1
|
Liu QG, Wu J, Wang ZY, Chen BB, Du YF, Niu JB, Song J, Zhang SY. ALK-based dual inhibitors: Focus on recent development for non-small cell lung cancer therapy. Eur J Med Chem 2025; 291:117646. [PMID: 40262298 DOI: 10.1016/j.ejmech.2025.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
As a prevalent oncogenic driver gene in non-small cell lung cancer (NSCLC), ALK represents a crucial and efficacious therapeutic target. To date, seven ALK inhibitors have been approved for ALK fusion-positive NSCLC, with several others undergoing clinical trials. These therapies demonstrate significant efficacy in ALK fusion-positive NSCLC patients. However, acquired resistance mechanisms, including ALK kinase domain mutations, ALK gene amplification, and bypass pathway activation, significantly compromise the efficacy of targeted therapy in ALK fusion-positive NSCLC. Therefore, the discovery of novel ALK inhibitors and the development of related treatment strategies remain critical. Compared to the combination therapy strategy based on ALK inhibitors, dual-target inhibitors (targeting two distinct pathways within a single molecule) may reduce systemic toxicity and mitigate resistance mechanisms in cancer treatment. Notably, recent years have witnessed remarkable progress in dual-target ALK inhibitor development for NSCLC. Consequently, this review aims to summarize the advancements achieved through dual ALK-based inhibitors in NSCLC therapy, analyze their rational design and structure-activity relationships, and provide perspectives for overcoming resistance through next-generation inhibitors and innovative therapeutic approaches.
Collapse
Affiliation(s)
- Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Zi-Yue Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Bing-Bing Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Fei Du
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Palanisamy B, Mandal AKA. Unlocking the potential: Receptor-mediated targeted drug delivery in cancer therapy. Pathol Res Pract 2025; 270:155955. [PMID: 40209568 DOI: 10.1016/j.prp.2025.155955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/29/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Receptor-mediated targeted drug delivery has emerged as a pivotal strategy in cancer therapy, offering precision and specificity in combating malignant diseases while minimizing systemic toxicity. This review explores the multifaceted role of receptors in cancer biology, emphasizing their contributions to cancer progression, metastasis, and their potential as therapeutic targets. Ligand-based targeting approaches highlight the utility of small molecules, peptides, and antibodies, as well as the development of novel targeting ligands. A critical focus is placed on engineering receptor-targeted nanoparticles and advanced drug delivery systems. Innovations in dual-targeting strategies and the targeted delivery to the tumour microenvironment (TME) and metastatic niches are discussed, underscoring their potential to enhance therapeutic efficacy. Additionally, receptor-targeted imaging is reviewed for its dual role in diagnosis and real-time treatment monitoring. To address the challenges of side effects and off-target toxicity, strategies that minimize these risks while targeting overexpressed receptors in solid tumours are explored. Finally, the review outlines future directions in receptor-targeted cancer therapy, emphasizing the need for interdisciplinary research to refine these strategies further. This comprehensive analysis aims to provide a roadmap for advancing receptor-based therapeutic approaches, ultimately improving outcomes for cancer patients.
Collapse
Affiliation(s)
- Balaji Palanisamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Das T, Bhattacharya A, Jha T, Gayen S. Exploration of Fingerprints and Data Mining-based Prediction of Some Bioactive Compounds from Allium sativum as Histone Deacetylase 9 (HDAC9) Inhibitors. Curr Comput Aided Drug Des 2025; 21:270-284. [PMID: 38321909 DOI: 10.2174/0115734099282303240126061624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Histone deacetylase 9 (HDAC9) is an important member of the class IIa family of histone deacetylases. It is well established that over-expression of HDAC9 causes various types of cancers including gastric cancer, breast cancer, ovarian cancer, liver cancer, lung cancer, lymphoblastic leukaemia, etc. The important role of HDAC9 is also recognized in the development of bone, cardiac muscles, and innate immunity. Thus, it will be beneficial to find out the important structural attributes of HDAC9 inhibitors for developing selective HDAC9 inhibitors with higher potency. METHODS The classification QSAR-based methods namely Bayesian classification and recursive partitioning method were applied to a dataset consisting of HADC9 inhibitors. The structural features strongly suggested that sulphur-containing compounds can be a good choice for HDAC9 inhibition. For this reason, these models were applied further to screen some natural compounds from Allium sativum. The screened compounds were further accessed for the ADME properties and docked in the homology-modelled structure of HDAC9 in order to find important amino acids for the interaction. The best-docked compound was considered for molecular dynamics (MD) simulation study. RESULTS The classification models have identified good and bad fingerprints for HDAC9 inhibition. The screened compounds like ajoene, 1,2 vinyl dithiine, diallyl disulphide and diallyl trisulphide had been identified as compounds having potent HDAC9 inhibitory activity. The results from ADME and molecular docking study of these compounds show the binding interaction inside the active site of the HDAC9. The best-docked compound ajoene shows satisfactory results in terms of different validation parameters of MD simulation study. CONCLUSION This in-silico modelling study has identified the natural potential lead (s) from Allium sativum. Specifically, the ajoene with the best in-silico features can be considered for further in-vitro and in-vivo investigation to establish as potential HDAC9 inhibitors.
Collapse
Affiliation(s)
- Totan Das
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Arijit Bhattacharya
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
4
|
Liu WB, Song J, Zhang SY. A short overview of dual targeting HDAC inhibitors. Future Med Chem 2025; 17:5-7. [PMID: 39648509 DOI: 10.1080/17568919.2024.2437975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Affiliation(s)
- Wen-Bo Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, China
| |
Collapse
|
5
|
Fan S, Wan Z, Qu Y, Lu W, Li X, Yang F, Zhang H. Design and optimization of novel Tetrahydro-β-carboline-based HDAC inhibitors with potent activities against tumor cell growth and metastasis. Bioorg Med Chem Lett 2024; 114:129986. [PMID: 39395632 DOI: 10.1016/j.bmcl.2024.129986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Histone deacetylases (HDACs) are validated drug targets for various therapeutic applications. A series of Tetrahydro-β-carboline-based hydroxamate derivatives, designed as HDAC inhibitors (HDACis), were synthesized. Compound 11g exhibited strong inhibitory activity against HDAC1 and the A549 cancer cell line. Additionally, this compound increased the levels of acetylated histone H3 and H4. Notably, 11g effectively arrested A549 cells in the G2/M phase and also increased ROS production and DNA damage, thereby inducing apoptosis. Further molecular docking experiments illustrated the potential interactions between compound 11g and HDAC1. These findings suggested that the novel Tetrahydro-β-carboline-based HDACis could serve as a promising framework for further optimization as anticancer agents.
Collapse
Affiliation(s)
- Shule Fan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Zeyi Wan
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Yuhua Qu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Wenxia Lu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Xiangzhi Li
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Feifei Yang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province 250022, China.
| |
Collapse
|
6
|
Xu Z, Ye C, Wang X, Kong R, Chen Z, Shi J, Chen X, Liu S. Design and synthesis of triazolopyridine derivatives as potent JAK/HDAC dual inhibitors with broad-spectrum antiproliferative activity. J Enzyme Inhib Med Chem 2024; 39:2409771. [PMID: 39377432 PMCID: PMC11463018 DOI: 10.1080/14756366.2024.2409771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
A series of triazolopyridine-based dual JAK/HDAC inhibitors were rationally designed and synthesised by merging different pharmacophores into one molecule. All triazolopyridine derivatives exhibited potent inhibitory activities against both targets and the best compound 4-(((5-(benzo[d][1, 3]dioxol-5-yl)-[1, 2, 4]triazolo[1, 5-a]pyridin-2-yl)amino)methyl)-N-hydroxybenzamide (19) was dug out. 19 was proved to be a pan-HDAC and JAK1/2 dual inhibitor and displayed high cytotoxicity against two cancer cell lines MDA-MB-231 and RPMI-8226 with IC50 values in submicromolar range. Docking simulation revealed that 19 fitted well into the active sites of HDAC and JAK proteins. Moreover, 19 exhibited better metabolic stability in vitro than SAHA. Our study demonstrated that compound 19 was a promising candidate for further preclinical studies.
Collapse
Affiliation(s)
- Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Key Laboratory of Surgery Critical Care and Life Support, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Zilu Chen
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Jing Shi
- Department of Respiratory and Endocrinology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, P. R. China
| | - Shiyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
- Key Laboratory of Surgery Critical Care and Life Support, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| |
Collapse
|
7
|
Curcio A, Rocca R, Chiera F, Gallo Cantafio ME, Valentino I, Ganino L, Murfone P, De Simone A, Di Napoli G, Alcaro S, Amodio N, Artese A. Hit Identification and Functional Validation of Novel Dual Inhibitors of HDAC8 and Tubulin Identified by Combining Docking and Molecular Dynamics Simulations. Antioxidants (Basel) 2024; 13:1427. [PMID: 39594568 PMCID: PMC11591096 DOI: 10.3390/antiox13111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Chromatin organization, which is under the control of histone deacetylases (HDACs), is frequently deregulated in cancer cells. Amongst HDACs, HDAC8 plays an oncogenic role in different neoplasias by acting on both histone and non-histone substrates. Promising anti-cancer strategies have exploited dual-targeting drugs that inhibit both HDAC8 and tubulin. These drugs have shown the potential to enhance the outcome of anti-cancer treatments by simultaneously targeting multiple pathways critical to disease onset and progression. In this study, a structure-based virtual screening (SBVS) of 96403 natural compounds was performed towards the four Class I HDAC isoforms and tubulin. Using molecular docking and molecular dynamics simulations (MDs), we identified two molecules that could selectively interact with HDAC8 and tubulin. CNP0112925 (arundinin), bearing a polyphenolic structure, was confirmed to inhibit HDAC8 activity and tubulin organization, affecting breast cancer cell viability and triggering mitochondrial superoxide production and apoptosis.
Collapse
Affiliation(s)
- Antonio Curcio
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
- Net4Science Srl, University Magna Græcia, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per L’innovazione Rurale, Località Condoleo di Belcastro, 88100 Catanzaro, Italy
| | - Federica Chiera
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Ilenia Valentino
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Ludovica Ganino
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Pierpaolo Murfone
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (A.D.S.); (G.D.N.)
| | - Giulia Di Napoli
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (A.D.S.); (G.D.N.)
| | - Stefano Alcaro
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
- Net4Science Srl, University Magna Græcia, 88100 Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per L’innovazione Rurale, Località Condoleo di Belcastro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy; (M.E.G.C.); (I.V.); (L.G.); (P.M.)
| | - Anna Artese
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy; (A.C.); (F.C.); (S.A.); (A.A.)
- Net4Science Srl, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Wang X, Li N, Liu YH, Wu J, Liu QG, Niu JB, Xu Y, Huang CZ, Zhang SY, Song J. Targeting focal adhesion kinase (FAK) in cancer therapy: A recent update on inhibitors and PROTAC degraders. Eur J Med Chem 2024; 276:116678. [PMID: 39029337 DOI: 10.1016/j.ejmech.2024.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-He Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Zheng Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Zhang H, Shen Q, Hu Z, Wu PQ, Chen Y, Zhao JX, Yue JM. Design, Synthesis, and Biological Evaluation of HDAC Inhibitors Containing Natural Product-Inspired N-Linked 2-Acetylpyrrole Cap. Molecules 2024; 29:4653. [PMID: 39407581 PMCID: PMC11477621 DOI: 10.3390/molecules29194653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Drawing inspiration from the structural resemblance between a natural product N-(3-carboxypropyl)-2-acetylpyrrole and phenylbutyric acid, a pioneer HDAC inhibitor evaluated in clinical trials, we embarked on the design and synthesis of a novel array of HDAC inhibitors containing an N-linked 2-acetylpyrrole cap by utilizing the pharmacophore fusion strategy. Among them, compound 20 exhibited potential inhibitory activity on HDAC1, and demonstrated notable potency against RPMI-8226 cells with an IC50 value of 2.89 ± 0.43 μM, which was better than chidamide (IC50 = 10.23 ± 1.02 μM). Western blot analysis and Annexin V-FTIC/propidium iodide (PI) staining showed that 20 could enhance the acetylation of histone H3, as well as remarkably induce apoptosis of RPMI-8226 cancer cells. The docking study highlighted the presence of a hydrogen bond between the carbonyl oxygen of the 2-acetylpyrrole cap group and Phe198 of the HDAC1 enzyme in 20, emphasizing the crucial role of introducing this natural product-inspired cap group. Molecular dynamics simulations showed that the docked complex had good conformational stability. The ADME parameters calculation showed that 20 possesses remarkable theoretical drug-likeness properties. Taken together, these results suggested that 20 is worthy of further exploration as a potential HDAC-targeted anticancer drug candidate.
Collapse
Affiliation(s)
- Han Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Qianqian Shen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
| | - Zhu Hu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Pei-Qian Wu
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
| | - Yi Chen
- State Key Laboratory of Chemical Biology, Division of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| | - Jian-Min Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China;
- State Key Laboratory of Drug Research, Ethnomedicine and Biofunctional Molecule Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; (Z.H.); (P.-Q.W.)
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai 264117, China
| |
Collapse
|
10
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
11
|
Liu J, Wu M, Yang Y, Wang Z, He S, Tian X, Wang H. γδ T cells and the PD-1/PD-L1 axis: a love-hate relationship in the tumor microenvironment. J Transl Med 2024; 22:553. [PMID: 38858763 PMCID: PMC11163710 DOI: 10.1186/s12967-024-05327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Gamma delta (γδ) T cells demonstrate strong cytotoxicity against diverse cancer cell types in an MHC-independent manner, rendering them promising contenders for cancer therapy. Although amplification and adoptive transfer of γδ T cells are being evaluated in the clinic, their therapeutic efficacy remains unsatisfactory, primarily due to the influence of the immunosuppressive tumor microenvironment (TME). Currently, the utilization of targeted therapeutic antibodies against inhibitory immune checkpoint (ICP) molecules is a viable approach to counteract the immunosuppressive consequences of the TME. Notably, PD-1/PD-L1 checkpoint inhibitors are considered primary treatment options for diverse malignancies, with the objective of preserving the response of αβ T cells. However, γδ T cells also infiltrate various human cancers and are important participants in cancer immunity, thereby influencing patient prognosis. Hence, it is imperative to comprehend the reciprocal impact of the PD-1/PD-L1 axis on γδ T cells. This understanding can serve as a therapeutic foundation for improving γδ T cells adoptive transfer therapy and may offer a novel avenue for future combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational techniques have greatly facilitated the discovery of HDAC inhibitors that achieve the desired potency and selectivity. These techniques encompass ligand-based strategies such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships (3D-QSAR), and structure-based virtual screening (molecular docking). Additionally, advancements in molecular dynamics simulations, along with Poisson–Boltzmann/molecular mechanics generalized Born surface area (PB/MM-GBSA) methods, have enhanced the accuracy of predicting ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Xie S, Leng J, Zhao S, Zhu L, Zhang M, Ning M, Zhao B, Kong L, Yin Y. Design and biological evaluation of dual tubulin/HDAC inhibitors based on millepachine for treatment of prostate cancer. Eur J Med Chem 2024; 268:116301. [PMID: 38452727 DOI: 10.1016/j.ejmech.2024.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
In this work, a novel of dual tubulin/HDAC inhibitors were designed and synthesized based on the structure of natural product millepachine, which has been identified as a tubulin polymerization inhibitor. Biological evaluation revealed that compound 9n exhibited an impressive potency against PC-3 cells with the IC50 value of 16 nM and effectively inhibited both microtubule polymerization and HDAC activity. Furthermore, compound 9n not only induced cell cycle arrest at G2/M phase, but also induced PC- 3 cells apoptosis. Further study revealed that the induction of cell apoptosis by 9n was accompanied by a decrease in mitochondrial membrane potential and an elevation in reactive oxygen species levels in PC-3 cells. Additionally, 9n exhibited inhibitory effects on tumor cell migration and angiogenesis. In PC-3 xenograft model, 9n achieved a remarkable tumor inhibition rate of 90.07%@20 mg/kg, significantly surpassing to that of CA-4 (55.62%@20 mg/kg). Meanwhile, 9n exhibited the favorable drug metabolism characteristics in vivo. All the results indicate that 9n is a promising dual tubulin/HDAC inhibitor for chemotherapy of prostate cancer, deserving the further investigation.
Collapse
Affiliation(s)
- Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mengdan Ning
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Bo Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
14
|
He P, Yu H, Deng X, Xin L, Xu B, Zhou HB, Dong C. Novel estrogen receptor β/histone deacetylase dual-targeted near-infrared fluorescent probes as theranostic agents for imaging and treatment of prostate cancer. Eur J Med Chem 2024; 268:116236. [PMID: 38367494 DOI: 10.1016/j.ejmech.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Estrogen receptor (ER) β and histone deacetylases (HDACs), when overexpressed, are associated closely with the occurrence and development of prostate cancer and are, therefore, considered important targets and biomarkers used in the clinical treatment of prostate cancer. The present study involved the design and synthesis of the first ERβ and HDAC dual-target near-infrared fluorescent probe with both imaging capacity and antitumor activity for prostate cancer. Both P1 and P2 probes exhibited excellent ERβ selectivity, with P1 being almost exclusively selective for ERβ compared to ERα. In addition, P1 exhibited good optical properties, such as strong near-infrared emission, large Stokes shift, and better anti-interference ability, along with excellent imaging ability for living cells. P1 also exhibited potent inhibitory activity against HDAC6 and DU-145 cells, with IC50 values of 52 nM and 0.96 μM, respectively. Further, P1 was applied successfully for the in vivo imaging of prostate cancer in a mouse model, and significant in vivo antitumor efficacy was achieved. The developed dual-target NIR fluorescent probe is expected to serve as an effective tool in the research on prostate cancer, leading to novel insights for the theranostic study of diseases related to ERβ and HDACs.
Collapse
Affiliation(s)
- Pei He
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huiguang Yu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaofei Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bin Xu
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Virology, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Key Laboratory of Combinatiorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China.
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
15
|
Cui Y, He Z, Chen T, Ren X, Xu J, Zhang S, Peng T, Liu S, Wang L. Design, synthesis, biological evaluation and in silico studies of novel quinoline derivatives as potential radioprotective molecules targeting the TLR2 and p53 pathways. Eur J Med Chem 2024; 268:116239. [PMID: 38377827 DOI: 10.1016/j.ejmech.2024.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
Ionizing radiation in space, radiation devices or nuclear disasters are major threats to human health and public security. In this paper, in order to find the potential novel compounds decreasing the radiation-induced damage by targeting p53 apoptosis pathway and TLR2 passway, a series of novel quinoline derivatives were designed, synthesized, and evaluated their biological activities. Most of the synthesized compounds showed significant radioprotective effects in vitro, and the compound 5 has the best performance. Therefore, we verified its radioprotective activity in vivo and investigated the mechanism of its excellent activity. The results in vivo indicated that compound 5 not only markedly enhanced the survival rate (80 %) of mice 30 days after lethal exposure to irradiation, but also significantly reduced the radiation-induced damage to haematopoietic system and intestinal tissue of mice. The mechanistic studies indicated that compound 5 acted on the p53 pathway to reduce radiation-induced cell apoptosis and at the same time stimulated TLR2 to up-regulate the expressions of radiation protection factors. Molecular dynamics study shows that compound 5 would effectively bind to the TLR2 protein and further revealed the binding mechanism. Taken together, all the findings of our study demonstrate the quinoline derivative 5 is a potent radioprotective compound, which holds a great therapeutic potential for further development.
Collapse
Affiliation(s)
- Yaowen Cui
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Zhaolun He
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Tingting Chen
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xinjian Ren
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Jing Xu
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shouguo Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| | - Tao Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| | - Lin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China.
| |
Collapse
|
16
|
Wang X, Qin ZL, Li N, Jia MQ, Liu QG, Bai YR, Song J, Yuan S, Zhang SY. Annual review of PROTAC degraders as anticancer agents in 2022. Eur J Med Chem 2024; 267:116166. [PMID: 38281455 DOI: 10.1016/j.ejmech.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Following nearly two decades of development, significant advancements have been achieved in PROTAC technology. As of the end of 2022, more than 20 drugs have entered clinical trials, with ARV-471 targeting estrogen receptor (ER) showing remarkable progress by entering phase III clinical studies. In 2022, significant progress has been made on multiple targets. The first reversible covalent degrader designed to target the KRASG12C mutant protein, based on cyclopropionamide, has been reported. Additionally, the activity HDCA1 degrader surpassed submicromolar levels during the same year. A novel FEM1B covalent ligand called EN106 was also discovered, expanding the range of available ligands. Furthermore, the first PROTAC drug targeting SOS1 was reported. Additionally, the first-in-class degraders that specifically target BRD4 isoforms (BRD4 L and BRD4 S) have recently been reported, providing a valuable tool for further investigating the biological functions of these isoforms. Lastly, a breakthrough was also achieved with the first degrader targeting both CDK9 and Cyclin T1. In this review, we aimed to update the PROTAC degraders as potential anticancer agents covering articles published in 2022. The design strategies, degradation effects, and anticancer activities were highlighted, which might provide an updated sight to develop novel PROTAC degraders with great potential as anticancer agents as well as favorable drug-like properties.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Long Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Mei-Qi Jia
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yi-Ru Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Cheng B, Pan W, Xiao Y, Ding Z, Zhou Y, Fei X, Liu J, Su Z, Peng X, Chen J. HDAC-targeting epigenetic modulators for cancer immunotherapy. Eur J Med Chem 2024; 265:116129. [PMID: 38211468 DOI: 10.1016/j.ejmech.2024.116129] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
HDAC inhibitors, which can inhibit the activity of HDAC enzymes, have been extensively studied in tumor immunotherapy and have shown potential therapeutic effects in cancer immunotherapy. To date, numerous small molecule HDAC inhibitors have been identified, but many of them suffer from limited clinical efficacy and serious toxicity. Hence, HDAC inhibitor-based combination therapies, and other HDAC modulators (e.g. PROTAC degraders, dual-acting agents) have attracted great attention with significant advancements achieved in the past few years due to their superior efficacy compared to single-target HDAC inhibitors. In this review, we overviewed the recent progress on HDAC-based drug discovery with a focus on HDAC inhibitor-based drug combination therapy and other HDAC-targeting strategies (e.g. selective HDAC inhibitors, HDAC-based dual-target inhibitors, and PROTAC HDAC degraders) for cancer immunotherapy. In addition, we also summarized the reported co-crystal structures of HDAC inhibitors in complex with their target proteins and the binding interactions. Finally, the challenges and future directions for HDAC-based drug discovery in cancer immunotherapy are also discussed in detail.
Collapse
Affiliation(s)
- Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China; Key Laboratory of Joint Diagnosis and Treatment of Chronic Liver Disease and Liver Cancer of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, Zhejiang, 323000, PR China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Wei Pan
- CardioIogy Department, Geriatric Department, Foshan Women and Children Hospital, Foshan, Guangdong, 528000, PR China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang, 430063, PR China
| | - Zongbao Ding
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, PR China
| | - Yingxing Zhou
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Xiaoting Fei
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Jin Liu
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China
| | - Zhenhong Su
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, PR China.
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, PR China.
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
18
|
Deng J, Hou B, Hou X, Chen Y, Zhang T, Chen H, Wang Y, Li X. Discovery of benzamide-based PI3K/HDAC dual inhibitors with marked pro-apoptosis activity in lymphoma cells. Eur J Med Chem 2023; 262:115915. [PMID: 37948955 DOI: 10.1016/j.ejmech.2023.115915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Inhibition of PI3K and histone deacetylase (HDAC) activity simultaneously using a single molecule appears to be a promising approach for cancer treatment. Current PI3K/HDAC dual inhibitors commonly use hydroxamate moiety as zinc binding group, which lack HDAC isoform selectivity and have potential genotoxicity. In this study, a novel series of benzamide-based PI3K/HDAC dual inhibitors were rationally designed and synthesized. Representative compound PH14 showed potent inhibitory activity toward PI3Kα and HDAC3, with IC50 values of 20.3 nM and 24.5 nM, respectively. This was further supported by the blockage of AKT phosphorylation and an increase in acetylated histone H3 levels in Western blot study. The advantage of simultaneously targeting PI3Kα and HDAC is not only reflected in the significant antiproliferative activity, but also in its ability to promote the apoptosis in Jeko-1 cells. Moreover, PH14 had weak inhibitory effects on CYP450 enzymes and hERG. In the pharmacokinetic study, the administration of 1 mg/kg of PH14 the administration of 1 mg/kg of PH14 resulted in a t1/2 of 10 h and an AUC (0-∞) of 2772 h ng/mL. Our study may provide ideas for the further development of novel HDAC/PI3K dual inhibitors.
Collapse
Affiliation(s)
- Jingjing Deng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; CAS Key Laboratory of Tropical Marine BioResources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Baogeng Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiaohan Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxin Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tao Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510530, China
| | - Hua Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510530, China
| | - Yuanze Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, 510530, China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao, Shandong, 266003, China.
| |
Collapse
|