1
|
Liu X, Yang X, Tao L, Li X, Chen G, Liu Q. Nano/Micro-Enabled Modification and Innovation of Conventional Adjuvants for Next-Generation Vaccines. J Funct Biomater 2025; 16:185. [PMID: 40422849 DOI: 10.3390/jfb16050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The global spread of infectious diseases has raised public awareness of vaccines, highlighting their essential role in protecting public health. Among the components of modern vaccines, adjuvants have received increasing attention for boosting immune responses and enhancing efficacy. Recent advancements in adjuvant research, particularly nanodelivery systems, have paved the way for developing more effective and safer adjuvants. This review outlines the properties, progress, and mechanisms of FDA-approved conventional adjuvants, focusing on their contributions to and challenges in vaccine success. Despite these advancements, conventional adjuvants still face suboptimal immunomodulatory effects, potential side effects, and limitations in targeting specific immune pathways. Nanodelivery systems have emerged as a transformative approach in adjuvant design, offering unique advantages such as enhancing vaccine stability, enabling controlled antigen release, and inducing specific immune responses. By addressing these limitations, nanocarriers improve the safety and efficacy of conventional adjuvants and drive the development of next-generation adjuvants for complex diseases. This review also explores strategies for incorporating nanodelivery systems into adjuvant development, emphasizing its role in optimizing vaccine formulations. By summarizing current challenges and recent advances, this review aims to provide valuable insights guiding future efforts in designing innovative adjuvants that meet the evolving needs of global immunization programs.
Collapse
Affiliation(s)
- Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Xu Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Lu Tao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuanchen Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Zou P, Pan Y, Luo W, Huang R, Lin X, Xie Y. Construction of CuS/HKUST-1@PDA drug carrier for enhanced chemo-photothermal synergistic therapy triggered by near-infrared light in tumor treatment. Colloids Surf B Biointerfaces 2025; 254:114784. [PMID: 40403442 DOI: 10.1016/j.colsurfb.2025.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/30/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
Chemo-photothermal synergistic therapy is an effective method for tumor treatment. Herein, the CuS/HKUST-1@PDA drug carrier was successfully prepared by a simple combination of in-situ partial vulcanization and in-situ polymerization technologies. The micro-structure, morphology, and functional groups of the prepared samples were characterized by XRD, SEM, TEM, BET, and FTIR technologies. The drug loading experiment verified that the CuS/HKUST-1@PDA possesses an excellent doxorubicin (DOX) drug loading capacity, whose drug loading capacity is as high as 88.7 %. The drug release indicated that CuS/HKUST-1@PDA drug carrier inherited pH-responsive drug release behavior, which it can release DOX in acidic conditions resembling the tumor microenvironment, while effectively containing the drug within the PDA coating under neutral conditions. The CuS/HKUST-1@PDA drug carrier demonstrated outstanding biocompatibility, sustaining cell viability above 80 % across a concentration range of 1.5-15 μg/mL. Moreover, the drug carrier realized chemo-Photothermal synergistic therapy triggered by near-infrared light in tumor treatment, reducing tumor cell viability to 28 % during in vitro cellular experiments. The innovative design and effective tumor treatment ability of the CuS/HKUST-1@PDA drug carrier highlight its significant potential in anticancer therapy.
Collapse
Affiliation(s)
- Peixuan Zou
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, China; School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yusong Pan
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, China; School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Wenjie Luo
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Run Huang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Xiuling Lin
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yinghai Xie
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan, China.
| |
Collapse
|
3
|
Wu Z, Chen Y, Peng Y, Xue H, Yao Y, Yang S, Pan C, Zhang D, Xie Y. Sodium-lignosulfonate-conjugated metal-organic frameworks as dual-stimulus-responsive carriers for improved pesticide targeting. Int J Biol Macromol 2025; 305:141275. [PMID: 39978517 DOI: 10.1016/j.ijbiomac.2025.141275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The use of intelligent pesticides that respond to environmental stimuli is a promising strategy for achieving sustainable pest control while mitigating pesticide-related environmental pollution. This study reports the design of a pH and laccase dual-stimulus-responsive pesticide-slow-release composite (IMI@UiO-66@SL). The composite utilises an imidacloprid (IMI)-encapsulated metal-organic framework (MOF; UiO-66) as a nano-carrier and sodium lignosulfonate (SL) as a capping agent. Results show that IMI@UiO-66@SL exhibits excellent IMI release properties in acidic and laccase-rich environments, which closely mimic the physiological and behavioural conditions of termites. Furthermore, compared to the original IMI formulation, IMI@UiO-66@SL exhibits enhanced and prolonged insecticidal activity. Briefly, this study reports a promising approach for the sustainable management of termite colonies.
Collapse
Affiliation(s)
- Ziwei Wu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yiyang Chen
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yuan Peng
- Zhejiang Guangchuan Engineering Consulting Co., Ltd, Hangzhou 310020, PR China
| | - Haozhe Xue
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yongxin Yao
- Zhejiang Guangchuan Engineering Consulting Co., Ltd, Hangzhou 310020, PR China
| | - Shimeng Yang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Chengyuan Pan
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Dayu Zhang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yongjian Xie
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China.
| |
Collapse
|
4
|
Rabiee N, Rabiee M. Engineered Metal-Organic Frameworks for Targeted CRISPR/Cas9 Gene Editing. ACS Pharmacol Transl Sci 2025; 8:1028-1049. [PMID: 40242591 PMCID: PMC11997888 DOI: 10.1021/acsptsci.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
The development of precise and efficient delivery systems is pivotal for advancing CRISPR/Cas9 gene-editing technologies, particularly for therapeutic applications. Engineered metal-organic frameworks (MOFs) have emerged as a promising class of inorganic nonviral vectors, offering unique advantages such as tunable porosity, high cargo-loading capacity, and biocompatibility. This review explores the design and application of MOF-based nanoplatforms tailored for the targeted delivery of CRISPR/Cas9 components, aiming to enhance gene-editing precision and efficiency. By incorporating stimuli-responsive linkers and bioactive ligands, these MOFs enable controlled release of CRISPR/Cas9 payloads at the target site. Comparative discussions demonstrate superior performance of MOFs over conventional nonviral systems in terms of stability, transfection efficiency, and reduced off-target effects. Additionally, the intracellular trafficking mechanisms and the therapeutic potential of these platforms in preclinical models are discussed. These findings highlight the transformative potential of MOF-based delivery systems in overcoming the challenges associated with gene-editing technologies, such as immunogenicity and cytotoxicity, paving the way for their application in precision medicine. This review provides a blueprint for the integration of nanotechnology and genome editing, advancing the frontier of nonviral therapeutic delivery systems.
Collapse
Affiliation(s)
- Navid Rabiee
- Department
of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua−Peking
Joint Center for Life Sciences, Tsinghua
University, Beijing 100084, China
- MOE
Key Laboratory of Bioinformatics, Tsinghua
University, Beijing 100084, China
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials
Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|
5
|
He J, Wang G, Zhou Y, Li B, Shang P. Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy. Front Bioeng Biotechnol 2025; 13:1553653. [PMID: 40291560 PMCID: PMC12023280 DOI: 10.3389/fbioe.2025.1553653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
The creation and development of classical multifunctional nanomaterials are crucial for the advancement of nanotherapeutic treatments for tumors. Currently, metal-organic frameworks (MOFs) modified with polydopamine (PDA) are at the forefront of nanomedicine research, particularly in tumor diagnostics and therapy, owing to their exceptional biocompatibility, expansive specific surface area, multifaceted functionalities, and superior photothermal properties, which led to significant advancements in anti-tumor research. Consequently, a range of anti-cancer strategies has been devised by leveraging the exceptional capabilities of MOFs, including intelligent drug delivery systems, photodynamic therapy, and photothermal therapy, which are particularly tailored for the tumor microenvironment. In order to gain deeper insight into the role of MOFs@PDA in cancer diagnosis and treatment, it is essential to conduct a comprehensive review of existing research outcomes and promptly analyze the challenges associated with their biological applications. This will provide valuable perspectives on the potential of MOFs@PDA in clinical settings.
Collapse
Affiliation(s)
- Jingchao He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid and Cell Fate Regulation, Yangzhou University, Yangzhou, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yongfang Zhou
- Department of Oncology, Jining Cancer Hospital, Jining, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Pan Shang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
6
|
Li X, Xu S, Su Z, Shao Z, Huang X. Unleashing the Potential of Metal Ions in cGAS-STING Activation: Advancing Nanomaterial-Based Tumor Immunotherapy. ACS OMEGA 2025; 10:11723-11742. [PMID: 40191377 PMCID: PMC11966298 DOI: 10.1021/acsomega.4c10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
Immunotherapy is a critical modality in cancer treatment with diverse activation pathways. In recent years, the stimulator of interferon genes (STING) signaling pathway has exhibited significant potential in tumor immunotherapy. This pathway exerts notable antitumor effects by activating innate and adaptive immunity and regulating the tumor immune microenvironment. Various metal ions have been identified as effective activators of the STING pathway and, through the design and synthesis of nanodelivery platforms, have been applied in immunotherapy as well as in combination therapies, such as chemotherapy, chemodynamic therapy, photodynamic therapy, and cancer vaccines. Metal nanomaterials showcase unique advantages in immunotherapy; however, there are still aspects that require optimization. This review systematically examines existing metal-based nanomaterials, elaborates on the mechanisms by which different metal ions activate the STING pathway, and discusses their application models in tumor combination therapies. We also provide a comparative analysis of the advantages of metal nanomaterials over other treatment methods. Our exploration highlights the broad application prospects of metal nanomaterials in cancer treatment, offering new insights and directions for the advancement of tumor immunotherapy.
Collapse
Affiliation(s)
- Xingyin Li
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaojie Xu
- Department
of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziliang Su
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Huang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
7
|
Guesmi S, Ali NH, Missaoui N, Aloui Z, Mabrouk C, Martinez CC, Echouchene F, Barhoumi H, Jaffrezic-Renault N, Kahri H. High-Performance ZIF-7@PANI Electrochemical Sensor for Simultaneous Trace Cadmium and Lead Detection in Water Samples: A Box-Behnken Design Optimization Approach. SENSORS (BASEL, SWITZERLAND) 2025; 25:1336. [PMID: 40096097 PMCID: PMC11902615 DOI: 10.3390/s25051336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 03/19/2025]
Abstract
This study presents the development of an innovative electrochemical sensor for the simultaneous detection of cadmium (Cd2+) and lead (Pb2+) ions in environmental samples. The sensor is developed based on a composite material of zeolite imidazolate framework ZIF-7 and polyaniline (PANI), referred to as ZIF-7@PANI, where ZIF-7 is rapidly synthesized at room temperature and polyaniline used to enhance the conductivity of the composite. Characterization via X-ray diffraction (DRX), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) confirmed successful synthesis. The composite was applied to a glassy carbon electrode (GCE) using drop-casting for heavy metal ion detection. Experimental parameters-including pH, incubation time, deposited quantity, and drying time-were optimized using the Box-Behnken design. Under optimal conditions, the ZIF-7@PANI/GCE sensor demonstrated a broad dynamic concentration range (0.002-1 µM for Pb2+ and 0.02-30 µM for Cd2+), with low detection limits (2.96 nM for Pb2+ and 10.6 nM for Cd2+). It also exhibited strong anti-interference properties and high recovery rates (85-110%), highlighting its potential for real practical applications.
Collapse
Affiliation(s)
- Sondes Guesmi
- Laboratory of Interfaces and Advanced Materials, University of Monastir, Monastir 5000, Tunisia (N.M.); (H.B.)
| | - Nashwan H. Ali
- Apllied Chemistry Department, Applied Sciences Collage, University of Samarra, Samarra 34010, Iraq
| | - Nadhem Missaoui
- Laboratory of Interfaces and Advanced Materials, University of Monastir, Monastir 5000, Tunisia (N.M.); (H.B.)
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Chama Mabrouk
- Laboratory of Interfaces and Advanced Materials, University of Monastir, Monastir 5000, Tunisia (N.M.); (H.B.)
| | - Carlos Castilla Martinez
- Institut Européen des Membranes, IEM—UMR 5635, University of Montpellier, CNRS, 34090 Montpellier, France
| | - Fraj Echouchene
- University of Sousse, Higher Institute of Applied Sciences and Technology of Sousse, Cité Ettafala, Ibn Khaldoun, Sousse 4003, Tunisia
- Laboratory of Electronics and Microelectronics LR99ES30, Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia
| | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, University of Monastir, Monastir 5000, Tunisia (N.M.); (H.B.)
| | | | - Hamza Kahri
- Laboratory of Interfaces and Advanced Materials, University of Monastir, Monastir 5000, Tunisia (N.M.); (H.B.)
| |
Collapse
|
8
|
Klęba J, Zheng K, Duraczyńska D, Marzec M, Fedyna M, Mokrzycki J. Insights into HKUST-1 Metal-Organic Framework's Morphology and Physicochemical Properties Induced by Changing the Copper(II) Salt Precursors. MATERIALS (BASEL, SWITZERLAND) 2025; 18:676. [PMID: 39942342 PMCID: PMC11819983 DOI: 10.3390/ma18030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025]
Abstract
The HKUST-1 metal-organic framework was synthesized using four different copper(II) salt precursors, namely copper nitrate, copper sulphate, copper acetate, and copper chloride, via the solvothermal method with no mixing. Syntheses were conducted without using the N,N-dimethylformamide to allow for a greener synthesis of MOFs. The selected physicochemical properties of the obtained metal-organic frameworks were determined. The yield of the obtained products changed in the order acetate>nitrate>sulfate, while no product was obtained in the synthesis with copper(II) chloride. The obtained materials were characterized by means of XRD, nitrogen adsorption-desorption at -196 °C, FTIR, XPS, TGA, SEM, and DLS. The morphology of crystallites and their physicochemical properties were significantly affected when different copper(II) salt precursors were used. The comparison of the obtained results with already published works allows for the correlation of the synthesis parameters like synthesis temperature, time, mixing, and copper(II) salt precursor used on selected properties of the final product.
Collapse
Affiliation(s)
- Joanna Klęba
- Faculty of Energy and Fuels, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland (K.Z.)
| | - Kun Zheng
- Faculty of Energy and Fuels, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland (K.Z.)
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland;
| | - Monika Fedyna
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Jakub Mokrzycki
- Faculty of Energy and Fuels, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland (K.Z.)
| |
Collapse
|
9
|
Ye M, Zhang W, Xu H, Xie P, Song L, Sun X, Li Y, Wang S, Zhao Q. Fe-doped biodegradable dendritic mesoporous silica nanoparticles for starvation therapy and photothermal-enhanced cascade catalysis in tumor therapy. J Colloid Interface Sci 2025; 678:378-392. [PMID: 39213991 DOI: 10.1016/j.jcis.2024.08.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Combination therapies have attracted significant attention because they address the limitations of monotherapy while improving overall efficacy. In this study, we designed a novel nanoplatform, named GOx@Fe-DMSN@PDA (GFDP), by integrating Fe2+ into dendritic mesoporous silica nanoparticles (DMSN) and selecting glucose oxidase (GOx) as the model drug loaded into the DMSN pores. Additionally, we coated the surface of the DMSN with polydopamine (PDA) to confer pH/near infrared (NIR) light-responsive controlled-release behavior and photothermal therapy (PTT). The introduction of Fe2+ into the DMSN framework greatly improved biodegradability and enhanced the peroxidase (POD)-like activity of GFDP. In addition, GOx could consume glucose and generate hydrogen peroxide (H2O2) within tumor cells to facilitate starvation therapy and enhance cascade catalysis. The PDA coating provided the DMSN with an intelligent response release ability, promoting efficient photothermal conversion and achieving the PTT effect. Cellular tests showed that under NIR light irradiation, GFDP exhibited a synergistic effect of PTT-enhanced starvation therapy and cascade catalysis, with a half-maximal inhibitory concentration (IC50) of 2.89 μg/mL, which was significantly lower than that of GFDP without NIR light irradiation (18.29 μg/mL). The in vivo anti-tumor effect indicated that GFDP could effectively accumulate at the tumor site for thermal imaging and showed remarkable synergistic therapeutic effects. In summary, GFDP is a promising nanoplatform for multi-modal combination therapy that integrates starvation therapy, PTT, and cascade catalysis.
Collapse
Affiliation(s)
- Mengwei Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Weikang Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Peiyu Xie
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Luming Song
- Department of Microbial and Biochemical Pharmacy, School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xiaohan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
10
|
Ding N, Zhao C, Zhang J, Du Y, Sun Q, Li S, Pang S. Encapsulating Azolates Within Cationic Metal-Organic Frameworks for High-Energy-Density Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409093. [PMID: 39331843 PMCID: PMC11714169 DOI: 10.1002/advs.202409093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/11/2024] [Indexed: 09/29/2024]
Abstract
Despite the synthesis of numerous cationic metal-organic frameworks (CMOFs), their counter anions have been primarily limited to inorganic Cl-, NO3 -, ClO4 -, BF4 -, and Cr2O7 2-, which have weak coordination abilities. In this study, a series of new CMOFs is synthesized using azolates with strong coordination abilities as counter anions, which are exclusively employed as ligands for coordinating with metals. Owing to the unique nitrogen-rich composition of azolates, the CMOFs demonstrate significant potential as high-energy-density materials. Notably, CMOF(CuTNPO) has an exceptionally high heat of detonation of 7375 kJ kg-1, surpassing even that of the state-of-art CL-20 (6536 kJ kg-1). To further validate the advantages of employing azolates as counter anions, analogues with azolates serving as ligands are also synthesized. The comparison study indicates that encapsulating azolates within the cationic frameworks confers both high energy and safety properties. X-ray data and quantum calculations indicate that their enhanced performance stems from stronger H─bonds and π-π interactions. This study introduces new roles for azolates in MOFs and expands possibilities for structural diversity and potential applications of framework materials.
Collapse
Affiliation(s)
- Ning Ding
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Chaofeng Zhao
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Jichuan Zhang
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Yao Du
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Qi Sun
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Shenghua Li
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China
| | - Siping Pang
- School of Materials Science & EngineeringBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
11
|
Xie Y, Yang Z, Shen H, Chen J, Weitz DA, Chen D, Sheng J, Liang T. Interfacial Engineering of Biocompatible Nanocapsules for Near-Infrared-Triggered Drug Release and Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410844. [PMID: 39573938 PMCID: PMC11727245 DOI: 10.1002/advs.202410844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Indexed: 01/14/2025]
Abstract
Chemotherapy is an effective option for cancer treatment. However, its clinical application is often limited by the severe side effects of chemical drugs. To overcome these limitations, a novel drug-loaded phase-change nanocapsule system is developed. These nanocapsules are assembled via one-step electrostatic self-assembly through guided interfacial engineering. The phase change material core nanocapsules demonstrate great photothermal-controlled drug release performance and exhibit excellent tumor-targeting drug delivery performance both in vitro and in vivo via the binding of hyaluronic acid shell on the nanocapsule surface with corresponding receptors on the tumor cell membrane. The phototherapy function of the nanocapsules enhances immune activation within the tumor microenvironment, as demonstrated by flow cytometry and multiplex immunohistochemistry. The developed nanocapsules are biocompatible, versatile, and scalable and offer a promising smart delivery platform for controllable near-infrared triggered drug release and photothermal therapy.
Collapse
Affiliation(s)
- Yuting Xie
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Ze Yang
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
- College of Energy Engineering and State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310003China
| | - Hang Shen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jingyi Chen
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Dong Chen
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
- College of Energy Engineering and State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310003China
| | - Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| |
Collapse
|
12
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
13
|
Li J, Luo P, Liu S, Fu M, Lin A, Liu Y, He Z, Qiao K, Fang Y, Qu L, Yang K, Wang K, Wang L, Jiang A. Effective strategies to enhance the diagnosis and treatment of RCC: The application of biocompatible materials. Mater Today Bio 2024; 27:101149. [PMID: 39100279 PMCID: PMC11296058 DOI: 10.1016/j.mtbio.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Renal cell carcinoma (RCC) is recognized as one of the three primary malignant tumors affecting the urinary system, posing a significant risk to human health and life. Despite advancements in understanding RCC, challenges persist in its diagnosis and treatment, particularly in early detection and diagnosis due to issues of low specificity and sensitivity. Consequently, there is an urgent need for the development of effective strategies to enhance diagnostic accuracy and treatment outcomes for RCC. In recent years, with the extensive research on materials for applications in the biomedical field, some materials have been identified as promising for clinical applications, e.g., in the diagnosis and treatment of many tumors, including RCC. Herein, we summarize the latest materials that are being studied and have been applied in the early diagnosis and treatment of RCC. While focusing on their adjuvant effects, we also discuss their technical principles and safety, thus highlighting the value and potential of their application. In addition, we also discuss the limitations of the application of these materials and possible future directions, providing new insights for improving RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinxin Li
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shiyang Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Meiling Fu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Ziwei He
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Kun Qiao
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Le Qu
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210000, China
| | - Kaidi Yang
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan, 572000, China
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Kunpeng Wang
- Department of Urology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The first People's Hospital of Lianyungang, 222061, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
14
|
Ren S, Xu Y, Dong X, Mu Q, Chen X, Yu Y, Su G. Nanotechnology-empowered combination therapy for rheumatoid arthritis: principles, strategies, and challenges. J Nanobiotechnology 2024; 22:431. [PMID: 39034407 PMCID: PMC11265020 DOI: 10.1186/s12951-024-02670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Shujing Ren
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China
| | - Yuhang Xu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Xingpeng Dong
- School of Pharmacy, Nantong University, Nantong, 226000, PR China
| | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, Nantong, 226000, PR China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226000, PR China.
| |
Collapse
|
15
|
Hua C, Qiu L. Polymersomes for Therapeutic Protein and Peptide Delivery: Towards Better Loading Properties. Int J Nanomedicine 2024; 19:2317-2340. [PMID: 38476284 PMCID: PMC10929215 DOI: 10.2147/ijn.s444910] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Therapeutics based on proteins and peptides have profoundly transformed the landscape of treatment for diseases, from diabetes mellitus to cancers, yet the short half-life and low bioavailability of therapeutic proteins and peptides hinder their wide applications. To break through this bottleneck, biomolecules-loaded polymersomes with strong adjustability and versatility have attracted more and more attentions recently. Loading proteins or peptides into polymersomes is the first but extremely important step towards developing high-quality formulation products. However, increasing protein and peptide loading content is quite challenging due to the inherent nature of self-assembled vesicle formation mechanism and physiochemical characteristics of biomacromolecules. This review highlights the potential of polymersomes as the next-generation therapeutic proteins and peptides carrier and emphatically introduces novel approaches and recent progress to achieve satisfactory encapsulation capability of polymersomes for proteins and peptides. On the one hand, with the help of intermolecular interactions, such as electrostatic, lipid-protein, and hydrophobic interactions, the drug loading could be significantly improved. On the other hand, loading improvement could be attained through innovation of preparation methods, ranging from modified traditional film hydration techniques to the novel phase-guided assembly method.
Collapse
Affiliation(s)
- Chengxu Hua
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| |
Collapse
|
16
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
17
|
Kim K, Park MH. Role of Functionalized Peptides in Nanomedicine for Effective Cancer Therapy. Biomedicines 2024; 12:202. [PMID: 38255307 PMCID: PMC10813321 DOI: 10.3390/biomedicines12010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Peptide-functionalized nanomedicine, which addresses the challenges of specificity and efficacy in drug delivery, is emerging as a pivotal approach for cancer therapy. Globally, cancer remains a leading cause of mortality, and conventional treatments, such as chemotherapy, often lack precision and cause adverse effects. The integration of peptides into nanomedicine offers a promising solution for enhancing the targeting and delivery of therapeutic agents. This review focuses on the three primary applications of peptides: cancer cell-targeting ligands, building blocks for self-assembling nanostructures, and elements of stimuli-responsive systems. Nanoparticles modified with peptides improved targeting of cancer cells, minimized damage to healthy tissues, and optimized drug delivery. The versatility of self-assembled peptide structures makes them an innovative vehicle for drug delivery by leveraging their biocompatibility and diverse nanoarchitectures. In particular, the mechanism of cell death induced by self-assembled structures offers a novel approach to cancer therapy. In addition, peptides in stimuli-responsive systems enable precise drug release in response to specific conditions in the tumor microenvironment. The use of peptides in nanomedicine not only augments the efficacy and safety of cancer treatments but also suggests new research directions. In this review, we introduce systems and functionalization methods using peptides or peptide-modified nanoparticles to overcome challenges in the treatment of specific cancers, including breast cancer, lung cancer, colon cancer, prostate cancer, pancreatic cancer, liver cancer, skin cancer, glioma, osteosarcoma, and cervical cancer.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|