of porogen gasdermin D (GSDMD), and the content of LDH released from damaged cell membranes also increased. Besides, the content of the lipid peroxidation product, malondialdehyde (MDA), increased and the expression of GPX4 decreased. These indicate that the compounds promote cell death by combining ferroptosis and pyroptosis. The results reveal that cyclometalated iridium(III) compounds 5a-5c may be a potential chemotherapeutic agent for photodynamic therapy of cancers.
Collapse
Affiliation(s)
- Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Jiongbang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ju Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xin Yao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xiandong Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Xiuzhen Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Tian S, Nie Q, Chen H, Liang L, Hu H, Tang S, Yang J, Liu Y, Yin H. Synthesis, characterization and irradiation enhances anticancer activity of liposome-loaded iridium(III) complexes. J Inorg Biochem 2024; 256:112549. [PMID: 38579631 DOI: 10.1016/j.jinorgbio.2024.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Herein, we synthesized and characterized two novel iridium (III) complexes: [Ir(bzq)2(PPD)](PF6) (4a, with bzq = deprotonated benzo[h]quinoline and PPD = pteridino[6,7-f][1,10]phenanthroline-11,13-diamine) and [Ir(piq)2(PPD)](PF6) (4b, with piq = deprotonated 1-phenylisoquinoline). The anticancer efficacy of these complexes, 4a and 4b, was investigated using 3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide (MTT). Complex 4a exhibited no cytotoxic activity, while 4b demonstrated moderate efficacy against SGC-7901, A549, and HepG2 cancer cells. To enhance their anticancer potential, we explored two strategies: (I) light irradiation and (II) encapsulation of the complexes in liposomes, resulting in the formation of 4alip and 4blip. Both strategies significantly increased the ability of 4a, 4b to kill cancer cells. The cellular studies indicated that both the free complexes 4a, 4b and their liposomal forms 4alip and 4blip effectively inhibited cell proliferation. The cell cycle arrest analysis uncovered 4alip and 4blip arresting cell growth in the S period. Additionally, we investigated apoptosis and ferroptosis pathways, observing an increase in malondialdehyde (MDA) levels, a reduction of glutathione (GSH), a down-regulation of GPX4 (glutathione peroxidase) expression, and lipid peroxidation. The effects on mitochondrial membrane potential and intracellular Ca2+ concentrations were also examined, revealing that both light-activated and liposomal forms of 4alip and 4blip caused a decline in mitochondrial membrane potential and an enhancement in intracellular Ca2+ levels. In conclusion, these complexes and them encapsulated liposomes induce cell death through apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Shuang Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qianying Nie
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haomin Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuanghui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Li W, Li T, Pan Y, Li S, Xu G, Zhang Z, Liang H, Yang F. Designing a Mitochondria-Targeted Theranostic Cyclometalated Iridium(III) Complex: Overcoming Cisplatin Resistance and Inhibiting Tumor Metastasis through Necroptosis and Immune Response. J Med Chem 2024; 67:3843-3859. [PMID: 38442035 DOI: 10.1021/acs.jmedchem.3c02227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
To develop a potential theranostic metal agent to reverse the resistance of cancer cells to cisplatin and effectively inhibit tumor growth and metastasis, we proposed to design a cyclometalated iridium (Ir) complex based on the properties of the tumor environment (TME). To the end, we designed and synthesized a series of Ir(III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes by modifying the hydrogen atom(s) of the N-3 position of 2-hydroxy-1-naphthaldehyde thiosemicarbazone compounds and the structure of cyclometalated Ir(III) dimers and then investigated their structure-activity and structure-fluorescence relationships to obtain an Ir(III) complex (Ir5) with remarkable fluorescence and cytotoxicity to cancer cells. Ir5 not only possesses mitochondria-targeted properties but also overcomes cisplatin resistance and effectively inhibits tumor growth and metastasis in vivo. Besides, we confirmed the anticancer mechanisms of Ir5 acting on different components in the TME: directly killing liver cancer cells by inducing necroptosis and activating the necroptosis-related immune response.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Ting Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Ying Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
7
|
Huang C, Yuan Y, Li G, Tian S, Hu H, Chen J, Liang L, Wang Y, Liu Y. Mitochondria-targeted iridium(III) complexes encapsulated in liposome induce cell death through ferroptosis and gasdermin-mediated pyroptosis. Eur J Med Chem 2024; 265:116112. [PMID: 38183779 DOI: 10.1016/j.ejmech.2023.116112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
This paper unveils a novel perspective on synthesis and characterization of the ligand 5-bromo-2-amino-2'-(phenyl-1H-imidazo[4,5-f][1,10]phenanthroline) (BAPIP), and its iridium(III) complexes [Ir(PPY-)2(BAPIP)](PF6) (1a, with PPY- as deprotonated 2-phenylpyridine), [Ir(PIQ-)2(BAPIP)](PF6) (1b, piq- denoting deprotonated 1-phenylisoquinoline), and [Ir(BZQ-)2(BAPIP)](PF6) (1c, bzq- signifying deprotonated benzo[h]quinoline). Systematic evaluation of the cytotoxicity of 1a, 1b, and 1c across diverse cell lines encompassing B16, HCT116, HepG2, A549, HeLa, and LO2 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Unexpectedly, compounds 1b and 1c demonstrated no cytotoxicity against the above cell lines. Motivated by the pursuit of heightened anti-proliferative potential, a strategic encapsulation approach yielded liposomes 1alip, 1blip, and 1clip. As expectation, 1alip, 1blip, and 1clip displayed remarkable anti-proliferative efficacy, particularly noteworthy in A549 cells, exhibiting IC50 values of 4.9 ± 1.0, 5.9 ± 0.1, and 7.6 ± 0.2 μM, respectively. Moreover, our investigation illuminated the mitochondrial accumulation of these liposomal entities, 1alip, 1blip, and 1clip, evoking apoptosis through the mitochondrial dysfunction mediated by reactive oxygen species (ROS). The ferroptosis was confirmed by decrease in glutathione (GSH) concentrations, the downregulation of glutathione peroxidase 4 (GPX4), increase of high mobility group protein 1 (HMGB1), and lipid peroxidation. Simultaneously, pyroptosis as another mode of cell death was undertaken. RNA-sequencing was employed to investigate intricate signalling pathways. In vivo examination provided tangible evidence of 1alip in effectively curbing tumor growth. Collectively, this study provides a multifaceted mode of cellular demise orchestrated by 1a, 1alip, 1blip, and 1clip, involving pathways encompassing apoptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Foshan women and children hospital, Foshan, 528000, China
| | - Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shuang Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Chen J, Li W, Li G, Liu X, Huang C, Nie H, Liang L, Wang Y, Liu Y. Targeted liposomes encapsulated iridium(III) compound greatly enhance anticancer efficacy and induce cell death via ferroptosis on HepG2 cells. Eur J Med Chem 2024; 265:116078. [PMID: 38141286 DOI: 10.1016/j.ejmech.2023.116078] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/01/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
In this study, ligands 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline (PIP), 2-(2-nitrophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (NPIP), 2-(2-nitronaphthalen-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (NNIP) and their iridium(III) metal compounds [Ir(ppy)2(PIP)](PF6) (ppy = 2-phenylpyridine, 1a), [Ir(ppy)2(NPIP)](PF6) (1b), [Ir(ppy)2(NNIP)](PF6) (1c) were designed and synthesized. The anti-cancer activities of 1a, 1b and 1c on BEL-7402, HepG2, SK-Hep1 and non-cancer LO2 were detected using MTT method. 1a shows moderate, 1b and 1c display low or no anti-cancer activities. To elevate the anti-cancer effectiveness, encapsulating the compounds 1a, 1b and 1c into the ordinary or targeted liposomes to produce 1alip, 1blip, 1clip, or targeted 1aTlip, 1bTlip and 1cTlip. The IC50 values of 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip against HepG2 cells are 7.9 ± 0.1, 8.6 ± 0.2, 16.9 ± 0.5, 5.9 ± 0.2, 7.3 ± 0.1 and 9.7 ± 0.7 μM, respectively. Specifically, the anti-tumor activity assays in vivo found that the inhibitory rates are 23.24 % for 1a, 61.27 % for 1alip, 76.06 % for 1aTlip. It is obvious that the targeted liposomes entrapped iridium(III) compound greatly enhance anti-cancer efficacy. Additionally, 1alip, 1blip and 1clip or targeted 1aTlip, 1bTlip and 1cTlip can effectively restrain the cell colony and proliferation in the G0/G1 period. 1alip, 1blip, 1clip, 1aTlip, 1bTlip and 1cTlip can increase reactive oxygen species (ROS) concentration, arouse a decline in the mitochondrial membrane potential and promote Ca2+ release. RNA-sequence was applied to examine the signaling pathways. Taken together, the liposomes or targeted liposomes encapsulated compounds trigger cell death by way of apoptosis, autophagy, ferroptosis, disruption of mitochondrial function and PI3K/AKT/mTOR signaling pathways.
Collapse
Affiliation(s)
- Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Gechang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | | | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Hua Nie
- Jiaying University, Meizhou, 514031, PR China.
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
Joshi B, Shivashankar M. Recent Advancement in the Synthesis of Ir-Based Complexes. ACS OMEGA 2023; 8:43408-43432. [PMID: 38027378 PMCID: PMC10666285 DOI: 10.1021/acsomega.3c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
Cancer is a devastating disease with over 100 types, including lung and breast cancer. Cisplatin and metal-based drugs are limited due to their drug resistance and side effects. Iridium-based compounds have emerged as promising candidates due to their unique chemical properties and resemblance to platinum compounds. The objective of this study is to investigate the synthesis and categorization of iridium complexes, with a particular emphasis on their potential use as anticancer agents. The major focus of this research is to examine the synthesis of these complexes and their relevance to the field of cancer treatment. The negligible side effects and flexibility of cyclometalated iridium(III) complexes have garnered significant interest. Organometallic half-sandwich Ir(III) complexes have notable benefits in cancer research and treatment. The review places significant emphasis on categorizing iridium complexes according to their ligand environment, afterward considering the ligand density and coordination number. This study primarily focuses on several methods for synthesizing cyclometalated and half-sandwich Ir complexes, divided into subgroups based on ligand denticity. The coordination number of iridium complexes determines the number of ligands coordinated to the central iridium atom, which impacts their stability and reactivity. Understanding these complexes is crucial for designing compounds with desired properties and investigating their potential as anticancer agents. Cyclometalated iridium(III) complexes, which contain a meta-cycle with the E-M-C order σ bond, were synthesized in 1999. These complexes have high quantum yields, significant stock shifts, luminescence qualities, cell permeability, and strong photostability. They have been promising in biosensing, bioimaging, and phosphorescence of heavy metal complexes.
Collapse
Affiliation(s)
- Bhumika Joshi
- Department of Chemistry,
School of Advance Science, VIT University, Vellore 632014, India
| | - Murugesh Shivashankar
- Department of Chemistry,
School of Advance Science, VIT University, Vellore 632014, India
| |
Collapse
|
10
|
Huang C, Zhang H, Yang Y, Liu H, Chen J, Wang Y, Liang L, Hu H, Liu Y. Synthesis, characterization, molecular docking, RNA-sequence and anticancer efficacy evaluation in vitro of ruthenium(II) complexes on B16 cells. J Inorg Biochem 2023; 247:112329. [PMID: 37478780 DOI: 10.1016/j.jinorgbio.2023.112329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
In recent years, the studies of the ruthenium(II) complexes on anticancer activity have been paid great attention, many Ru(II) complexes possess high anticancer efficiency. In this paper, three ligands CPIP (2-(4-chlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), DCPIP (2-(3,4-dichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline), TCPIP (2-(2,3,5-trichlorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and their three ruthenium (II) complexes [Ru(dip)2(CPIP)](PF6)2 (1, dip = 4,7-diphenyl-1,10-phenanthroline), [Ru(dip)2(DCPIP)](PF6)2 (2) and [Ru(dip)2(TCPIP)](PF6)2 (3) were synthesized and characterized. 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) assay was used to investigate in vitro cytotoxicity of complexes against various cancer cells. The results showed that complexes 1-3 exhibited pronounced cytotoxic effect on B16 cells with low IC50 values of 7.2 ± 0.1, 11.7 ± 0.6 and 1.2 ± 0.2 μM, respectively. The 3D model demonstrated that the complexes can validly prevent the cell proliferation. Apoptosis determined using Annexin V-FITC/PI double staining revealed that complexes 1-3 can effectively induce apoptosis in B16 cells. The intracellular localization of 1-3 in the mitochondria, the levels of intracellular reactive oxygen species (ROS), the opening of mitochondrial permeability transition pore as well as the decline of mitochondrial membrane potential were investigated, which demonstrated that the complexes 1-3 led to apoptosis via a ROS-mediated mitochondrial dysfunction pathway. The RNA-sequence indicated that the complexes upregulate the expression of 74 genes and downregulate the expression of 81 genes. The molecular docking showed that the complexes interact with the proteins through hydrogen bond, π-cation and π-π interaction. The results show that ruthenium(II) complexes 1, 2 and 3 can block tumor cell growth and induce cell death through autophagy and ROS-mediated mitochondrial dysfunction pathways.
Collapse
Affiliation(s)
- Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China.
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topic Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
11
|
Li W, Li S, Xu G, Man X, Yang T, Zhang Z, Liang H, Yang F. Developing a Ruthenium(III) Complex to Trigger Gasdermin E-Mediated Pyroptosis and an Immune Response Based on Decitabine and Liposomes: Targeting Inhibition of Gastric Tumor Growth and Metastasis. J Med Chem 2023; 66:13072-13085. [PMID: 37702429 DOI: 10.1021/acs.jmedchem.3c01110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
To develop next-generation metal drugs with high efficiency and low toxicity for targeting inhibition of gastric tumor growth and metastasis, we not only optimized a series of ruthenium (Ru, III) 2-hydroxy-1-naphthaldehyde thiosemicarbazone complexes to obtain a Ru(III) complex (4b) with remarkable cytotoxicity in vitro but also constructed a 4b-decitabine (DCT)/liposome (Lip) delivery system (4b-DCT-Lip). The in vivo results showed that 4b-DCT-Lip not only had a stronger capacity to inhibit gastric tumor growth and metastasis than 4b-DCT but also addressed the co-delivery problems of 4b-DCT and improved their targeting ability. Furthermore, we confirmed the mechanism of 4b-DCT/4b-DCT-Lip inhibiting the growth and metastasis of a gastric tumor. DCT-upregulated gasdermin E (GSDME) was cleaved by 4b-activated caspase-3 to afford GSDME-N terminal and then was aggregated to form nonselective pores on the cell membrane of a gastric tumor, thereby inducing pyroptosis and a pyroptosis-induced immune response.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Shanhe Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Gang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Xueyu Man
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin 541004, Guangxi, China
| |
Collapse
|
12
|
Lu JJ, Xu ZC, Zhu H, Zhu LY, Ma XR, Wang RR, Li RT, Ye RR. Cyclometalated iridium(III) complexes combined with fluconazole: antifungal activity against resistant C. albicans. Front Cell Infect Microbiol 2023; 13:1200747. [PMID: 37545853 PMCID: PMC10401479 DOI: 10.3389/fcimb.2023.1200747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Candida albicans (C. albicans) is a ubiquitous clinical fungal pathogen. In recent years, combination therapy, a potential treatment method to overcome C. albicans resistance, has gained traction. In this study, we synthesized a series of cyclometalated iridium(III) complexes with the formula [Ir(C-N)2(tpphz)](PF6) (C-N = 2-phenylpyridine (ppy, in Ir1), 2-(2-thienyl)pyridine (thpy, in Ir2), 2-(2,4-difluorophenyl) pyridine (dfppy, in Ir3), tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) and polypyridyl ruthenium(II) complexes with the formula [Ru(N-N)2(tpphz)](PF6)2 (N-N = 2,2'-bipyridine (bpy, in Ru1), 1,10-phenanthroline (phen, in Ru2), 4,7-diphenyl-1,10-phenanthroline (DIP, in Ru3)), and investigated their antifungal activities against drug-resistant C. albicans and their combination with fluconazole (FLC). Of which, the combination of the lead iridium(III) complex Ir2 and FLC showed strong antifungal activity against drug-resistant C. albicans. Mechanism studies have shown that they can inhibit the formation of hyphae and biofilm, damage mitochondrial function and accumulate intracellular ROS. Therefore, iridium(III) complexes combined with FLC can be used as a promising treatment to exert anti-drug-resistant C. albicans activity, in order to improve the treatment efficiency of fungal infection.
Collapse
Affiliation(s)
- Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhi-Chang Xu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Hou Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lin-Yuan Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rui-Rui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Chen Y, Li W, Yang Y, Zhong R, Hu H, Huang C, Chen J, Liang L, Liu Y. Significant increase of anticancer efficacy in vitro and in vivo of liposome entrapped ruthenium(II) polypyridyl complexes. Eur J Med Chem 2023; 257:115541. [PMID: 37295162 DOI: 10.1016/j.ejmech.2023.115541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Two polypyridyl ruthenium(II) complexes [Ru(DIP)2(BIP)](PF6)2 (DIP = 4,7-diphenyl-1,10-phenanthrolie, BIP = 2-(1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru1) and [Ru(DIP)2(CBIP)](PF6)2 (CBIP = 2-(4'-chloro-1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru2) were synthesized. The cytotoxic activities in vitro of Ru1, Ru2 toward B16, A549, HepG2, SGC-7901, HeLa, BEL-7402, non-cancer LO2 were investigated using MTT method (3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide). Unexpectedly, Ru1, Ru2 can't prevent these cancer cells proliferation. To improve the anti-cancer effect, we used liposomes to entrap the complexes Ru1, Ru2 to form Ru1lipo, Ru2lipo. As expectation, Ru1lipo and Ru2lipo exhibit high anti-cancer efficacy, especially, Ru1lipo (IC50 3.4 ± 0.1 μM), Ru2lipo (IC50 3.5 ± 0.1 μM) display strong ability to block the cell proliferation in SGC-7901. The cell colony, wound healing, and cell cycle distribution show that the complexes can validly inhibit the cell growth at G2/M phase. Apoptotic studied with Annex V/PI doubling method showed that Ru1lipo and Ru2lipo can effectively induce apoptosis. Reactive oxygen species (ROS), malondialdehyde, glutathione and GPX4 demonstrate that Ru1lipo and Ru2lipo improve ROS and malondialdehyde levels, inhibit generation of glutathione, and finally result in a ferroptosis. Ru1lipo and Ru2lipo interact on the lysosomes and mitochondria and damage mitochondrial dysfunction. Additionally, Ru1lipo and Ru2lipo increase intracellular Ca2+ concentration and induce autophagy. The RNA-sequence and molecular docking were performed, the expression of Bcl-2 family was investigated by Western blot analysis. Antitumor in vivo experiments confirm that 1.23 mg/kg, 2.46 mg/kg of Ru1lipo possesses a high inhibitory rate of 53.53% and 72.90% to prevent tumor growth, hematoxylin-eosin (H&E) results show that Ru1lipo doesn't cause chronic organ damage and strongly promotes the necrosis of solid tumor. Taken together, we conclude that Ru1lipo and Ru2lipo cause cell death through the following pathways: autophagy, ferroptosis, ROS-regulated mitochondrial dysfunction, and blocking the PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Ruitong Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
14
|
Yang Y, Zou X, Sun Y, Chen F, Zhao J, Gou S. Naphthalene Diimide-Functionalized Half-Sandwich Ru(II) Complexes as Mitochondria-Targeted Anticancer and Antimetastatic Agents. Inorg Chem 2023. [PMID: 37267472 DOI: 10.1021/acs.inorgchem.3c01125] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, four naphthalene diimide (NDI)-functionalized half-sandwich Ru(II) complexes Ru1-Ru4 bearing the general formula [(η6-arene)RuII(N^N)Cl]PF6, where arene = benzene (bn), p-cymene (p-cym), 1,3,5-trimethylbenzene (tmb), and hexamethylbenzene (hmb), have been synthesized and characterized. By introducing the NDI unit into the N,N-chelating ligand of these half-sandwich complexes, the poor luminescent half-sandwich complexes are endowed with excellent emission performance. Besides, modification on the arene ligand of arene-Ru(II) complexes can influence the electron density of the metal center, resulting in great changes in the kinetic properties, catalytic activities in the oxidative conversion of NADH to NAD+, and biological activities of these compounds. Particularly, Ru4 exhibits the highest reactivity and the strongest inhibitory activity against the growth of three tested cancer cell lines. Further study revealed that Ru4 can enter cells quickly in an energy-dependent manner and preferentially accumulate in the mitochondria of MDA-MB-231 cells, inducing cell apoptosis via reactive oxygen species overproduction and mitochondrial dysfunction. Significantly, Ru4 can effectively inhibit the cell migration and invasion. Overall, the complexation with NDI and modification on the arene ligand endowed the half-sandwich Ru(II) complexes with improved spectroscopic properties and anticancer activities, highlighting their potential applications for cancer treatment.
Collapse
Affiliation(s)
- Yuliang Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaofeng Zou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
15
|
Chen Y, Gu Y, Hu H, Liu H, Li W, Huang C, Chen J, Liang L, Liu Y. Design, synthesis and biological evaluation of liposome entrapped iridium(III) complexes toward SGC-7901 cells. J Inorg Biochem 2023; 241:112134. [PMID: 36706490 DOI: 10.1016/j.jinorgbio.2023.112134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
In this study, two new iridium(III) polypyridyl complexes [Ir(bzq)2(DIPH)](PF6) (bzq = deprotonated benzo[h]quinoline, DIPH = 4-(2,5-dibromo-4-(1H-imidazo[4,5-f][1,10]phenanthrolim-2-yl)-4-hydroxybutan-2-one) (Ir1) and [Ir(piq)2(DIPH)](PF6) (piq = deprotonated 1-phenylisoquinoline) (Ir2) were synthesized and characterized by elemental analysis, HRMS, 1H and 13C NMR. The cytotoxic activity of Ir1, Ir2, Ir1lipo and Ir2lipo against cancer cells SGC-7901, HepG2, A549, HeLa, B16 and normal NIH3T3 cells in vitro was evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. Ir1 and Ir2 showed no cytotoxic activity, but their liposome-entrapped Ir1 (Ir1lipo) and Ir2 (Ir2lipo) showed significant cellular activity, especially sensitive to SGC-7901 with IC50 values of 4.7 ± 0.2 and 12.4 ± 0.5 μM, respectively. The cellular uptake, endoplasmic reticulum (ER) localization, autophagy, tubulin polymerization, glutathione (GSH), malondialdehyde (MDA) and release of cytochrome c were investigated to explore the mechanisms of apoptosis. The calreticulin (CRT), heat shock protein 70 (HSP70), high mobility group box 1 (HMGB1) were also explored. Western blotting showed that Ir1lipo and Ir2lipo inhibited PI3K (phosphoinositide-3 kinase), AKT (protein kinase B), p-AKT and activated Bcl-2 (B-cell lymphoma-2) protein and apoptosis-regulated factor caspase 3 (cysteinyl aspartate specific proteinase-3) and cleaving PARP (poly ADP-ribose polymerase). The results demonstrated that Ir1lipo and Ir2lipo induce cell apoptosis through targeting the endoplasmic reticulum (ER), cause oxidative stress damage, inhibiting PI3K/AKT signaling pathway, immunogenic cell death (ICD) and inhibit the cell growth at G2/M phase.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yiying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|