1
|
Angeli A, Ferraroni M, Capasso C, Supuran CT. Structural Studies of the Dopamine D 4 Receptor Antagonist Sonepiprazole as an Inhibitor of Human Carbonic Anhydrases. ACS Med Chem Lett 2025; 16:483-486. [PMID: 40104783 PMCID: PMC11912276 DOI: 10.1021/acsmedchemlett.5c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
In this study, we provide the first evidence that sonepiprazole, a dopamine D4 receptor antagonist, acts as a potent inhibitor of human carbonic anhydrases (hCAs). Sonepiprazole exhibited significant inhibitory activity across the panel of catalytically active hCAs, with the exception of hCA IV, and hCA III. The most potent inhibition was observed against the brain-associated isoform hCA VII, with a K I of 2.9 nM. Insights from X-ray crystallographic structures of the complexes with hCA I, hCA II, and hCA XII revealed that the sulfonamide group of sonepiprazole coordinates the zinc ion in the active site, a typical interaction for this class of inhibitors. Despite the presence of isoform-specific residues at the rim of the active site pocket, these variations seem not to significantly impact the compound overall inhibition potency. These findings highlight a dual functionality of sonepiprazole as both a D4 receptor antagonist and a carbonic anhydrase inhibitor.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff″, University of Florence,Via della Lastruccia 3-13,I-50019 Sesto Fiorentino,Florence, Italy
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, 80131 Napoli, Italy (es)
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Lucarini E, Pagnotta E, Micheli L, Trisolini S, Matteo R, Righetti L, Martelli A, Testai L, Calderone V, Di Cesare Mannelli L, Ghelardini C. Benefits of Camelina sativa Supplementation in Morphine Treatment: Enhanced Analgesia, Delayed Tolerance and Reduced Gut Side Effects Through PPAR-α Receptor Engagement. Int J Mol Sci 2025; 26:2519. [PMID: 40141162 PMCID: PMC11942378 DOI: 10.3390/ijms26062519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Long-term opioid therapies are severely limited by the development of analgesic tolerance and gastrointestinal side effects. Camelina sativa, a plant of the Brassicaceae family, modulates the activity of peroxisome proliferator-activated receptor α (PPAR-α receptor), which is involved in the regulation of pain processing and gut physiology. The aim of this study was to evaluate the efficacy of Camelina sativa defatted seed meal (DSM) supplementation on the development of analgesic tolerance and side effects after repeated treatment with morphine in naïve mice. Co-administering Camelina sativa DSM (1 g kg-1 p.o.) and morphine (10 mg kg-1 s.c.) increased the efficacy and duration of the opioid-induced acute analgesic effect. Camelina supplementation also delayed the onset of tolerance to the morphine analgesic effect. The same result was obtained through either simultaneously administering morphine and camelina or administering camelina 24 h before morphine injection for the entire duration of the experiment. Camelina also counteracted intestinal damage and visceral hypersensitivity caused by morphine treatment. The beneficial effects of camelina on morphine-related analgesic efficacy and gut side effects were prevented via pre-treatment with the PPAR-α antagonist GW6471, though the latter did not influence the development of morphine tolerance. In conclusion, Camelina sativa DSM could be used as a supplement to improve the therapeutic profile of morphine.
Collapse
Affiliation(s)
- Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Eleonora Pagnotta
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Samuele Trisolini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Roberto Matteo
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Laura Righetti
- CREA—Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (E.P.); (R.M.); (L.R.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (A.M.); (L.T.); (V.C.)
- Interdepartmental Research Centre Nutraceuticals and Food for Health—NUTRAFOOD, University of Pisa, 56126 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research, and Child Health—NEUROFARBA, Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.M.); (S.T.); (L.D.C.M.); (C.G.)
| |
Collapse
|
3
|
Berrino E, Guglielmi P, Carta F, Carradori S, Campestre C, Angeli A, Arrighi F, Pontecorvi V, Chimenti P, Secci D, Supuran CT, Gallorini M. In Vitro CO-Releasing and Antioxidant Properties of Sulfonamide-Based CAI-CORMs in a H 2O 2-Stimulated Human Achilles Tendon-Derived Cell Model. Molecules 2025; 30:593. [PMID: 39942697 PMCID: PMC11819963 DOI: 10.3390/molecules30030593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Tendinopathy is often described as a complex and multifactorial condition which affects tendons. Tendon disorders are marked by a reduction in mechanical function, accompanied by pain and swelling. At the molecular level, tendinopathy leads to oxidative stress-driven inflammation, increased cell death, disruption of extracellular matrix balance, abnormal growth of capillaries and arteries, and degeneration of collagen formation. Here, we report an innovative approach to modulate oxidative stress during tendinopathy based on sulfonamide-based Carbonic Anhydrase Inhibitors-carbon monoxide releasing molecules (CAI-CORMs) hybrids endowed with dual carbon monoxide (CO) releasing activity and carbonic anhydrase (CA) inhibition. The synthesised compounds have been studied in a model of human Achilles tendon-derived cells stimulated by H2O2. Among the library, compound 1c and, to a greater extent, compound 1a, showed to be extremely effective in terms of restoration of cell metabolic activity and cell proliferation due to their capacity to release CO and inhibit the CA isoforms involved in inflammatory processes in the nanomolar range. Moreover, 1a can restore collagen type 1 secretion under pro-oxidant conditions.
Collapse
Affiliation(s)
- Emanuela Berrino
- Department of Life Science, Health, and Health Professions, Link Campus University, Via del Casale di San Pio V, 44, 00165 Rome, Italy;
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (F.C.); (A.A.); (C.T.S.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (C.C.); (M.G.)
| | - Cristina Campestre
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (C.C.); (M.G.)
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (F.C.); (A.A.); (C.T.S.)
| | - Francesca Arrighi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Virginia Pontecorvi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Paola Chimenti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (V.P.); (P.C.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Sesto Fiorentino, 50019 Florence, Italy; (F.C.); (A.A.); (C.T.S.)
| | - Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.); (C.C.); (M.G.)
| |
Collapse
|
4
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
5
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
6
|
Esposito D, Monti SM, Supuran CT, Winum JY, De Simone G, Alterio V. Exploring the binding mode of phenyl and vinyl boronic acids to human carbonic anhydrases. Int J Biol Macromol 2024; 282:136873. [PMID: 39454912 DOI: 10.1016/j.ijbiomac.2024.136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Boronic acids are an interesting but still poorly studied class of carbonic anhydrase inhibitors. Previous investigations proved that derivatives incorporating aromatic, arylalkyl, and arylalkenyl moieties are low micromolar to millimolar inhibitors for several α- and β-CAs involved in pathologic states. Here we report a high-resolution X-ray study on two classes of boronic acids (phenyl and vinyl) in complex with hCA II. Our results unambiguously clarify the binding mode of these molecules to the human carbonic anhydrase active site, which occurs through their tetrahedral anionic form, regardless of the nature of the organic scaffold. Data here presented contribute to the understanding of the inhibition mechanism of boronic acids that can be fruitfully used for the rational design of novel and effective isozyme-specific carbonic anhydrase inhibitors.
Collapse
Affiliation(s)
- Davide Esposito
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Jean-Yves Winum
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy.
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy.
| |
Collapse
|
7
|
Bodnar RJ. Endogenous opiates and behavior: 2023. Peptides 2024; 179:171268. [PMID: 38943841 DOI: 10.1016/j.peptides.2024.171268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
This paper is the forty-sixth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2023 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug and alcohol abuse (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Psychology Doctoral Sub-Program, Queens College and the Graduate Center, City University of New York, USA.
| |
Collapse
|
8
|
Palomba M, Angeli A, Galdini R, Hughineata AJ, Perin G, Lenardão EJ, Marini F, Santi C, Supuran CT, Bagnoli L. Iodine/Oxone® oxidative system for the synthesis of selenylindoles bearing a benzenesulfonamide moiety as carbonic anhydrase I, II, IX, and XII inhibitors. Org Biomol Chem 2024; 22:6532-6542. [PMID: 39072494 DOI: 10.1039/d4ob00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A wide range of 3-selenylindoles were synthesized via an eco-friendly approach that uses Oxone® as the oxidant in the presence of a catalytic amount of iodine. This mild and economical protocol showed broad functional group tolerance and operational simplicity. A series of novel selenylindoles bearing a benzenesulfonamide moiety were also synthesized and evaluated as carbonic anhydrase inhibitors of the human (h) isoforms hCa I, II, IX, and XII, which are involved in pathologies such as glaucoma and cancer. Several derivatives showed excellent inhibitory activity towards these isoforms in the nanomolar range, lower than that shown by acetazolamide.
Collapse
Affiliation(s)
- Martina Palomba
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Andrea Angeli
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Riccardo Galdini
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Alexandra Joana Hughineata
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, CEP: 96010-900 Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), P.O. Box 354, CEP: 96010-900 Pelotas, RS, Brazil
| | - Francesca Marini
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Claudio Santi
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| | - Claudiu T Supuran
- University of Florence, NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Luana Bagnoli
- Department of Pharmaceutical Sciences (Group of Catalysis, Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| |
Collapse
|
9
|
Angeli A, De Luca V, Capasso C, Di Costanzo LF, Supuran CT. Comparative CO 2 and SiO 2 hydratase activity of an enzyme from the siliceous demosponge Suberitesdomuncula. Arch Biochem Biophys 2024; 758:110074. [PMID: 38936682 DOI: 10.1016/j.abb.2024.110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Silicase, an enzyme that catalyzes the hydrolysis of silicon-oxygen bonds, is a crucial player in breaking down silicates into silicic acid, particularly in organisms like aquatic sponges with siliceous skeletons. Despite its significance, our understanding of silicase remains limited. This study comprehensively examines silicase from the demosponge Suberites domuncula, focusing on its kinetics toward CO2 as a substrate, as well as its silicase and esterase activity. It investigates inhibition and activation profiles with a range of inhibitors and activators belonging to various classes. By comparing its esterase activity to human carbonic anhydrase II, we gain insights into its enzymatic properties. Moreover, we investigate silicase's inhibition and activation profiles, providing valuable information for potential applications. We explore the evolutionary relationship of silicase with related enzymes, revealing potential functional roles in biological systems. Additionally, we propose a biochemical mechanism through three-dimensional modeling, shedding light on its catalytic mechanisms and structural features for both silicase activity and CO2 hydration. We highlight nature's utilization of enzymatic expertise in silica metabolism. This study enhances our understanding of silicase and contributes to broader insights into ecosystem functioning and Earth's geochemical cycles, emphasizing the intricate interplay between biology and the environment.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Via Pietro Castellino 111, 80131, Napoli, Italy.
| | - Luigi F Di Costanzo
- Department of Agriculture, University of Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
10
|
Angeli A, Ferraroni M, Capasso C, Supuran CT. The dopamine D 2 receptors antagonist Veralipride inhibits carbonic anhydrases: solution and crystallographic insights on human isoforms. Chem Asian J 2024; 19:e202400067. [PMID: 38334332 DOI: 10.1002/asia.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The inhibitory effects of veralipride, a benzamide-class antipsychotic acting as dopamine D2 receptors antagonist incorporates a primary sulfonamide moiety and was investigated for its interactions with carbonic anhydrase (CA) isoforms. In vitro profiling using the stopped-flow technique revealed that veralipride exhibited potent inhibitory activity across all tested hCA isoforms, with exception of hCA III. Comparative analysis with standard inhibitors, acetazolamide (AAZ), and sulpiride, provided insights for understanding the relative efficacy of veralipride as CA inhibitor. The study reports the X-ray crystal structure analysis of the veralipride adduct with three human (h) isoforms, hCA I, II, and CA XII mimic, allowing the understanding of the molecular interactions rationalizing its inhibitory effects against each isoform. These findings contribute to our understanding of veralipride pharmacological properties and for the design of structural analogs endowed with polypharmacological properties.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Florence, Italy
| | | | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
11
|
Angeli A, Chelli I, Lucarini L, Sgambellone S, Marri S, Villano S, Ferraroni M, De Luca V, Capasso C, Carta F, Supuran CT. Novel Carbonic Anhydrase Inhibitors with Dual-Tail Core Sulfonamide Show Potent and Lasting Effects for Glaucoma Therapy. J Med Chem 2024; 67:3066-3089. [PMID: 38266245 DOI: 10.1021/acs.jmedchem.3c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glaucoma, a leading cause of irreversible vision loss worldwide, is characterized by elevated intraocular pressure (IOP), a well-established risk factor across all its forms. We present the design and synthesis of 39 novel carbonic anhydrase inhibitors by a dual-tailed approach, strategically crafted to interact with distinct hydrophobic and hydrophilic pockets of CA active sites. The series was investigated against the CA isoforms implicated in glaucoma (hCA II, hCA IV, and hCA XII), and the X-ray crystal structures of compounds 25a, 25f, and 26a with CA II, along with 14b in complex with a hCA XII mimic, were determined. Selected compounds (14a, 25a, and 26a) underwent evaluation for their ability to reduce IOP in rabbits with ocular hypertension. Derivative 26a showed significant potency and sustained IOP-lowering effects, surpassing the efficacy of the drugs dorzolamide and bimatoprost. This positions compound 26a as a promising candidate for the development of a novel anti-glaucoma medication.
Collapse
Affiliation(s)
- Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Irene Chelli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Laura Lucarini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Silvia Sgambellone
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Silvia Marri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Serafina Villano
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, 50139 Florence, Italy
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Florence, Italy
| | - Viviana De Luca
- Istituto di Bioscienze e Biorisorse, CNR, 80131 Naples, Italy
| | | | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| |
Collapse
|
12
|
Al-Matarneh CM, Pinteala M, Nicolescu A, Silion M, Mocci F, Puf R, Angeli A, Ferraroni M, Supuran CT, Zara S, Carradori S, Paoletti N, Bonardi A, Gratteri P. Synthetic Approaches to Novel Human Carbonic Anhydrase Isoform Inhibitors Based on Pyrrol-2-one Moiety. J Med Chem 2024; 67:3018-3038. [PMID: 38301036 PMCID: PMC10895679 DOI: 10.1021/acs.jmedchem.3c02190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
New dihydro-pyrrol-2-one compounds, featuring dual sulfonamide groups, were synthesized through a one-pot, three-component approach utilizing trifluoroacetic acid as a catalyst. Computational analysis using density functional theory (DFT) and condensed Fukui function explored the structure-reactivity relationship. Evaluation against human carbonic anhydrase isoforms (hCA I, II, IX, XII) revealed potent inhibition. The widely expressed cytosolic hCA I was inhibited across a range of concentrations (KI 3.9-870.9 nM). hCA II, also cytosolic, exhibited good inhibition as well. Notably, all compounds effectively inhibited tumor-associated hCA IX (KI 1.9-211.2 nM) and hCA XII (low nanomolar). Biological assessments on MCF7 cancer cells highlighted the compounds' ability, in conjunction with doxorubicin, to significantly impact tumor cell viability. These findings underscore the potential therapeutic relevance of the synthesized compounds in cancer treatment.
Collapse
Affiliation(s)
- Cristina M. Al-Matarneh
- Center
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
- Research
Institute of the University of Bucharest-ICUB, 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Mariana Pinteala
- Center
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Alina Nicolescu
- NMR
Laboratory ”Petru Poni” Institute of Macromolecular
Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Mihaela Silion
- Physics
of Polymers and Polymeric Materials Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, 09124 Cagliari, Italy
| | - Razvan Puf
- Center
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry of Romanian Academy, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania
| | - Andrea Angeli
- Sezione di
Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Marta Ferraroni
- Dipartimento
di Chimica “Ugo Schiff”, University
of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence Italy
| | - Claudiu T. Supuran
- Sezione di
Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Susi Zara
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Simone Carradori
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Niccolò Paoletti
- Department
of Chemical and Geological Sciences, University
of Cagliari, 09124 Cagliari, Italy
- Sezione di
Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Alessandro Bonardi
- Sezione di
Scienze Farmaceutiche, NeuroFarba Department, Universita degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
- NEUROFARBA
Department, Pharmaceutical and Nutraceutical Section, Laboratory of
Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| | - Paola Gratteri
- NEUROFARBA
Department, Pharmaceutical and Nutraceutical Section, Laboratory of
Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|