1
|
Jing Y, Bai Y, Liang C, Liu Y, Zhou J, Guo J, Cai X, Hu X, Fang Y, Ding X, Wu J, Hu D. Ingenol ameliorates silicosis via targeting the PTGS2/PI3K/AKT signaling axis: Implications for therapeutic intervention. Cell Signal 2025; 131:111780. [PMID: 40158708 DOI: 10.1016/j.cellsig.2025.111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Silicosis, formerly known as silico, is an irreversible disease caused by prolonged inhalation of substantial amounts of free crystalline silica dust, characterized by pulmonary inflammation and extensive nodular fibrosis. The etiology of the disease remains unclear, which currently hinders the development of effective therapeutic drugs and interventions. Ingenol (Ing), a terpenoid active ingredient found in plants of the Euphorbiaceae family, including the entire herb of Euphorbia helioscopia, Euphorbia kansui, or Euphorbia lathyris, demonstrates significant anti-inflammatory and antiviral activities. In this study, we identified and confirmed that Ingenol can significantly ameliorate silicosis induced by silica dioxide by inhibiting the PTGS2/PI3K/AKT signaling pathway. In vivo, Ingenol improves pulmonary respiratory function and reduces inflammation and fibrosis in a murine model of CS-induced silicosis. In vitro, Ingenol inhibits the expression of cellular factors associated with inflammation and fibrosis, as well as macrophage apoptosis and fibroblast migration. Furthermore, it can modulate the expression of fibrosis-related proteins, thereby inhibiting CS-induced fibrotic responses. Mechanistically, a combination of bioinformatics, network pharmacology, and experimental validation indicates that Ingenol mitigates the progression of silicosis by modulating the PTGS2/PI3K/AKT signaling pathway. In summary, these findings suggest that Ingenol is a potential candidate for the treatment of silicosis.
Collapse
Affiliation(s)
- Yifan Jing
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Ying Bai
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Huainan Xinhua Medical Group Xinhua Hospital, China.
| | - Chao Liang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yafeng Liu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jiawei Zhou
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jianqiang Guo
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Xiaolong Cai
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Xiaofei Hu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yujing Fang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Xuansheng Ding
- Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jing Wu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), School of Medicine, Huainan City, China.
| | - Dong Hu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), School of Medicine, Huainan City, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, China.
| |
Collapse
|
2
|
Lei Y, Jiang S, Kong C, Pang P, Shan H. Ferroptosis: Therapeutic Potential and Strategies in Non-Small Cell Lung Cancer. BIOLOGY 2025; 14:545. [PMID: 40427734 PMCID: PMC12108931 DOI: 10.3390/biology14050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer and a leading cause of cancer-related morbidity and mortality worldwide. Despite advancements in therapeutic strategies, the prognosis for NSCLC patients remains unfavorable. The effective treatment of NSCLC remains challenging due to its aggressive metastatic and invasive properties. Therefore, there is an urgent need to explore novel treatment strategies. In recent years, different from apoptosis and necrosis, ferroptosis has garnered increasing attention since its initial identification in 2012. It is increasingly recognized as a key factor in the development and progression of various cancers. In this review, we summarize the distinctive morphological and biochemical characteristics of ferroptosis and its regulatory mechanisms. Furthermore, we discuss the genetic regulation of ferroptosis in NSCLC, highlighting key biomarkers that may serve as potential therapeutic targets. We also evaluate emerging therapeutic strategies targeting ferroptosis, including gene therapy, natural compounds, chemical agents, combination therapies, and nanoparticle-based approaches. Based on current evidence, the limitations and future prospects of ferroptosis-based therapies for NSCLC are discussed. This review aims to provide novel insights into the potential of ferroptosis-based therapies for NSCLC and its implications for the development of novel treatments.
Collapse
Affiliation(s)
| | - Shuxia Jiang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.); (C.K.); (P.P.)
| | | | | | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.); (C.K.); (P.P.)
| |
Collapse
|
3
|
Yang Y, Jiang B, Shi L, Wang L, Yang Y, Li Y, Zhang Y, Zhu Z, Zhang X, Liu X. The potential of natural herbal plants in the treatment and prevention of non-small cell lung cancer: An encounter between ferroptosis and mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119555. [PMID: 40015539 DOI: 10.1016/j.jep.2025.119555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine constitutes a substantial cultural and scientific resource for the Chinese nation, attracting considerable scholarly interest due to its intrinsic characteristics of "multi-component, multi-target, and multi-pathway" interactions. Simultaneously, it aligns accurately with the intricate and continuously evolving progression of non-small cell lung cancer (NSCLC). Furthermore, contemporary pharmacological studies indicate that natural herbaceous plants and their bioactive compounds exhibit a diverse array of biological activities, including antioxidant, anti-inflammatory, and anti-tumor effects, among others. Additionally, these substances have been demonstrated to possess a degree of safety, particularly in terms of exhibiting comparatively lower levels of toxicity to the liver and kidneys when contrasted with conventional Western medicine. Thus, the development of herbal plants, which includes both single herbs and composite formulations, as well as their bioactive constituents, through the targeted regulation of ferroptosis and mitophagy, presents substantial potential and instills considerable hope for individuals diagnosed with NSCLC. AIM OF THE REVIEW This review aims to conduct a critical analysis of the ethnopharmacological applications of natural herbaceous plants in relation to ferroptosis and mitophagy in NSCLC. The objective is to evaluate the potential advantages of prioritizing specific phytochemical constituents found in these plants, which may serve as novel therapeutic candidates informed by ethnobotanical knowledge. Additionally, this study seeks to enhance the current pharmacological applications of natural herbaceous plants. METHODS An investigation into natural herbal remedies for NSCLC was conducted, with a particular emphasis on the ferroptosis and mitophagy pathways. This study utilized traditional medical texts and ethnomedicinal literature as primary sources. Furthermore, relevant information related to ethnobotany, phytochemistry, and pharmacology is obtained from online databases, including PubMed and the China National Knowledge Infrastructure (CNKI), among others. "Traditional Chinese medicine compound preparations", "single herb extracts", "active compounds", "NSCLC", "ferroptosis", and "mitophagy" were used as keywords when searching the databases. Consequently, pertinent articles published in recent years were collected and analyzed. RESULTS Given the complex etiology of NSCLC, treatment strategies that concentrate exclusively on ferroptosis or mitophagy often demonstrate limitations. In this regard, the utilization of herbal plants offers unique benefits in the management of NSCLC. The rationale can be summarized within the following two dimensions: Firstly, due to the molecular mechanisms of ferroptosis and mitophagy involving multiple signaling pathways (including PINK1/Parkin, HMGB1, system Xc-/GPX4/GSH, FSP1/CoQ10/NAD (P) H, and so on), sometimes drugs with a single target are difficult to involve multiple pathways. Fortunately, there is an expanding body of evidence suggesting that various herbaceous plants and their bioactive compounds can affect multiple biological targets. Moreover, these compounds seem to interact with several targets associated with ferroptosis and mitophagy in NSCLC (such as NIX, BNIP3, FUNDC1, GPX4, FSP1, P53, Nrf2, LncRNA, and so on). Secondly, Herbaceous plants and their bioactive compounds have been shown to possess a favorable safety profile, particularly with respect to reduced hepatotoxicity and nephrotoxicity in comparison to conventional Western medicine. For example, Numerous compound formulations, such as Fangji Huangqi decoction, Mufangji decoction, Qiyu Sanlong decoction, and Fuzheng Kangai decoction, have been employed in China for millennia, and their clinical efficacy appears to be quite promising. Notably, In recent years, numerous researchers have sought to isolate active constituents from clinically effective compound formulations through the application of chemical methodologies. This endeavor has been driven by the necessity to tackle challenges related to complex ingredient compositions and sophisticated processing. These active compounds have been employed in cellular and animal studies to elucidate the molecular mechanisms underlying these formulations. CONCLUSIONS The Asian region has a long-standing historical tradition of employing natural herbaceous plants for traditional medicinal purposes. Phytochemical and pharmacological studies have shown that various compound preparations derived from traditional Chinese medicine, along with individual herb extracts and their active constituents, display a range of bioactive effects. These effects encompass anti-tumor, anti-inflammatory, antibacterial, and antioxidant properties, among others. Numerous traditional compound formulations originating from China have emerged as promising candidates for the development of pharmacological agents targeting NSCLC. It is noteworthy that a variety of compound formulations aimed at the ferroptosis and mitophagy pathways, which demonstrate unique therapeutic effects on NSCLC, are presently under extensive investigation by an increasing number of researchers. Therefore, it is imperative to consider in vitro mechanistic studies, in vivo pharmacological evaluations, and assessments of clinical efficacy. Furthermore, it is essential to conduct a comprehensive assessment of plant resources, implement quality control measures, and engage in toxicological research to ensure that the data is appropriate for further examination.
Collapse
Affiliation(s)
- Yujie Yang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lijuan Shi
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Lili Wang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yaru Yang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yongyu Li
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Yanmei Zhang
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Zhongbo Zhu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xuhui Zhang
- Department of Pulmonary Diseases, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730030, China.
| | - Xiping Liu
- Key Laboratory of Traditional Chinese Herbs and Prescription Innovation and Transformation of Gansu Province, Lanzhou, Gansu, 730000, China; Laboratory for TCM New Products Development Engineering of Gansu Province, Lanzhou, Gansu, 730000, China; Department of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
4
|
Liu Z, Wang Y, Jiao Q, Liu Y, Shen S, Zhao H, Gao Z, Yao GD, Gu L, Liu Q, Song SJ. 20-Deoxyingenol ester and ether derivatives: Synthesis, properties and cytotoxicity. Bioorg Chem 2025; 156:108207. [PMID: 39864376 DOI: 10.1016/j.bioorg.2025.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The C-3 and C-5 substituted 20-deoxyingenol monoesters are important active components in Euphorbiaceae plants. Nonetheless, their similar physical properties make them difficult to distinguish. The present study developed fast and efficient rules for identifying the esterification sites of 20-deoxyingenol based on a series of chemical syntheses of monoesters and literature research, utilizing NMR spectroscopy, optical rotation analysis, and chromatographic retention behavior. In addition, a series of 20-deoxyingenol ether derivatives, including 1,3,4-oxadiazole derivatives, were synthesized. The cytotoxic activities of 20-deoxyingenol derivatives were evaluated on A549 and HepG2 cell lines. Notably, 20-deoxyingenol 1,3,4-oxadiazole derivative 22 (IC50 = 8.8 μM) exhibited significant anticancer activity against HepG2 cells with low toxicity to normal cells (IC50 > 50 μM), making it a promising compound. We investigated the potential anticancer mechanism of compound 22 by examining protein expression changes in HepG2 cells using quantitative proteomics. Our findings indicated that 22 induced G1/S phase cell cycle arrest and, In a dose-dependent manner, inhibited CDK4 and CyclinD1 expression while upregulating P21. Moreover, 22 promoted the accumulation of autophagosomes and the proteins LC3 and PINK1, enhancing autophagy and mitophagy in HepG2 cells. Collectively, compound 22 might serve as a novel autophagy agonist with anticancer properties.
Collapse
Affiliation(s)
- Zijian Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaxu Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingning Jiao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shuai Shen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hongwei Zhao
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China
| | - Ziang Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
5
|
Mo X, Ji F, Chen J, Yi C, Wang F. Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms. J Microbiol Biotechnol 2024; 34:2362-2375. [PMID: 39344350 PMCID: PMC11637838 DOI: 10.4014/jmb.2407.07052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
As a treatment for esophageal squamous cell carcinoma (ESCC), which is common and fatal, mitophagy is a conserved cellular mechanism that selectively removes damaged mitochondria and is crucial for cellular homeostasis. While tumor development and resistance to anticancer therapies are related to ESCC, their role in ESCC remains unclear. Here, we investigated the relationship between mitophagy-related genes (MRGs) and ESCC to provide novel insights into the role of mitophagy in ESCC prognosis and diagnosis prediction. First, we identified MRGs from the GeneCards database and examined them at both the single-cell and transcriptome levels. Key genes were selected and a prognostic model was constructed using least absolute shrinkage and selection operator analysis. External validation was performed using the GSE53624 dataset and Kaplan-Meier survival analysis was performed to identify PYCARD as a gene significantly associated with survival in ESCC. We then examined the effect of PYCARD on ESCC cell proliferation and migration and identified 169 MRGs at the single-cell and transcriptome levels, as well as the high-risk groups associated with cancer-related pathways. Thirteen key genes were selected for model construction via multiple machine learning algorithms. PYCARD, which is upregulated in patients with ESCC, was negatively correlated with prognosis and its knockdown inhibited ESCC cell proliferation and migration. Our ESCC prediction model based on mitophagy-related genes demonstrated promising results and provides more options for the management and clinical treatment of ESCC patients. Moreover, targeting or regulating PYCARD levels might offer new therapeutic strategies for ESCC patients in clinical settings.
Collapse
Affiliation(s)
- Xuzhi Mo
- Department of Thoracic Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| | - Feng Ji
- Department of Thoracic Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| | - Jianguang Chen
- Department of Thoracic Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| | - Chengcheng Yi
- Department of Thoracic Surgery, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| | - Fang Wang
- Department of Oncology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying 257088, P.R. China
| |
Collapse
|