1
|
Shawky AM, Almalki FA, Alzahrani HA, Abdalla AN, Youssif BGM, Ibrahim NA, Gamal M, El-Sherief HAM, Abdel-Fattah MM, Hefny AA, Abdelazeem AH, Gouda AM. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Eur J Med Chem 2024; 277:116704. [PMID: 39121741 DOI: 10.1016/j.ejmech.2024.116704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Since 2020, many compounds have been investigated for their potential use in the treatment of SARS-CoV-2 infection. Among these agents, a huge number of natural products and FDA-approved drugs have been evaluated as potential therapeutics for SARS-CoV-2 using virtual screening and docking studies. However, the identification of the molecular targets involved in viral replication led to the development of rationally designed anti-SARS-CoV-2 agents. Among these targets, the main protease (Mpro) is one of the key enzymes needed in the replication of the virus. The data gleaned from the crystal structures of SARS-CoV-2 Mpro complexes with small-molecule covalent inhibitors has been used in the design and discovery of many highly potent and broad-spectrum Mpro inhibitors. The current review focuses mainly on the covalent type of SARS-CoV-2 Mpro inhibitors. The design, chemistry, and classification of these inhibitors were also in focus. The biological activity of these inhibitors, including their inhibitory activities against Mpro, their antiviral activities, and the SAR studies, were discussed. The review also describes the potential mechanism of the interaction between these inhibitors and the catalytic Cys145 residue in Mpro. Moreover, the binding modes and key binding interactions of these covalent inhibitors were also illustrated. The covalent inhibitors discussed in this review were of diverse chemical nature and origin. Their antiviral activity was mediated mainly by the inhibition of SARS-CoV-2 Mpro, with IC50 values in the micromolar to the nanomolar range. Many of these inhibitors exhibited broad-spectrum inhibitory activity against the Mpro enzymes of other coronaviruses (SARS-CoV-1 and MERS-CoV). The dual inhibition of the Mpro and PLpro enzymes of SARS-CoV-2 could also provide higher therapeutic benefits than Mpro inhibition. Despite the approval of nirmatrelvir by the FDA, many mutations in the Mpro enzyme of SARS-CoV-2 have been reported. Although some of these mutations did not affect the potency of nirmatrelvir, there is an urgent need to develop a second generation of Mpro inhibitors. We hope that the data summarized in this review could help researchers in the design of a new potent generation of SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hayat Ali Alzahrani
- Applied Medical Science College, Medical Laboratory Technology Department, Northern Border University, Arar, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Pharmacology and Toxicology, Medicinal And Aromatic Plants Research Institute, National Center for Research, Khartoum, 2404, Sudan
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Nashwa A Ibrahim
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohammed Gamal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hany A M El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Maha M Abdel-Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Hefny
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; School of Pharmacy, University of Waterloo, Kitchener, Ontario, N2G 1C5, Canada
| | - Ahmed H Abdelazeem
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt; Pharmacy Department, College of Pharmacy, Nursing and Medical Sciences, Riyadh Elm University, Riyadh, 11681, Saudi Arabia
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
2
|
Zhang Y, Kandwal S, Fayne D, Stevenson NJ. MERS-CoV-nsp5 expression in human epithelial BEAS 2b cells attenuates type I interferon production by inhibiting IRF3 nuclear translocation. Cell Mol Life Sci 2024; 81:433. [PMID: 39395053 PMCID: PMC11470912 DOI: 10.1007/s00018-024-05458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an enveloped, positive-sense RNA virus that emerged in 2012, causing sporadic cases and localized outbreaks of severe respiratory illness with high fatality rates. A characteristic feature of the immune response to MERS-CoV infection is low type I IFN induction, despite its importance in viral clearance. The non-structural proteins (nsps) of other coronaviruses have been shown to block IFN production. However, the role of nsp5 from MERS-CoV in IFN induction of human respiratory cells is unclear. In this study, we elucidated the role of MERS-CoV-nsp5, the viral main protease, in modulating the host's antiviral responses in human bronchial epithelial BEAS 2b cells. We found that overexpression of MERS-CoV-nsp5 had a dose-dependent inhibitory effect on IFN-β promoter activation and cytokine production induced by HMW-poly(I:C). It also suppressed IFN-β promoter activation triggered by overexpression of key components in the RIG-I-like receptor (RLR) pathway, including RIG-I, MAVS, IKK-ε and IRF3. Moreover, the overexpression of MERS-CoV-nsp5 did not impair expression or phosphorylation of IRF3, but suppressed the nuclear translocation of IRF3. Further investigation revealed that MERS-CoV-nsp5 specifically interacted with IRF3. Using docking and molecular dynamic (MD) simulations, we also found that amino acids on MERS-CoV-nsp5, IRF3, and KPNA4 may participate in protein-protein interactions. Additionally, we uncovered protein conformations that mask the nuclear localization signal (NLS) regions of IRF3 and KPNA4 when interacting with MERS-CoV-nsp5, suggesting a mechanism by which this viral protein blocks IRF3 nuclear translocation. Of note, the IFN-β expression was restored after administration of protease inhibitors targeting nsp5, indicating this suppression of IFN-β production was dependent on the enzyme activity of nsp5. Collectively, our findings elucidate a mechanism by which MERS-CoV-nsp5 disrupts the host's innate antiviral immunity and thus provides insights into viral pathogenesis.
Collapse
Affiliation(s)
- Y Zhang
- Viral Immunology Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - S Kandwal
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
- Molecular Design Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St, Dublin 2, D02 R590, Ireland
- DCU Life Sciences Institute, Dublin City University, Dublin, Ireland
| | - D Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
- DCU Life Sciences Institute, Dublin City University, Dublin, Ireland
| | - N J Stevenson
- Viral Immunology Group, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Dampalla CS, Kim Y, Zabiegala A, Howard DJ, Nguyen HN, Madden TK, Thurman HA, Cooper A, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Design of Potent Coronavirus Inhibitors with a 2-Pyrrolidone Scaffold: Biochemical, Crystallographic, and Virological Studies. J Med Chem 2024; 67:11937-11956. [PMID: 38953866 DOI: 10.1021/acs.jmedchem.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Zoonotic coronaviruses are known to produce severe infections in humans and have been the cause of significant morbidity and mortality worldwide. SARS-CoV-2 was the largest and latest contributor of fatal cases, even though MERS-CoV has the highest case-fatality ratio among zoonotic coronaviruses. These infections pose a high risk to public health worldwide warranting efforts for the expeditious discovery of antivirals. Hence, we hereby describe a novel series of inhibitors of coronavirus 3CLpro embodying an N-substituted 2-pyrrolidone scaffold envisaged to exploit favorable interactions with the S3-S4 subsites and connected to an invariant Leu-Gln P2-P1 recognition element. Several inhibitors showed nanomolar antiviral activity in enzyme and cell-based assays, with no significant cytotoxicity. High-resolution crystal structures of inhibitors bound to the 3CLpro were determined to probe and identify the molecular determinants associated with binding, to inform the structure-guided optimization of the inhibitors, and to confirm the mechanism of action of the inhibitors.
Collapse
Affiliation(s)
- Chamandi S Dampalla
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Alexandria Zabiegala
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Dennis J Howard
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Trent K Madden
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Hayden A Thurman
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Lijun Liu
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
4
|
Kim Y, Pool E, Kim E, Dampalla CS, Nguyen HN, Johnson DK, Lovell S, Groutas WC, Chang KO. Potent small molecule inhibitors against the 3C protease of foot-and-mouth disease virus. Microbiol Spectr 2024; 12:e0337223. [PMID: 38466127 PMCID: PMC10986521 DOI: 10.1128/spectrum.03372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Emma Pool
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Eunji Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | | | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | - David K. Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
5
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
6
|
Yevsieieva LV, Lohachova KO, Kyrychenko A, Kovalenko SM, Ivanov VV, Kalugin ON. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv 2023; 13:35500-35524. [PMID: 38077980 PMCID: PMC10698513 DOI: 10.1039/d3ra06479d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
The pandemic caused by the coronavirus SARS-CoV-2 led to a global crisis in the world healthcare system. Despite some progress in the creation of antiviral vaccines and mass vaccination of the population, the number of patients continues to grow because of the spread of new SARS-CoV-2 mutations. There is an urgent need for direct-acting drugs capable of suppressing or stopping the main mechanisms of reproduction of the coronavirus SARS-CoV-2. Several studies have shown that the successful replication of the virus in the cell requires proteolytic cleavage of the protein structures of the virus. Two proteases are crucial in replicating SARS-CoV-2 and other coronaviruses: the main protease (Mpro) and the papain-like protease (PLpro). In this review, we summarize the essential viral proteins of SARS-CoV-2 required for its viral life cycle as targets for chemotherapy of coronavirus infection and provide a critical summary of the development of drugs against COVID-19 from the drug repurposing strategy up to the molecular design of novel covalent and non-covalent agents capable of inhibiting virus replication. We overview the main antiviral strategy and the choice of SARS-CoV-2 Mpro and PLpro proteases as promising targets for pharmacological impact on the coronavirus life cycle.
Collapse
Affiliation(s)
- Larysa V Yevsieieva
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Kateryna O Lohachova
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Alexander Kyrychenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Sergiy M Kovalenko
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Volodymyr V Ivanov
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| | - Oleg N Kalugin
- School of Chemistry, V. N. Karazin Kharkiv National University 4 Svobody sq. Kharkiv 61022 Ukraine
| |
Collapse
|
7
|
Li X, Song Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur J Med Chem 2023; 260:115772. [PMID: 37659195 PMCID: PMC10529944 DOI: 10.1016/j.ejmech.2023.115772] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) identified in 2003 infected ∼8000 people in 26 countries with 800 deaths, which was soon contained and eradicated by syndromic surveillance and enhanced quarantine. A closely related coronavirus SARS-CoV-2, the causative agent of COVID-19 identified in 2019, has been dramatically more contagious and catastrophic. It has infected and caused various flu-like symptoms of billions of people in >200 countries, including >6 million people died of or with the virus. Despite the availability of several vaccines and antiviral drugs against SARS-CoV-2, finding new therapeutics is needed because of viral evolution and a possible emerging coronavirus in the future. The main protease (Mpro) of these coronaviruses plays important roles in their life cycle and is essential for the viral replication. This article represents a comprehensive review of the function, structure and inhibition of SARS-CoV and -CoV-2 Mpro, including structure-activity relationships, protein-inhibitor interactions and clinical trial status.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Zhang FM, Huang T, Wang F, Zhang GS, Liu D, Dai J, Zhang JW, Li QH, Lin GQ, Gao D, Zhao J, Tian P. Discovery of highly potent covalent SARS-CoV-2 3CL pro inhibitors bearing 2-sulfoxyl-1,3,4-oxadiazole scaffold for combating COVID-19. Eur J Med Chem 2023; 260:115721. [PMID: 37598484 DOI: 10.1016/j.ejmech.2023.115721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
The coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a major public health crisis, posing a significant threat to human well-being. Despite the availability of vaccines, COVID-19 continues to spread owing to the emergence of SARS-CoV-2 mutants. This highlights the urgent need for the discovery of more effective drugs to combat COVID-19. As an important target for COVID-19 treatment, 3C-like protease (3CLpro) plays a crucial role in the replication of SARS-CoV-2. In our previous research, we demonstrated the potent inhibitory activities of compound A1, which contains a 2-sulfonyl-1,3,4-oxadiazole scaffold, against SARS-CoV-2 3CLpro. Herein, we present a detailed investigation of structural optimization of A1 and conduct a study on the structure-activity relationship. Among the various compounds tested, sulfoxide D6 demonstrates a potent irreversible inhibitory activity (IC50 = 0.030 μM) against SARS-CoV-2 3CLpro, as well as a favorable selectivity towards host cysteine proteases such as cathepsin B and cathepsin L. Utilizing mass spectrometry-based peptide profiling, we found that D6 covalently binds to Cys145 of SARS-CoV-2 3CLpro. Some representative compounds, namely C11, D9 and D10 also demonstrates antiviral activity against SARS-CoV-2 in Vero E6 cells. Overall, the investigation of the 2-sulfoxyl-1,3,4-oxadiazole scaffold as a novel cysteine reactive warhead would provide valuable insights into the design of potent covalent 3CLpro inhibitors for COVID-19 treatment.
Collapse
Affiliation(s)
- Fu-Mao Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ting Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gui-Shan Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Jun Dai
- Guangzhou Customs District Technology Center, Guangzhou, 510700, China
| | - Jian-Wei Zhang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Bakheit AH, Saquib Q, Ahmed S, Ansari SM, Al-Salem AM, Al-Khedhairy AA. Covalent Inhibitors from Saudi Medicinal Plants Target RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2. Viruses 2023; 15:2175. [PMID: 38005857 PMCID: PMC10675690 DOI: 10.3390/v15112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19, a disease caused by SARS-CoV-2, has caused a huge loss of human life, and the number of deaths is still continuing. Despite the lack of repurposed drugs and vaccines, the search for potential small molecules to inhibit SARS-CoV-2 is in demand. Hence, we relied on the drug-like characters of ten phytochemicals (compounds 1-10) that were previously isolated and purified by our research team from Saudi medicinal plants. We computationally evaluated the inhibition of RNA-dependent RNA polymerase (RdRp) by compounds 1-10. Non-covalent (reversible) docking of compounds 1-10 with RdRp led to the formation of a hydrogen bond with template primer nucleotides (A and U) and key amino acid residues (ASP623, LYS545, ARG555, ASN691, SER682, and ARG553) in its active pocket. Covalent (irreversible) docking revealed that compounds 7, 8, and 9 exhibited their irreversible nature of binding with CYS813, a crucial amino acid in the palm domain of RdRP. Molecular dynamic (MD) simulation analysis by RMSD, RMSF, and Rg parameters affirmed that RdRP complexes with compounds 7, 8, and 9 were stable and showed less deviation. Our data provide novel information on compounds 7, 8, and 9 that demonstrated their non-nucleoside and irreversible interaction capabilities to inhibit RdRp and shed new scaffolds as antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Sabiha M. Ansari
- Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdullah M. Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| | - Abdulaziz A. Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| |
Collapse
|