1
|
Liu ZQ. How many organic small molecules might be used to treat COVID-19? From natural products to synthetic agents. Eur J Med Chem 2024; 278:116788. [PMID: 39236494 DOI: 10.1016/j.ejmech.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
A large scale of pandemic coronavirus disease (COVID-19) in the past five years motivates a great deal of endeavors donating to the exploration on therapeutic drugs against COVID-19 as well as other diseases caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein is an overview on the organic small molecules that are potentially employed to treat COVID-19 and other SARS-CoV-2-related diseases. These organic small molecules are accessed from both natural resources and synthetic strategies. Notably, typical natural products presented herein consist of polyphenols, lignans, alkaloids, terpenoids, and peptides, which exert an advantage for the further discovery of novel anti-COVID-19 drugs from plant herbs. On the other hand, synthetic prodrugs are composed of a series of inhibitors towards RNA-dependent RNA polymerase (RdRp), main protease (Mpro), 3-chymotrypsin-like cysteine protease (3CLpro), spike protein, papain-like protease (PLpro) of the SARS-CoV-2 as well as the angiotensin-converting enzyme 2 (ACE2) in the host cells. Synthetic strategies are worth taken into consideration because they are beneficial for designing novel anti-COVID-19 drugs in the coming investigations. Although examples collected herein are just a drop in the bucket, developments of organic small molecules against coronavirus infections are believed to pave a promising way for the discovery of multi-targeted therapeutic drugs against not only COVID-19 but also other virus-mediated diseases.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, No.2519 Jiefang Road, Changchun, 130021, People's Republic of China.
| |
Collapse
|
2
|
Alhadrami HA, Sayed AM, Hassan HM, Alhadrami AH, Rateb ME. Molecular insights and inhibitory dynamics of flavonoids in targeting Pim-1 kinase for cancer therapy. Front Pharmacol 2024; 15:1440958. [PMID: 39434908 PMCID: PMC11491346 DOI: 10.3389/fphar.2024.1440958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Pim-1 kinase, a serine/threonine kinase, is often overexpressed in various cancers, contributing to disease progression and poor prognosis. In this study, we explored the potential of flavonoids as inhibitors of Pim-1 kinase using a combination of molecular docking and steered molecular dynamics (SMD) simulations. Our docking studies revealed two main binding orientations for the flavonoid molecules. The SMD simulations showed that the binding mode with higher pulling forces was linked to stronger inhibitory activity, with a strong positive correlation (R 2 ≈ 0.92) between pulling forces and IC50 values. Quercetin stood out as the most potent inhibitor, showing a pulling force of about 820 pN and an IC_(5) 0 of less than 6 µM. Further dynamic simulations indicated that quercetin's hydroxyl groups at the C3, C-5 and C-7 positions formed stable hydrogen bonds with key residues GLU-121, Leu-44 and Val-126, respectively enhancing its binding stability and effectiveness. Our results emphasized the critical role of the hydroxyl group at the C-3 position, which plays a pivotal function in effectively anchoring these molecules in the active site of Pim-1 kinase. Principal component analysis (PCA) of Pim-1 kinase's conformational changes revealed that potent inhibitors like quercetin, galangin, and kaempferol significantly restricted the enzyme's flexibility, suggesting potential inhibitory effect. These findings provide insights into the structural interactions between flavonoids and Pim-1 kinase, offering a foundation for future experimental investigations. However, further studies, including in vitro and in vivo validation, are necessary to assess the pharmacological relevance and specificity of flavonoids in cancer therapy.
Collapse
Affiliation(s)
- Hani A. Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Centre, DNA Forensic Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- King Abdulaziz University Hospital, Molecular Diagnostics Lab, Jeddah, Saudi Arabia
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Albaraa H. Alhadrami
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, United Kingdom
| |
Collapse
|
3
|
Czenke Z, Mándi A, Király SB, Kiss-Szikszai A, Kónya-Ábrahám A, Kurucz-Szabados A, Cserepes K, Bényei A, Zhang C, Kicsák M, Kurtán T. VCD Analysis of Axial Chirality in Synthetic Stereoisomeric Biaryl-Type bis-Isochroman Heterodimers with Isolated Blocks of Central and Axial Chirality. Int J Mol Sci 2024; 25:9657. [PMID: 39273606 PMCID: PMC11395685 DOI: 10.3390/ijms25179657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Optically active heterodimeric 5,5'-linked bis-isochromans, containing a stereogenic ortho-trisubstituted biaryl axis and up to four chirality centers, were synthesized stereoselectively by using a Suzuki-Miyaura biaryl coupling reaction of optically active isochroman and 1-arylpropan-2-ol derivatives, providing the first access to synthetic biaryl-type isochroman dimers. Enantiomeric pairs and stereoisomers up to seven derivatives were prepared with four different substitution patterns, which enabled us to test how OR, ECD, and VCD measurements and DFT calculations can be used to determine parallel central and axial chirality elements in three isolated blocks of chirality. In contrast to natural penicisteckins A-D and related biaryls, the ECD spectra and OR data of (aS) and (aR) atropodiastereomers did not reflect the opposite axial chirality, but they were characteristic of the central chirality. The atropodiastereomers showed consistently near-mirror-image VCD curves, allowing the determination of axial chirality with the aid of DFT calculation or by comparison of characteristic VCD transitions.
Collapse
Affiliation(s)
- Zoltán Czenke
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Sándor Balázs Király
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Anita Kónya-Ábrahám
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Anna Kurucz-Szabados
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
| | - Krisztián Cserepes
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Máté Kicsák
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| |
Collapse
|
4
|
Zheng Z, Liu Q, Peng X, Jin Z, Wu J. NHC-Catalyzed Chemo- and Enantioselective Reaction between Aldehydes and Enals for Access to Axially Chiral Arylaldehydes. Org Lett 2024; 26:917-921. [PMID: 38236760 DOI: 10.1021/acs.orglett.3c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A chiral carbene-catalyzed chemo- and enantioselective reaction with racemic biaryl aldehydes and α-bromoenals is developed for access to axially chiral 2-arylbenzaldehydes through atroposelective dynamic kinetic resolution (DKR) processes. This atroposelective DKR strategy can tolerate a broad scope of substrates with diverse functionalities. The axially chiral 2-aryl benzaldehyde products generally afford moderate to good yields and enantioselectivities. The axially chiral molecules afforded from the current approach are variable through simple transformations to afford axially chiral functional molecules with excellent optical purities.
Collapse
Affiliation(s)
- Zhiguo Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiaolin Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Sulimov AV, Ilin IS, Tashchilova AS, Kondakova OA, Kutov DC, Sulimov VB. Docking and other computing tools in drug design against SARS-CoV-2. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:91-136. [PMID: 38353209 DOI: 10.1080/1062936x.2024.2306336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
The use of computer simulation methods has become an indispensable component in identifying drugs against the SARS-CoV-2 coronavirus. There is a huge body of literature on application of molecular modelling to predict inhibitors against target proteins of SARS-CoV-2. To keep our review clear and readable, we limited ourselves primarily to works that use computational methods to find inhibitors and test the predicted compounds experimentally either in target protein assays or in cell culture with live SARS-CoV-2. Some works containing results of experimental discovery of corresponding inhibitors without using computer modelling are included as examples of a success. Also, some computational works without experimental confirmations are also included if they attract our attention either by simulation methods or by databases used. This review collects studies that use various molecular modelling methods: docking, molecular dynamics, quantum mechanics, machine learning, and others. Most of these studies are based on docking, and other methods are used mainly for post-processing to select the best compounds among those found through docking. Simulation methods are presented concisely, information is also provided on databases of organic compounds that can be useful for virtual screening, and the review itself is structured in accordance with coronavirus target proteins.
Collapse
Affiliation(s)
- A V Sulimov
- Dimonta Ltd., Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
| | - I S Ilin
- Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
| | - A S Tashchilova
- Dimonta Ltd., Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
| | - O A Kondakova
- Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
| | - D C Kutov
- Dimonta Ltd., Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
| | - V B Sulimov
- Dimonta Ltd., Moscow, Russia
- Research Computing Center, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Yoshimura T, Onda KI, Matsuo JI. Asymmetric Cycloaddition Reactions of Aryne Intermediates with a Chiral Carbon-Carbon Axis: Syntheses of Axially Chiral Biaryl Compounds. Org Lett 2023. [PMID: 38055630 DOI: 10.1021/acs.orglett.3c03983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
An asymmetric synthesis via an axially chiral arylaryne intermediate was developed. A cycloaddition reaction with various arynophiles was used to obtain chiral biaryl compounds while preserving the enantiomeric excess (ee) of a precursor even though the reaction proceeds through an arylaryne intermediate, whose chirality decreases on a time-dependent basis. High chiral transfer from a precursor to a product was observed not only at low temperature (-78 °C) but also at room temperature.
Collapse
Affiliation(s)
- Tomoyuki Yoshimura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ken-Ichi Onda
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jun-Ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
7
|
Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur J Med Chem 2023; 260:115772. [PMID: 37659195 PMCID: PMC10529944 DOI: 10.1016/j.ejmech.2023.115772] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected ∼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|