1
|
Li M, Long Y, Shao L, Meng J, Zheng Z, Wu Y, Zhou X, Liu L, Li Z, Wu Z, Yang S. Targeting tubulin protein to combat fungal disease: Design, synthesis, and its new mechanistic insights of benzimidazole hydrazone derivatives. Int J Biol Macromol 2025; 300:140226. [PMID: 39855516 DOI: 10.1016/j.ijbiomac.2025.140226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
As the vital the biomacromolecule in eukaryotic cells, tubulin protein is essential for preserving cell shape, facilitating cell division, and cell viability. Tubulin has been approved as promising target for anticancer, and antifungal therapy. However, there are still many gaps in tubulin-targeted fungicidal discovery. To expand the structural diversity of benzimidazoles and achieve the distinct interaction model, a series of novel benzimidazole hydrazone derivatives were therefore synthesized. Antifungal results showed that compound A9 was the most effective, achieving an EC50 value of 2.88 μg/mL in vitro against Colletotrichum sublineola. In vivo assay, compound A9 displayed encouraging efficacy, outperforming the reference agents ferimzone and tetramethylthiuram disulfide. Interestingly, mechanistic studies indicated that, compared with carbendazim, compound A9 might form stronger interactions with tubulin, exemplified by the presence of multiple hydrogen bonds and π-π interactions, leading to intracellular microtubule aggregation in compound A9-treated cells. The significantly different interactions models between A9-tubulin and carbendazim-tubulin complexes may endow to produce the low resistance risk. Additionally, compound A9 possessed low phytotoxicity and satisfactory ADME properties. This study not only provides a structural basis for the development of benzimidazole-based fungicides targeting tubulin but also offers new insights into the use of immunofluorescence assays in tubulin-targeting studies.
Collapse
Affiliation(s)
- Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu Long
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lihui Shao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuanyuan Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhenhua Li
- College of Agriculture/Institute of Rice Industry Technology Research, Key Laboratory of Plant Resource, Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Ravichandiran P, Martyna A, Kochanowicz E, Maroli N, Kubiński K, Masłyk M, Boguszewska-Czubara A, Ramesh T. In Vitro and In Vivo Biological Evaluation of Novel 1,4-Naphthoquinone Derivatives as Potential Anticancer Agents. ChemMedChem 2024; 19:e202400495. [PMID: 39136593 DOI: 10.1002/cmdc.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Indexed: 10/16/2024]
Abstract
A novel library of naphthoquinone derivatives (3-5 aa) was synthesized and evaluated for their anticancer properties. Specifically, compounds 5 i, 5 l, 5 o, 5 q, 5 r, 5 s, 5 t, and 5 v demonstrated superior cytotoxic activity against the cancer cell lines that were studied. All the studied compounds exhibited a higher selectivity index (SI) and a favourable safety profile than the standard drug doxorubicin. Notably, compound 5 v displayed a greater cytotoxic effect on MCF-7 cells (IC50=1.2 μM, and 0.9 μM at 24 h and 48 h, respectively) compared to the standard drug doxorubicin (IC50=2.4 μM, and 2.1 μM at 24 h and 48 h, respectively). To further investigate the mechanism of cytotoxic effect, additional anticancer studies were conducted with 5 v in MCF-7 cells. The studies are including morphological changes, AO/EB (acridine orange/ethidium bromide) double staining, apoptosis analysis, cell colony assay, SDS-PAGE and Western blotting, cell cycle analysis, and detecting reactive oxygen species (ROS) assay. The findings showed that 5 v triggered cytotoxic effects in MCF-7 cells through the initiation of cell cycle arrest at the G1/S phase and necrosis. In vivo ecotoxicity studies indicated that 5 v had lower toxicity towards zebrafish larvae (LC50=50.15 μM) and had an insignificant impact on cardiac functions. In vivo xenotransplantation of MCF-7 cells in zebrafish larvae demonstrated a significant reduction in tumour volume in the xenograft. Approximately 95 % of the zebrafish larvae with 5 v xenografts survived after 10 days of the treatment. Finally, a computational modelling study was conducted on four protein receptors, namely ER, EFGR, BRCA1, and VEFGR2. The findings highlight the importance of the aminonaphthoquinone moiety, amide linkage, and propyl thio moiety in enhancing the anticancer properties. 5 v exhibited superior drug-likeness features and docking scores (-9.1, -7.1, -8.9, and -10.9 kcal/mol) compared to doxorubicin (-7.2, -6.1, -6.9, and -7.3 kcal/mol) against ER, EFGR, BRCA1, and VEGFR2 receptors, respectively. Therefore, the notable antitumor effects of naphthoquinone derivatives (3-5 aa) suggest that these molecular frameworks may play a role in the development of promising anticancer agents for cancer treatment.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Present Address: Analytical, HP Green R & D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, Karnataka, 562114, India
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Ul. Chodźki 4 A, 20-093, Lublin, Poland
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
3
|
Liu Z, Mao S, Li H, Liu W, Tao J, Lu Y, Dong H, Zhang J, Song C, Duan Y, Yao Y. Discovery of novel amide derivatives against VEGFR-2/tubulin with potent antitumor and antiangiogenic activity. Bioorg Chem 2024; 151:107679. [PMID: 39094510 DOI: 10.1016/j.bioorg.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Dual-target agents have more advantages than drug combinations for cancer treatment. Here, we designed and synthesized a series of novel VEGFR-2/tubulin dual-target inhibitors through a molecular hybridization strategy, and the activities of all the synthesized compounds were tested against tubulin and VEGFR-2. Among which, compound 19 exhibited strong potency against tubulin and VEGFR-2, with IC50 values of 0.76 ± 0.11 μM and 15.33 ± 2.12 nM, respectively. Additionally, compound 19 not only had significant antiproliferative effects on a series of human cancer cell lines, especially MGC-803 cells (IC50 = 0.005 ± 0.001 μM) but also overcame drug resistance in Taxol-resistant MGC-803 cells, with an RI of 1.8. Further studies showed that compound 19 could induce tumor cell apoptosis by reducing the mitochondrial membrane potential, increasing the level of ROS, facilitating the induction of G2/M phase arrest, and inhibiting the migration and invasion of tumor cells in a dose-dependent manner. In addition, compound 19 also exhibits potent antiangiogenic effects by blocking the VEGFR-2/PI3K/AKT pathway and inhibiting the tubule formation, invasion, and migration of HUVECs. More importantly, compound 19 demonstrated favorable pharmacokinetic profiles, robust in vivo antitumor efficacy, and satisfactory safety profiles. Overall, compound 19 can be used as a lead compound for the development of tubulin/VEGFR-2 dual-target inhibitors.
Collapse
Affiliation(s)
- Zhenling Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Shuqiang Mao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Huixia Li
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Jing Tao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yuebing Lu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Hui Dong
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Jie Zhang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Saruengkhanphasit R, Ngiwsara L, Lirdprapamongkol K, Chatwichien J, Niwetmarin W, Eurtivong C, Kittakoop P, Svasti J, Ruchirawat S. Synthesis, in silico, in vitro evaluation of furanyl- and thiophenyl-3-phenyl-1 H-indole-2-carbohydrazide derivatives as tubulin inhibitors and anticancer agents. RSC Med Chem 2024; 15:2483-2495. [PMID: 39026641 PMCID: PMC11253851 DOI: 10.1039/d4md00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024] Open
Abstract
Twenty-one new indole derivatives comprising of seven furanyl-3-phenyl-1H-indole-carbohydrazide derivatives and fourteen thiophenyl-3-phenyl-1H-indole-carbohydrazide derivatives were synthesised and biologically evaluated for their microtubule-destabilising effects, and antiproliferative activities against the National Cancer Institute 60 (NCI60) human cancer cell line panel. Among the derivatives, 6i showed the best cytotoxic activity exhibiting selectivity for COLO 205 colon cancer (LC50 = 71 nM), SK-MEL-5 melanoma cells (LC50 = 75 nM), and MDA-MB-435 (LC50 = 259 nM). Derivative 6j showed the strongest microtubule-destabilising effect. Both 6i and 6j were able to induce G2/M cell cycle arrest and apoptosis in MDA-MB-231 triple-negative breast cancer cells. Molecular docking simulation results suggested that these derivatives inhibit tubulin by binding at the colchicine site. The calculated molecular descriptors showed that the most potent derivatives have acceptable pharmacokinetic profiles and are favourable for oral drug administration.
Collapse
Affiliation(s)
- Rungroj Saruengkhanphasit
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Kriengsak Lirdprapamongkol
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Chulabhorn Royal Academy Bangkok 10210 Thailand
| | - Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University 447 Si Ayutthaya Road, Ratchathewi Bangkok 10400 Thailand +66 26448677-91 ext. 5402
| | - Prasat Kittakoop
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Natural Products, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si Bangkok 10210 Thailand +66 25541900 ext. 2629
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation Bangkok Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute Bangkok 10210 Thailand
| |
Collapse
|
5
|
Wu BW, Huang WJ, Liu YH, Liu QG, Song J, Hu T, Chen P, Zhang SY. Design, synthesis and biological evaluation of 1,2,3-triazole benzothiazole derivatives as tubulin polymerization inhibitors with potent anti-esophageal cancer activities. Eur J Med Chem 2024; 265:116118. [PMID: 38181651 DOI: 10.1016/j.ejmech.2023.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
In this work, we utilized the molecular hybridization strategy to design and synthesize novel 1,2,3-triazole benzothiazole derivatives K1-26. The antiproliferative activities against MGC-803, Kyse30 and HCT-116 cells were explored, and their structure-activity relationship were preliminarily conducted and summarized. Among them, compound K18, exhibited the strongest proliferation inhibitory activity, with esophageal cancer cells Kyse30 and EC-109 being the most sensitive to its effects (IC50 values were 0.042 and 0.038 μM, respectively). Compound K18 effectively inhibited tubulin polymerization (IC50 = 0.446 μM), thereby hindering tubulin polymerize into filamentous microtubules in Kyse30 and EC-109 cells. Additionally, compound K18 induced the degradation of oncogenic protein YAP via the UPS pathway. Based on these dual molecular-level effects, compound K18 could induce G2/M phase arrest and cell apoptosis in Kyse30 and EC-109 cells, as well as regulate the expression levels of cell cycle and apoptosis-related proteins. In summary, our findings highlight a novel 1,2,3-triazole benzothiazole derivative K18, which possesses significant potential for treating esophageal cancers.
Collapse
Affiliation(s)
- Bo-Wen Wu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen-Jing Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tao Hu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Ren W, Deng Y, Ward JD, Vairin R, Bai R, Wanniarachchi HI, Hamal KB, Tankoano PE, Tamminga CS, Bueno LMA, Hamel E, Mason RP, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse 6-aryl-3-aroyl-indole analogues as inhibitors of tubulin polymerization. Eur J Med Chem 2024; 263:115794. [PMID: 37984295 PMCID: PMC11019941 DOI: 10.1016/j.ejmech.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/22/2023]
Abstract
The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Hashini I Wanniarachchi
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Caleb S Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Lorena M A Bueno
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| |
Collapse
|
7
|
Ma Y, Josa-Prado F, Essif JN, Liu S, Li S, Lucena-Agell D, Chan PY, Goossens K, Hortigüela R, Matesanz R, Wang Y, Gago F, Wang H, Risinger A, Diaz JF, Fang WS. Modulation of taxane binding to tubulin curved and straight conformations by systematic 3'N modification provides for improved microtubule binding, persistent cytotoxicity and in vivo potency. Eur J Med Chem 2023; 259:115668. [PMID: 37490800 DOI: 10.1016/j.ejmech.2023.115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
The taxane class of microtubule stabilizers are some of the most effective and widely used chemotherapeutics. The anticancer activity of taxanes arises from their ability to induce tubulin assembly by selectively recognizing the curved (c-) conformation in unassembled tubulin as compared to the straight (s-) conformation in assembled tubulin. We first designed and synthesized a series of 3'N-modified taxanes bearing covalent groups. Instead of discovering covalent taxanes, we found a series of non-covalent taxanes 2, in which the 3'N side chain was found to be essential for cytotoxicity due to its role in locking tubulin in the s-conformation. A representative compound bearing an acrylamide moiety (2h) exhibited increased binding affinity to the unassembled tubulin c-conformation and less cytotoxicity than paclitaxel. Further exploration of chemical space around 2h afforded a new series 3, in which derivatives such as 3l bind more tightly to both the s- and c-conformations of tubulin compared to paclitaxel, leading to more efficient promotion of tubulin polymerization and a greater persistence of in vitro efficacy against breast cancer cells after drug washout. Although 3l also had improved in vivo potency as compared to paclitaxel, it was also associated with increased systemic toxicity that required localized, intratumoral injection to observe potent and prolonged antitumor efficacy.
Collapse
Affiliation(s)
- Yuntao Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China
| | - Fernando Josa-Prado
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Jacob Nathaniel Essif
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States
| | - Shuqi Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Shuo Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Peter Yw Chan
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States
| | - Kenneth Goossens
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Rafael Hortigüela
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Ruth Matesanz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Yingjie Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al Instituto de Química Médica del CSIC, Universidad de Alcalá, E-28805, Alcalá de Henares, Madrid, Spain
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - April Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States
| | - J Fernando Diaz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain.
| | - Wei-Shuo Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China.
| |
Collapse
|
8
|
Peerzada MN, Dar MS, Verma S. Development of tubulin polymerization inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:797-820. [PMID: 38054831 DOI: 10.1080/13543776.2023.2291390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Microtubules are intracellular, filamentous, polymeric structures that extend throughout the cytoplasm, composed of α-tubulin and β-tubulin subunits. They regulate many cellular functions including cell polarity, cell shape, mitosis, intracellular transport, cell signaling, gene expression, cell integrity, and are associated with tumorigenesis. Inhibition of tubulin polymerization within tumor cells represents a crucial focus in the pursuit of developing anticancer treatments. AREAS COVERED This review focuses on the natural product and their synthetic congeners as tubulin inhibitors along with their site of interaction on tubulin. This review also covers the developed novel tubulin inhibitors and important patents focusing on the development of tubulin inhibition for cancer treatment reported from 2018 to 2023. The scientific and patent literature has been searched on PubMed, Espacenet, ScienceDirect, and Patent Guru from 2018-2023. EXPERT OPINION Tubulin is one of the promising targets explored extensively for drug discovery. Compounds binding in the colchicine site could be given importance because they can elude resistance mediated by the P-glycoprotein efflux pump and no colchicine site binding inhibitor is approved by FDA so far. The research on the development of antibody drug conjugates (ADCs) for tubluin polymerization inhibition could be significant strategy for cancer treatment.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Tumor Biology Department, Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Sultan Dar
- Department of Neurosurgery, Sub-District Hospital Sopore, Jammu and Kashmir, India
| | - Saurabh Verma
- Tumor Biology Department, Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
9
|
Sedenkova KN, Leschukov DN, Grishin YK, Zefirov NA, Gracheva YA, Skvortsov DA, Hrytseniuk YS, Vasilyeva LA, Spirkova EA, Shevtsov PN, Shevtsova EF, Lukmanova AR, Spiridonov VV, Markova AA, Nguyen MT, Shtil AA, Zefirova ON, Yaroslavov AA, Milaeva ER, Averina EB. Verubulin (Azixa) Analogues with Increased Saturation: Synthesis, SAR and Encapsulation in Biocompatible Nanocontainers Based on Ca 2+ or Mg 2+ Cross-Linked Alginate. Pharmaceuticals (Basel) 2023; 16:1499. [PMID: 37895970 PMCID: PMC10610134 DOI: 10.3390/ph16101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Tubulin-targeting agents attract undiminished attention as promising compounds for the design of anti-cancer drugs. Verubulin is a potent tubulin polymerization inhibitor, binding to colchicine-binding sites. In the present work, a series of verubulin analogues containing a cyclohexane or cycloheptane ring 1,2-annulated with pyrimidine moiety and various substituents in positions 2 and 4 of pyrimidine were obtained and their cytotoxicity towards cancer and non-cancerous cell lines was estimated. The investigated compounds revealed activity against various cancer cell lines with IC50 down to 1-4 nM. According to fluorescent microscopy data, compounds that showed cytotoxicity in the MTT test disrupt the normal cytoskeleton of the cell in a pattern similar to that for combretastatin A-4. The hit compound (N-(4-methoxyphenyl)-N,2-dimethyl-5,6,7,8-tetrahydroquinazolin-4-amine) was encapsulated in biocompatible nanocontainers based on Ca2+ or Mg2+ cross-linked alginate and it was demonstrated that its cytotoxic activity was preserved after encapsulation.
Collapse
Affiliation(s)
- Kseniya N. Sedenkova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Denis N. Leschukov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Nikolay A. Zefirov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yulia A. Gracheva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Dmitry A. Skvortsov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Yanislav S. Hrytseniuk
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Lilja A. Vasilyeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Elena A. Spirkova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Pavel N. Shevtsov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), 142432 Chernogolovka, Russia; (E.A.S.); (P.N.S.); (E.F.S.)
| | - Alina R. Lukmanova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Vasily V. Spiridonov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Alina A. Markova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.M.); (M.T.N.)
| | - Minh T. Nguyen
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia; (A.A.M.); (M.T.N.)
| | - Alexander A. Shtil
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Olga N. Zefirova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Alexander A. Yaroslavov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Elena R. Milaeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| | - Elena B. Averina
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (K.N.S.); (D.N.L.); (Y.K.G.); (N.A.Z.); (Y.A.G.); (D.A.S.); (Y.S.H.); (A.R.L.); (V.V.S.); (O.N.Z.); (A.A.Y.); (E.R.M.); (A.A.S.)
| |
Collapse
|
10
|
Liu K, Mo M, Yu G, Yu J, Song SM, Cheng S, Li HM, Meng XL, Zeng XP, Xu GC, Luo H, Xu BX. Discovery of novel 2-(trifluoromethyl)quinolin-4-amine derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. Bioorg Chem 2023; 139:106727. [PMID: 37451147 DOI: 10.1016/j.bioorg.2023.106727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this work, a series of 2-(trifluoromethyl)quinolin-4-amine derivatives were designed and synthesized through structural optimization strategy as a microtubule-targeted agents (MTAs) and their cytotoxicity activity against PC3, K562 and HeLa cell lines were evaluated. The half maximal inhibitory concentration (IC50) of 5e, 5f, and 5o suggested that their potency of anti-proliferative activities against HeLa cell lines were better than the combretastatin A-4. Compound 5e showed the higher anti-proliferative activity against PC3, K562 and HeLa in vitro with IC50 values of 0.49 µM, 0.08 µM and 0.01 µM, respectively. Further mechanism study indicated that the representative compound 5e was new class of tubulin inhibitors by EBI competition assay and tubulin polymerization assays, it is similar to colchicine. Immunofluorescence staining revealed that compound 5e apparently disrupted tubulin network in HeLa cells, and compound 5e arrested HeLa cells at the G2/M phase and induced cells apoptosis in a dose-dependent manner. Molecular docking results illustrated that the hydrogen bonds of represented compounds reinforced the interactions in the pocket of colchicine binding site. Preliminary results suggested that 5e deserves further research as a promising tubulin inhibitor for the development of anticancer agents.
Collapse
Affiliation(s)
- Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Min Mo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Shan-Min Song
- Department of Food and Medicine, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Hui-Min Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xue-Ling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Xiao-Ping Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Guang-Can Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| | - Bi-Xue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang 550014, China.
| |
Collapse
|
11
|
Liu X, Jin J, Wu Y, Du B, Zhang L, Lu D, Liu Y, Chen X, Lin J, Chen H, Zhang W, Zhuang C, Luan X. Fluoroindole chalcone analogues targeting the colchicine binding site of tubulin for colorectal oncotherapy. Eur J Med Chem 2023; 257:115540. [PMID: 37301075 DOI: 10.1016/j.ejmech.2023.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract with high morbidity and mortality. Our previous studies have demonstrated that indole-chalcone-based compounds targeting tubulin displayed potential cytotoxicity to CRC cells. Herein, three new series of derivatives were systematically designed and synthesized to explore their structure-activity relationship (SAR) against CRC based on prior research. Among them, a representative fluorine-containing analog (FC116) exerted superior efficacy on HCT116 (IC50 = 4.52 nM) and CT26 (IC50 = 18.69 nM) cell lines, and HCT116-xenograft mice with tumor growth inhibition rate of 65.96% (3 mg/kg). Of note, FC116 could also suppress the growth of organoid models (IC50 = 1.8-2.5 nM) and showed adenoma number inhibition rate of 76.25% at the dose of 3 mg/kg in APCmin/+ mice. In terms of mechanism, FC116 could induce endoplasmic reticulum (ER) stress to produce excess reactive oxygen species (ROS), leading to mitochondrial damage to promote the apoptosis of CRC cells by targeting microtubules. Our results support that indole-chalcone compounds are promising tubulin inhibitors and highlight the potential of FC116 to combat CRC.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bolin Du
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dong Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yichen Liu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyi Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Wu H, Wang LS, Li P, Yu J, Cheng S, Yu G, Ahmad M, Meng XL, Luo H, Xu BX. Discovery of novel N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives as the inhibitors of tubulin polymerization in leukemia cells. Eur J Med Chem 2023; 256:115470. [PMID: 37201429 DOI: 10.1016/j.ejmech.2023.115470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
A series of new N-aryl-2-trifluoromethylquinazoline-4-amine analogs were designed and synthesized based on structure optimization of quinazoline by introducing a trifluoromethyl group into 2-position. The structures of the twenty-four newly synthesized compounds were confirmed by 1H NMR, 13C NMR and ESI-MS. The in vitro anti-cancer activity against chronic myeloid leukemia cells (K562), erythroleukemia cells (HEL), human prostate cancer cells (LNCaP), and cervical cancer cells (HeLa) of the target compounds was evaluated. Among them, compounds 15d, 15f, 15h, and 15i showed the significantly (P < 0.01) stronger growth inhibitory activity on K562 than those of the positive controls of paclitaxel and colchicine, while compounds 15a, 15d, 15e, and 15h displayed significantly stronger growth inhibitory activity on HEL than those of the positive controls. However, all the target compounds exhibited weaker growth inhibition activity against K562 and HeLa than those of the positive controls. The selectivity ratio of compounds 15h, 15d, and 15i were significantly higher than those of other active compounds, indicating that these three compounds had the lower hepatotoxicity. Several compounds displayed strong inhibition against leukemia cells. They inhibited tubulin polymerization, disrupted cellular microtubule networks by targeting the colchicine site, and promoted cell cycle arrest of leukemia cells at G2/M phase and cell apoptosis, as well as inhibiting angiogenesis. In summary, our research provided that novel synthesized N-aryl-2-trifluoromethyl-quinazoline-4-amine active derivatives as the inhibitors of tubulin polymerization in leukemia cells, which might be a valuable lead compounds for anti-leukemia agents.
Collapse
Affiliation(s)
- Hui Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Long-Shan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Pei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Mashaal Ahmad
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Xue-Ling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| | - Bi-Xue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| |
Collapse
|