1
|
Tang G, Zhang R, Zhang X, Chen K, Gong F, Huang Y, Zhang Z, Huang J. Design, Synthesis, and Evaluation of a Novel Positron Emission Tomography Tracer Targeting Fibroblast Activation Protein: From Bench to Bedside. J Med Chem 2025; 68:9973-9983. [PMID: 40316449 DOI: 10.1021/acs.jmedchem.4c02961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
FAPI-PET/CT has become a promising tool for cancer diagnosis. However, the pharmacokinetic properties of FAPI tracers need optimization. Here, we developed a novel FAPI tracer, [18F]AlF-NOTA-SP2A-FAPT, for cancer imaging. NOTA-SP2A-FAPT was successfully synthesized and radiolabeled with a high radiochemical purity. [18F]AlF-NOTA-SP2A-FAPT displayed satisfying stability, hydrophilicity, and affinity to FAP, as well as specific uptake in A549-FAP cells. Micro-PET/CT showed that [18F]AlF-NOTA-SP2A-FAPT is rapidly excreted through the renal system. [18F]AlF-NOTA-SP2A-FAPT exhibited high tumor uptake and excellent retention, showing better tumor delineation compared to [18F]FDG and [18F]AlF-NOTA-FAPI-42. Pilot clinical studies of [18F]AlF-NOTA-SP2A-FAPT and head-to-head comparison with [18F]FDG were performed on 13 cancer patients. Compared to [18F]FDG, [18F]AlF-NOTA-SP2A-FAPT had higher uptake in primary tumor and lymph node metastases as well as favorable distribution and good tumor retention. In conclusion, [18F]AlF-NOTA-SP2A-FAPT demonstrated high tumor accumulation, as well as improved pharmacokinetic properties. [18F]AlF-NOTA-SP2A-FAPT could emerge as a promising alternative to the currently established FAPI tracers.
Collapse
Affiliation(s)
- Ganghua Tang
- Key Laboratory Project of Guangdong Provincial Department of Education for Ordinary Universities and GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Rongqin Zhang
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xiaojun Zhang
- Key Laboratory Project of Guangdong Provincial Department of Education for Ordinary Universities and GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - KeYin Chen
- Key Laboratory Project of Guangdong Provincial Department of Education for Ordinary Universities and GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Fengping Gong
- Key Laboratory Project of Guangdong Provincial Department of Education for Ordinary Universities and GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yanchao Huang
- Key Laboratory Project of Guangdong Provincial Department of Education for Ordinary Universities and GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Zhanwen Zhang
- Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jiawen Huang
- Key Laboratory Project of Guangdong Provincial Department of Education for Ordinary Universities and GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
2
|
Wang L, Pan X, Ye S, Huang Y, Wang M, Chen L, Zhou K, Han Y, Wu H. [ 18F]F-FAPI-42 PET dynamic imaging characteristics and multiparametric quantification of lung cancer: an exploratory study using uEXPLORER PET/CT. Eur J Nucl Med Mol Imaging 2025; 52:1685-1694. [PMID: 39760863 DOI: 10.1007/s00259-024-07064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE To explore the dynamic and parametric characteristics of [18F]F-FAPI-42 PET/CT in lung cancers. METHODS Nineteen participants with newly diagnosed lung cancer underwent 60-min dynamic [18F]F-FAPI-42 PET/CT. Time-activity curves (TAC) were generated for tumors and normal organs, with kinetic parameters (K1, K2, K3, K4, Ki) calculated. A new parameter, the K ratio (K1 + K3)/(K2 + K4), was introduced to measure net uptake efficiency. RESULTS In primary tumor (PT), [18F]F-FAPI-42 uptake showed a gradual increase followed by a plateau, contrasting with organs like the thyroid and pancreas, which showed rapid uptake and continuous washout. Compared to non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC) lesions reached the plateau earlier (11 min vs. 14 min) but had a lower uptake. During the plateau phase, [18F]F-FAPI-42 demonstrated slight washout in SCLC, whereas its uptake increased slightly in NSCLC. Lymph node and distant metastases exhibited similar TAC profiles to primary tumors. Kinetic modeling revealed that an irreversible two-compartment model (irre-2TCM) best represented the pharmacokinetics of [18F]F-FAPI-42 in lung cancer, whereas re-2TCM was better suited for the pancreas and thyroid. Lower K1, K2, K3 and K4 were observed in PT compared to those in the pancreas and thyroid (P < 0.05), however, the K ratio in PT was found to be 2-3 times higher. SCLC had lower Ki and SUVmean than NSCLC (P < 0.05). Kinetic parameter differences were also observed between PT and metastatic lesions. Larger metastatic lymph nodes exhibited higher K1, Ki, and K ratio than smaller ones. CONCLUSION Lung cancers exhibit distinct [18F]F-FAPI-42 dynamic and kinetic characteristics compared to the thyroid gland and pancreas. Differences were also observed between SCLC and NSCLC, primary and metastatic lesions, as well as larger versus smaller lesions. These findings provide valuable insights into the in vivo pharmacokinetics of [18F]F-FAPI-42, potentially improving the diagnosis of lung cancer. TRIAL REGISTRATION ChiCTR2100045757. Registered April 24, 2021 retrospectively registered, http//www.chictr.org.cn.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
- Department of Nuclear Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Xingzhu Pan
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Shimin Ye
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Yanchao Huang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Meng Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Li Chen
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Kemin Zhou
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Yanjiang Han
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China
| | - Hubing Wu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, China.
| |
Collapse
|
3
|
Meng L, Lin R, Zhang J, Li H, Xia D, Zhao Z, Zhuang R, Huang L, Zhang X, Fang J, Miao W, Guo Z. Modification of Asp-Peptide Adapters: Giving the FAP-Targeted Radioligand a "Squirrel Tail". J Med Chem 2025; 68:6576-6587. [PMID: 40102034 DOI: 10.1021/acs.jmedchem.4c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Fibroblast activation protein (FAP) is a promising target for cancer theranostics, but most FAP-targeted radioprobes showed relatively insufficient tumor uptake and retention, which seriously hampered their further application. Inspired by the squirrel tail, this study developed a novel FAP-targeted molecule, FSND3, which is modified with three Asp-peptide adapters to enable both 68Ga ([68Ga]Ga-FSND3) and 18F ([18F]AlF-FSND3) PET imaging. Compared to [68Ga]Ga-FAPI-04, [68Ga]Ga-FAPI-42, and [18F]AlF-FAPI-42, [18F]AlF-FSND3 and [68Ga]Ga-FSND3 showed enhanced tumor uptake and prolonged residence in HT-1080-FAP and pancreatic tumor models, demonstrating the effectiveness of Asp-peptide adapters in pharmacomodulating FAP-targeted radioligands. The first-in-human pilot study revealed that [18F]AlF- and [68Ga]Ga-FSND3 exhibited comparable uptake in the primary lesion, higher-contrast images, and higher uptake in some metastases like in bone and brain, to 2-[18F] FDG PET/CT imaging. As a proof of concept, these results offer a significant enhancement to the diversity of the FAP-targeted tracer arsenal.
Collapse
Affiliation(s)
- Lingxin Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rong Lin
- Department of Nuclear Medicine, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou 350005, China
| | - Jingru Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Huifeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Dongsheng Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Rongqiang Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lumei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Weibing Miao
- Department of Nuclear Medicine, the First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou 350005, China
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
4
|
Zhang Q, Hu Z, Zhao H, Du F, Lv C, Peng T, Zhang Y, Zhang B, Liu J, Wang C. Design, Synthesis, and Biological Evaluation of a Novel [ 18F]AlF-H 3RESCA-FAPI Radiotracer Targeting Fibroblast Activation Protein. Pharmaceuticals (Basel) 2025; 18:277. [PMID: 40006089 PMCID: PMC11859916 DOI: 10.3390/ph18020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are key contributors to the tumorigenic process, with fibroblast activation protein (FAP) overexpressed on CAFs in numerous epithelial carcinomas. FAP represents a promising target for tumor imaging and therapy. We aimed to develop a novel [18F]AlF-H3RESCA-FAPI radiotracer with a high labeling yield at room temperature for positron emission tomography (PET) imaging of FAP-expressing tumors. Methods: The H3RESCA-FAPI chelator was synthesized and radiolabeled with [18F]AlF. Its radiotracer binding affinity to FAP was assessed using surface plasmon resonance (SPR). Its in vitro stability, plasma clearance, and biodistribution were evaluated. PET imaging was performed in U87MG tumor-bearing mice, with a blocking study to assess tracer specificity. Results: The [18F]AlF-H3RESCA-FAPI radiotracer demonstrated a high binding affinity to FAP (KD < 10.09 pM) and favorable radiochemical yields (92.4 ± 2.4%) with >95% radiochemical purity. In vitro and in vivo studies showed good stability and rapid clearance from non-target tissues. PET imaging revealed specific tumor uptake, which was significantly reduced by co-injection with unlabeled DOTA-FAPI-04. Conclusions: [18F]AlF-H3RESCA-FAPI is a promising radiotracer for PET imaging of FAP-expressing tumors. Further optimization of its pharmacokinetics could make it a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
- MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China;
| | - Zhoumi Hu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Haitao Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Fuqiang Du
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Chun Lv
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Tukang Peng
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Yukai Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
- MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China;
| | - Bowu Zhang
- MOE Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Centre of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China;
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| | - Cheng Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Z.H.); (H.Z.); (F.D.); (C.L.); (T.P.); (Y.Z.)
| |
Collapse
|
5
|
Zhou H, Zhong J, Liu Y, Peng S, Yan Q, Wang L, Zhong Y, Hu K. Development of ibuprofen-modified fibroblast activation protein radioligands to improve cancer therapy. Eur J Med Chem 2025; 283:117115. [PMID: 39626520 DOI: 10.1016/j.ejmech.2024.117115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
FAP-targeting radioligands are used in cancer diagnosis and therapy, but their effectiveness is limited by poor tumor uptake and retention. This study aimed to develop new radioligands using an optimized amino acid linker and ibuprofen for better pharmacokinetics. Three novel quinoline-based FAP ligands with an ibuprofen moiety were synthesized and radiolabeled with gallium-68 and lutetium-177. The synthesized FAP ligands FAPI-Ibu1, 2, 3 showed high binding affinity for FAP, with IC50 values of 1.17 ± 0.09, 0.29 ± 0.06, and 0.78 ± 0.12 nM, respectively. 177Lu-labeled FAP ligands showed stability in vitro and demonstrated significant binding to human plasma proteins as well as FAP specificity. PET imaging and biodistribution studies of 68Ga- or 177Lu-labeled FAPI-Ibu1, 2, 3 revealed improved tumor accumulation and retention. Dosimetry calculation showed that [177Lu]Lu-FAPI-Ibu3 delivered a 9.9-fold higher absorbed dose to tumor than [177Lu]Lu-FAPI-04, but only 2.6-fold higher absorbed dose to kidneys leading to 3.8-fold improvement in the tumor-to-kidney absorbed dose ratios. In the endoradiotherapy study, 18.5 MBq of [177Lu]Lu-FAPI-Ibu3 resulted in longer median survival than the equivalent dose of [177Lu]Lu-FAPI-04 (22 vs 16 days). Three ibuprofen-modified FAP radioligands significantly improved tumor uptake, retention, and growth suppression compared to [177Lu]Lu-FAPI-04, with [177Lu]Lu-FAPI-Ibu3 emerging as the most promising candidate for further clinical translational studies.
Collapse
Affiliation(s)
- Hui Zhou
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jiawei Zhong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Liu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Simin Peng
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingsong Yan
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lijuan Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Kongzhen Hu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Shi M, Wang F, Lu Z, Yin Y, Zheng X, Wang D, Cai X, Jing M, Wang J, Chen J, Jiang X, Yu W, Li X. Elucidating the linagliptin and fibroblast activation protein binding mechanism through molecular dynamics and binding free energy analysis. iScience 2024; 27:111368. [PMID: 39660049 PMCID: PMC11629334 DOI: 10.1016/j.isci.2024.111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Fibroblast activation protein (FAP) is highly expressed in solid tumors and may be a potential diagnostic and therapeutic target in solid cancers. Linagliptin inhibits FAP; however, the interaction mechanism between linagliptin and FAP remains unclear. In this study, the binding free energy for linagliptin with human FAP was estimated at -13.66 kcal/mol, and the dissociation constant was 243 nM based on surface plasmon resonance analyses. E203, E204, and Y656 formed hydrogen bonds with ammonium. Y625 formed an unstable hydrogen bond with the carbonyl group. W623 and Y541 interacted with the quinazoline and pyrimidine-2,4-dione rings, respectively, via π-π interactions. The butyne group formed hydrophobic interactions with residues V650, Y653, Y656, and Y660. ZINC000299754517 and ZINC000299754576 were identified as potential FAP inhibitors. The R1 and R4 regions of linagliptin could be optimized to increase its FAP binding affinity. These findings can guide linagliptin structural optimization to improve its FAP binding affinity.
Collapse
Affiliation(s)
- Mingsong Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
- Department of Clinical Nutrition, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fang Wang
- Department of Clinical Nutrition, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhou Lu
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| | - Yuan Yin
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| | - Xueting Zheng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| | - Decai Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| | - Xianfu Cai
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| | - Meng Jing
- Department of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| | - Jianjun Wang
- Department of Hepatobiliary Surgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| | - Junxian Chen
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Xile Jiang
- Department of Clinical Nutrition, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenliang Yu
- Department of Obstetrics and Gynecology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
- Department of Gastroenterology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621099, China
| |
Collapse
|
7
|
Yu Z, Jiang Z, Cheng X, Yuan L, Chen H, Ai L, Wu Z. Development of fibroblast activation protein-α radiopharmaceuticals: Recent advances and perspectives. Eur J Med Chem 2024; 277:116787. [PMID: 39197253 DOI: 10.1016/j.ejmech.2024.116787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Fibroblast activation protein-α (FAP) has emerged as a promising target in the field of radiopharmaceuticals due to its selective expression in cancer-associated fibroblasts (CAFs) and other pathological conditions involving fibrosis and inflammation. Recent advancements have focused on developing FAP-specific radioligands for diagnostic imaging and targeted radionuclide therapy. This perspective summarized the latest progress in FAP radiopharmaceutical development, highlighting novel radioligands, preclinical evaluations, and potential clinical applications. Additionally, we analyzed the advantages and existing problems of targeted FAP radiopharmaceuticals, and discussed the key breakthrough directions of this target, so as to improve the development and conversion of FAP-targeted radiopharmaceuticals.
Collapse
Affiliation(s)
- Ziyue Yu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Zeng Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Xuebo Cheng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Leilei Yuan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hualong Chen
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zehui Wu
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
8
|
Huang J, Zhang X, Liu Q, Gong F, Huang Y, Huang S, Fu L, Tang G. 68Ga/ 177Lu-Labeled Theranostic Pair for Targeting Fibroblast Activation Protein with Improved Tumor Uptake and Retention. J Med Chem 2024; 67:17785-17795. [PMID: 39321030 DOI: 10.1021/acs.jmedchem.4c01812] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Fibroblast activation protein (FAP) is specifically expressed on cancer-associated fibroblasts in over 90% of tumors and is considered a promising target for cancer theranostics. Here, we developed a novel tracer, DOTA-FAPT, and labeled it with gallium-68 and lutetium-177 as a theranostic pair. [68Ga]Ga/[177Lu]Lu-FAPT exhibited high stability and hydrophilicity, as well as strong affinity to the FAP target. Micro-PET/CT imaging revealed that [68Ga]Ga-FAPT exhibited significantly increased uptake in tumors and extended retention in A549-FAP and U87MG tumor xenografts as compared to [68Ga]Ga-FAPI-04, demonstrating favorable pharmacokinetic characteristics in vivo. Therapeutic studies showed that [177Lu]Lu-FAPT had higher tumor accumulation compared to [177Lu]Lu-FAPI-04, leading to stronger tumor growth inhibition. The first-in-human evaluation also revealed that [68Ga]Ga-FAPT has good in vivo distribution and superior diagnostic efficacy on primary and lymph node metastases in a patient with lung cancer. Our encouraging results suggest that 68Ga/177Lu-labeled DOTA-FAPT is a theranostic pair with broad application prospect.
Collapse
Affiliation(s)
- Jiawen Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Xiaojun Zhang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Qingxing Liu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Fengping Gong
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yanchao Huang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523059, P. R. China
| | - Lilan Fu
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Ganghua Tang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| |
Collapse
|
9
|
Oguri N, Gi T, Nakamura E, Furukoji E, Goto H, Maekawa K, Tsuji AB, Nishii R, Aman M, Moriguchi-Goto S, Sakae T, Azuma M, Yamashita A. Expression of fibroblast activation protein-α in human deep vein thrombosis. Thromb Res 2024; 241:109075. [PMID: 38955058 DOI: 10.1016/j.thromres.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Fibroblast activation protein-α (FAP), a type-II transmembrane serine protease, is associated with wound healing, cancer-associated fibroblasts, and chronic fibrosing diseases. However, its expression in deep vein thrombosis (DVT) remains unclear. Therefore, this study investigated FAP expression and localization in DVT. METHODS We performed pathological analyses of the aspirated thrombi of patients with DVT (n = 14), classifying thrombotic areas in terms of fresh, cellular lysis, and organizing reaction components. The organizing reaction included endothelialization and fibroblastic reaction. We immunohistochemically examined FAP-expressed areas and cells, and finally analyzed FAP expression in cultured dermal fibroblasts. RESULTS All the aspirated thrombi showed a heterogeneous mixture of at least two of the three thrombotic areas. Specifically, 83 % of aspirated thrombi showed fresh and organizing reaction components. Immunohistochemical expression of FAP was restricted to the organizing area. Double immunofluorescence staining showed that FAP in the thrombi was mainly expressed in vimentin-positive or α-smooth muscle actin-positive fibroblasts. Some CD163-positive macrophages expressed FAP. FAP mRNA and protein levels were higher in fibroblasts with low-proliferative activity cultured under 0.1 % fetal bovine serum (FBS) than that under 10 % FBS. Fibroblasts cultured in 10 % FBS showed a significant decrease in FAP mRNA levels following supplementation with hemin, but not with thrombin. CONCLUSIONS The heterogeneous composition of venous thrombi suggests a multistep thrombus formation process in human DVT. Further, fibroblasts or myofibroblasts may express FAP during the organizing process. FAP expression may be higher in fibroblasts with low proliferative activity.
Collapse
Affiliation(s)
- Nobuyuki Oguri
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Toshihiro Gi
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Eriko Nakamura
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Eiji Furukoji
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroki Goto
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazunari Maekawa
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan; Medical Imaging Engineering, Biomedical Imaging Sciences, Division of Advanced Information Health Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Murasaki Aman
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sayaka Moriguchi-Goto
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tatefumi Sakae
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Minako Azuma
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
10
|
Mo C, Sun P, Liang H, Chen Z, Wang M, Fu L, Huang S, Tang G. Synthesis and preclinical evaluation of a novel probe [ 18F]AlF-NOTA-IPB-GPC3P for PET imaging of GPC3 positive tumor. Bioorg Chem 2024; 147:107352. [PMID: 38640719 DOI: 10.1016/j.bioorg.2024.107352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
Glypican-3 (GPC3) is markedly overexpressed in hepatocellular carcinoma (HCC) and not expressed in normal liver tissues. In this study, a novel peptide PET imaging agent ([18F]AlF-NOTA-IPB-GPC3P) was developed to target GPC3 expressed in tumors. The overall radiochemical yield of [18F]AlF-NOTA-IPB-GPC3P was 10-15 %, and its lipophilicity, expressed as the logD value at a pH of 7.4, was -1.18 ± 0.06 (n = 3). Compared to the previously reported tracer [18F]AlF-GP2633, [18F]AlF-NOTA-IPB-GPC3P exhibited higher cellular uptake (15.13 vs 5.96) and internalized rate (80.63 % vs 35.93 %) in Huh7 cells at 120 min. Micro-PET/CT and biodistribution studies further demonstrated that [18F]AlF-NOTA-IPB-GPC3P exhibited significantly increased tumor uptake and prolonged tumor residence in Huh7 tumors compared to [18F]AlF-GP2633 (4.66 ± 0.22 % ID/g vs 0.72 ± 0.09 % ID/g at 60 min, p < 0.001; 5.05 ± 0.23 % ID/g vs 0.35 ± 0.08 % ID/g at 120 min, p < 0.001, respectively). Furthermore, the tumor-to-organ ratios of [18F]AlF-NOTA-IPB-GPC3P surpassed those of [18F]AlF-GP2633. Our results support the utilization of [18F]AlF-NOTA-IPB-GPC3P as a PET imaging agent targeting the GPC3 receptor for tumor detection.
Collapse
Affiliation(s)
- Chunwei Mo
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Penghui Sun
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Haoran Liang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Zihao Chen
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Meng Wang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Lilan Fu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China
| | - Shun Huang
- Department of Nuclear Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, China.
| | - Ganghua Tang
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
11
|
Sun P, Mo C, Bai L, Wang M, Chen Z, Zhang M, Han Y, Liang H, Tang G. Synthesis and preclinical evaluation of a novel molecular probe [ 18F]AlF-NOTA-PEG 2-Asp 2-PDL1P for PET imaging of PD-L1 positive tumor. Bioorg Chem 2024; 145:107193. [PMID: 38442611 DOI: 10.1016/j.bioorg.2024.107193] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Immunotherapy has brought great benefits to cancer patients, but only some patients benefit from it. Noninvasive, real-time and dynamic monitoring of the effectiveness of immunotherapy through PET imaging may provide assistance for the treatment plan of immunotherapy. In this study, we designed and synthesized a new targeted PD-L1 peptide NOTA-PEG2-Asp2-PDL1P, which was labeled with nuclide 18F to obtain a new imaging agent [18F]AlF-NOTA-PEG2-Asp2-PDL1P. The total radiochemical yield of [18F]AlF-NOTA-PEG2-Asp2-PDL1P was 13.7 % (Uncorrected radiochemical yield, n > 5). [18F]AlF-NOTA-PEG2-Asp2-PDL1P achieved high radiochemical purity (>95 %) with a molar activity more than 51.2 GBq/μmol. [18F]AlF-NOTA-PEG2-Asp2-PDL1P exhibited good hydrophilicity and had good stability both in vivo and in vitro, it can specifically targets B16F10 tumor with PD-L1 expression, and had a relatively high retention in tumor, a relatively fast clearance in vivo and a higher tumor-to-non-target ratio, all of which could make [18F]AlF-NOTA-PEG2-Asp2-PDL1P a potential tracer for PD-L1 prediction before clinical immunotherapy.
Collapse
Affiliation(s)
- Penghui Sun
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Chunwei Mo
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Lu Bai
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Meng Wang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Zihao Chen
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Meilian Zhang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Yanjiang Han
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Haoran Liang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China
| | - Ganghua Tang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangdong Province, China; Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|