1
|
Zhang J, Zhang B, Liu T, Xie H, Zhai J. Partial trisomy 4q and monosomy 5p inherited from a maternal translocationt(4;5)(q33; p15) in three adverse pregnancies. Mol Cytogenet 2020; 13:26. [PMID: 32625247 PMCID: PMC7329393 DOI: 10.1186/s13039-020-00492-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022] Open
Abstract
Background Carriers of balanced reciprocal chromosomal translocations are at known reproductive risk for offspring with unbalanced genotypes and resultantly abnormal phenotypes. Once fertilization of a balanced translocation gamete with a normal gamete, the partial monosomy or partial trisomy embryo will undergo abortion, fetal arrest or fetal malformations. We reported a woman with chromosomal balanced translocation who had two adverse pregnancies. Prenatal diagnosis was made for her third pregnancy to provide genetic counseling and guide her fertility. Case presentation We presented a woman with chromosomal balanced translocation who had three adverse pregnancies. Routine G banding and CNV-seq were used to analyze the chromosome karyotypes and copy number variants of amniotic fluid cells and peripheral blood. The karyotype of the woman was 46,XX,t(4;5)(q33;p15). During her first pregnancy, odinopoeia was performed due to fetal edema and abdominal fluid. The umbilical cord tissue of the fetus was examined by CNV-seq. The results showed a genomic gain of 24.18 Mb at 4q32.3-q35.2 and a genomic deletion of 10.84 Mb at 5p15.2-p15.33 and 2.36 Mb at 15q11.1-q11.2. During her second pregnancy, she did not receive a prenatal diagnosis because a routine prenatal ultrasound examination found no abnormalities. In 2016, she gave birth to a boy. The karyotype the of the boy was 46,XY,der(5)t(4;5)(q33;p15)mat. The results of CNV-seq showed a deletion of short arm of chromosome 5 capturing regions 5p15.2-p15.33, a copy gain of the distal region of chromosome 4 at segment 4q32.3q35.2, a duplication of chromosome 1 at segment 1q41q42.11 and a duplication of chromosome 17 at segment 17p12. During her third pregnancy, she underwent amniocentesis at 17 weeks of gestation. Chromosome karyotype hinted 46,XY,der(5)t(4;5)(q33;p15)mat. Results of CNV-seq showed a deletion of short arm (p) of chromosome 5 at the segment 5p15.2p15.33 and a duplication of the distal region of chromosome 4 at segment 4q32.3q35.2. Conclusions Chromosomal abnormalities in three pregnancies were inherited from the mother. Preimplantation genetic diagnosis is recommended to prevent the birth of children with chromosomal abnormalities.
Collapse
Affiliation(s)
- Jingbo Zhang
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Bei Zhang
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Tong Liu
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Huihui Xie
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| | - Jingfang Zhai
- Department of Prenatal Diagnosis Medical Center of Xuzhou Central Hospital, Xuzhou Clinical Schools of Xuzhou Medical University and Nanjing Medical University, 199 South Jiefang Road, Xuzhou, 221009 Jiangsu China
| |
Collapse
|
2
|
Wang R, Yu Y, Wang Q, Jiang Y, Li L, Zhu H, Liu R, Zhang H. Clinical Features of Infertile Men Carrying a Chromosome 9 Translocation. Open Med (Wars) 2019; 14:854-862. [PMID: 31737790 PMCID: PMC6843491 DOI: 10.1515/med-2019-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022] Open
Abstract
Previous studies indicated that chromosome 9 translocations are involved in reduced male fertility and increased chance of miscarriage in the female partner. The aim of this study was to review the clinical features and genetic counselling requirements of infertile men carrying chromosome 9 translocations. This study analyzed fertile-age male carriers of chromosome 9 translocations, and included 12 clinical cases in our hospital. In our cases, three cases had oligozoospermia or severe oligozoospermia, while nine cases had normal semen. Of the latter nine cases, seven were associated with recurrent spontaneous abortions, and two produced a phenotypically normal child as confirmed by amniocentesis. Male chromosome 9 translocations and specific breakpoints from reported papers were searched using PubMed and CNKI database. A literature review identified 76 male patients who carried chromosome 9 translocations. Breakpoints at 9p12, 9p11, 9p10 and 9q34.1 were related to pregestational infertility, while breakpoints at 9p21, 9q10, 9q11, 9q13, 9q21.1, 9q22, 9q22.2, 9q22.3, 9q34, 9q34.2 and 9q34.3 exhibited gestational infertility. Chromosome translocations involving chromosome 9 lead to increased risk of miscarriage. Carriers of chromosome 9 translocations should be counselled to consider in vitro fertilization accompanied by preimplantation genetic diagnosis.
Collapse
Affiliation(s)
- Ruixue Wang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Yang Yu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Qiyuan Wang
- Experimental School of Changchun Jida Middle School, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Linlin Li
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Haibo Zhu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, China
| |
Collapse
|
3
|
McAlinden A, Im GI. MicroRNAs in orthopaedic research: Disease associations, potential therapeutic applications, and perspectives. J Orthop Res 2018; 36:33-51. [PMID: 29194736 PMCID: PMC5840038 DOI: 10.1002/jor.23822] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function to control many cellular processes by their ability to suppress expression of specific target genes. Tens to hundreds of target genes may be affected by one miRNA, thereby resulting in modulation of multiple pathways in any given cell type. Therefore, altered expression of miRNAs (i.e., during tissue development or in scenarios of disease or cellular stress) can have a profound impact on processes regulating cell differentiation, metabolism, proliferation, or apoptosis, for example. Over the past 5-10 years, thousands of reports have been published on miRNAs in cartilage and bone biology or disease, thus highlighting the significance of these non-coding RNAs in regulating skeletal development and homeostasis. For the purpose of this review, we will focus on miRNAs or miRNA families that have demonstrated function in vivo within the context of cartilage, bone or other orthopaedic-related tissues (excluding muscle). Specifically, we will discuss studies that have utilized miRNA transgenic mouse models or in vivo approaches to target a miRNA with the aim of altering conditions such as osteoarthritis, osteoporosis and bone fractures in rodents. We will not discuss miRNAs in the context skeletal cancers since this topic is worthy of a review of its own. Overall, we aim to provide a comprehensive description of where the field currently stands with respect to the therapeutic potential of specific miRNAs to treat orthopaedic conditions and current technologies to target and modify miRNA function in vivo. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:33-51, 2018.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110
| | - Gun-Il Im
- Department of Orthopaedic Surgery, Dongguk University Ilsan Hospital, 814 Siksa-Dong, Goyang, Korea
| |
Collapse
|
4
|
Lam F, Morris C. Nine year old boy with chromosome 1q23.3-q25.1 deletion. Am J Med Genet A 2016; 170:3013-3017. [PMID: 27416976 DOI: 10.1002/ajmg.a.37843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/17/2016] [Indexed: 11/05/2022]
Abstract
Interstitial deletions of the long arm of chromosome 1 are rare, and recent reports of individuals with molecularly characterized deletions have resulted in advances in genotype-phenotype correlation. The recognizable phenotype associated with 1q23.3-q25.1 includes pre- and post-natal growth retardation, microcephaly, intellectual disability, delayed language acquisition, small hands and feet with brachydactyly and single palmar crease, and distinctive facial features including short bulbous nose, micrognathia, and ear malformations. We report a patient with an 11.35 Mb deletion from 1q23.3-q25.1 who has these features in addition to a rarely reported complication-profound sensorineural hearing loss. He has both pre- and post-natal growth deficiency and growth hormone deficiency that was diagnosed at age 2 years. However, unlike other individuals with this deletion and growth hormone deficiency, this boy has responded to treatment with human growth hormone. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Felicia Lam
- Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, Nevada.
| | - Colleen Morris
- Genetics Division, Department of Pediatrics, University of Nevada School of Medicine, Las Vegas, Nevada
| |
Collapse
|
5
|
Teixeira WG, Marques FK, Freire MCM. Retrospective karyotype study in mentally retarded patients. Rev Assoc Med Bras (1992) 2016; 62:262-8. [PMID: 27310551 DOI: 10.1590/1806-9282.62.03.262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To describe the chromosomal alterations in patients with mental retardation (MR) using G-banding karyotype analysis. METHOD A retrospective study of the results G-banding karyotype analysis of 369 patients investigated for MR was performed. Based on the structural rearrangements found, the authors searched all chromosomal regions related with breakpoints, and these were compared with the literature on MR and databases. RESULTS 338 (91.6%) normal cases, and 31 (8.4%) with some type of chromosomal abnormality were identified. Among the altered cases, 21 patients (67.8%) were identified with structural chromosomal alterations, nine (29%) with numerical alterations, and one (3.2%) with numerical and structural alterations. CONCLUSION Structural chromosomal abnormalities were observed more frequently in this study. G-banding karyotyping contributes to the investigation of the causes of MR, showing that this technique can be useful for initial screening of patients. However, higher resolution techniques such as array based comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MPLA) can detect submicroscopic alterations commonly associated with MR.
Collapse
Affiliation(s)
- Wellcy Gonçalves Teixeira
- Instituto Hermes Pardini, Laboratory Specialist, Belo Horizonte MG , Brazil, MSc in General and Applied Biology - Laboratory Specialist at Instituto Hermes Pardini, Belo Horizonte, MG, Brazil
| | - Fabiana Kalina Marques
- Instituto Hermes Pardini, Belo Horizonte MG , Brazil, MSc in Genetics - Researcher at Instituto Hermes Pardini, Belo Horizonte, MG, Brazil
| | - Maíra Cristina Menezes Freire
- Instituto Hermes Pardini, Belo Horizonte MG , Brazil, PhD in Genetics - Researcher at Instituto Hermes Pardini, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Ashraf T, Collinson MN, Fairhurst J, Wang R, Wilson LC, Foulds N. Two further patients with the 1q24 deletion syndrome expand the phenotype: A possible role for the miR199-214 cluster in the skeletal features of the condition. Am J Med Genet A 2015; 167A:3153-60. [PMID: 26333682 DOI: 10.1002/ajmg.a.37336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 08/02/2015] [Indexed: 01/02/2023]
Abstract
Submicroscopic deletions within chromosome 1q24q25 are associated with a syndromic phenotype of short stature, brachydactyly, learning difficulties, and facial dysmorphism. The critical region for the deletion phenotype has previously been narrowed to a 1.9 Mb segment containing 13 genes. We describe two further patients with 1q24 microdeletions and the skeletal phenotype, the first of whom has normal intellect, whereas the second has only mild learning impairment. The deletion in the first patient is very small and further narrows the critical interval for the striking skeletal aspects of this condition to a region containing only Dynamin 3 (DNM3) and two microRNAs that are harbored within intron 14 of this gene: miR199 and miR214. Mouse studies raise the possibility that these microRNAs may be implicated in the short stature and skeletal abnormalities of this microdeletion condition. The deletion in the second patient spans the previously reported critical region and indicates that the cognitive impairment may not always be as severe as previous reports suggest.
Collapse
Affiliation(s)
- Tazeen Ashraf
- Guy's Clinical Genetics Service, Guy's Hospital, London, United Kingdom
| | - Morag N Collinson
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, Wiltshire, United Kingdom
| | - Joanna Fairhurst
- Radiology Department, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, United Kingdom
| | - Rubin Wang
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Louise C Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Nicola Foulds
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, United Kingdom
| |
Collapse
|
7
|
Chatron N, Haddad V, Andrieux J, Désir J, Boute O, Dieux A, Baumann C, Drunat S, Gérard M, Bonnet C, Leheup B, Till M, Rossi M, Flori E, Alembik Y, Stewart H, McParland J, Bernardini L, Castelluccio P, Roos L, Tümer Z, Fagan K, Hackett A, Bain N, van Haeringen A, Ruivenkamp C, Benzacken B, Sanlaville D, Edery P, Aboura A, Schluth-Bolard C. Refinement of genotype-phenotype correlation in 18 patients carrying a 1q24q25 deletion. Am J Med Genet A 2015; 167A:1008-17. [PMID: 25728055 DOI: 10.1002/ajmg.a.36856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 10/07/2014] [Indexed: 11/10/2022]
Abstract
Interstitial deletion 1q24q25 is a rare rearrangement associated with intellectual disability, growth retardation, abnormal extremities and facial dysmorphism. In this study, we describe the largest series reported to date, including 18 patients (4M/14F) aged from 2 days to 67 years and comprising two familial cases. The patients presented with a characteristic phenotype including mild to moderate intellectual disability (100%), intrauterine (92%) and postnatal (94%) growth retardation, microcephaly (77%), short hands and feet (83%), brachydactyly (70%), fifth finger clinodactyly (78%) and facial dysmorphism with a bulbous nose (72%), abnormal ears (67%) and micrognathia (56%). Other findings were abnormal palate (50%), single transverse palmar crease (53%), renal (38%), cardiac (38%), and genital (23%) malformations. The deletions were characterized by chromosome microarray. They were of different sizes (490 kb to 20.95 Mb) localized within chromosome bands 1q23.3-q31.2 (chr1:160797550-192912120, hg19). The 490 kb deletion is the smallest deletion reported to date associated with this phenotype. We delineated three regions that may contribute to the phenotype: a proximal one (chr1:164,501,003-167,022,133), associated with cardiac and renal anomalies, a distal one (chr1:178,514,910-181,269,712) and an intermediate 490 kb region (chr1:171970575-172460683, hg19), deleted in the most of the patients, and containing DNM3, MIR3120 and MIR214 that may play an important role in the phenotype. However, this genetic region seems complex with multiple regions giving rise to the same phenotype.
Collapse
Affiliation(s)
- Nicolas Chatron
- Hospices Civils de Lyon, Service de Génétique, Laboratoire de Cytogénétique Constitutionnelle, Bron, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Burkardt DD, Rosenfeld JA, Helgeson ML, Angle B, Banks V, Smith WE, Gripp KW, Moline J, Moran RT, Niyazov DM, Stevens CA, Zackai E, Lebel RR, Ashley DG, Kramer N, Lachman RS, Graham JM. Distinctive phenotype in 9 patients with deletion of chromosome 1q24-q25. Am J Med Genet A 2011; 155A:1336-51. [PMID: 21548129 PMCID: PMC3109510 DOI: 10.1002/ajmg.a.34049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/20/2011] [Indexed: 11/08/2022]
Abstract
Reports of individuals with deletions of 1q24→q25 share common features of prenatal onset growth deficiency, microcephaly, small hands and feet, dysmorphic face and severe cognitive deficits. We report nine individuals with 1q24q25 deletions, who show distinctive features of a clinically recognizable 1q24q25 microdeletion syndrome: prenatal-onset microcephaly and proportionate growth deficiency, severe cognitive disability, small hands and feet with distinctive brachydactyly, single transverse palmar flexion creases, fifth finger clinodactyly and distinctive facial features: upper eyelid fullness, small ears, short nose with bulbous nasal tip, tented upper lip, and micrognathia. Radiographs demonstrate disharmonic osseous maturation with markedly delayed bone age. Occasional features include cleft lip and/or palate, cryptorchidism, brain and spinal cord defects, and seizures. Using oligonucleotide-based array comparative genomic hybridization, we defined the critical deletion region as 1.9 Mb at 1q24.3q25.1 (chr1: 170,135,865-172,099,327, hg18 coordinates), containing 13 genes and including CENPL, which encodes centromeric protein L, a protein essential for proper kinetochore function and mitotic progression. The growth deficiency in this syndrome is similar to what is seen in other types of primordial short stature with microcephaly, such as Majewski osteodysplastic primordial dwarfism, type II (MOPD2) and Seckel syndrome, which result from loss-of-function mutations in genes coding for centrosomal proteins. DNM3 is also in the deleted region and expressed in the brain, where it participates in the Shank-Homer complex and increases synaptic strength. Therefore, DNM3 is a candidate for the cognitive disability, and CENPL is a candidate for growth deficiency in this 1q24q25 microdeletion syndrome.
Collapse
|
9
|
Thienpont B, Dimitriadou E, Theodoropoulos K, Breckpot J, Fryssira H, Kitsiou-Tzeli S, Tzoufi M, Vermeesch JR, Syrrou M, Devriendt K. Refining the locus of branchio-otic syndrome 2 (BOS2) to a 5.25 Mb locus on chromosome 1q31.3q32.1. Eur J Med Genet 2009; 52:393-7. [DOI: 10.1016/j.ejmg.2009.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
|
10
|
|