1
|
Vetiska S, Wälchli T, Radovanovic I, Berhouma M. Molecular and genetic mechanisms in brain arteriovenous malformations: new insights and future perspectives. Neurosurg Rev 2022; 45:3573-3593. [PMID: 36219361 DOI: 10.1007/s10143-022-01883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 10/17/2022]
Abstract
Brain arteriovenous malformations (bAVMs) are rare vascular lesions made of shunts between cerebral arteries and veins without the interposition of a capillary bed. The majority of bAVMs are asymptomatic, but some may be revealed by seizures and potentially life-threatening brain hemorrhage. The management of unruptured bAVMs remains a matter of debate. Significant progress in the understanding of their pathogenesis has been made during the last decade, particularly using genome sequencing and biomolecular analysis. Herein, we comprehensively review the recent molecular and genetic advances in the study of bAVMs that not only allow a better understanding of the genesis and growth of bAVMs, but also open new insights in medical treatment perspectives.
Collapse
Affiliation(s)
- Sandra Vetiska
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Thomas Wälchli
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.,Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, and Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France. .,CREATIS Lab, CNRS UMR 5220, INSERM U1294, Lyon 1, University, Lyon, France.
| |
Collapse
|
2
|
Genetics and Vascular Biology of Brain Vascular Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Surgical Management of Cranial and Spinal Arteriovenous Malformations. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Scimone C, Donato L, Alafaci C, Granata F, Rinaldi C, Longo M, D'Angelo R, Sidoti A. High-Throughput Sequencing to Detect Novel Likely Gene-Disrupting Variants in Pathogenesis of Sporadic Brain Arteriovenous Malformations. Front Genet 2020; 11:146. [PMID: 32184807 PMCID: PMC7059193 DOI: 10.3389/fgene.2020.00146] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
Molecular signaling that leads to brain arteriovenous malformation (bAVM) is to date elusive and this is firstly due to the low frequency of familial cases. Conversely, sporadic bAVM is the most diffuse condition and represents the main source to characterize the genetic basis of the disease. Several studies were conducted in order to detect both germ-line and somatic mutations linked to bAVM development and, in this context, next generation sequencing technologies offer a pivotal resource for the amount of outputted information. We performed whole exome sequencing on a young boy affected by sporadic bAVM. Paired-end sequencing was conducted on an Illumina platform and filtered variants were validated by Sanger sequencing. We detected 20 likely gene-disrupting variants affecting as many loci. Of these variants, 11 are inherited novel variants and one is a de novo nonsense variant, affecting STK4 gene. Moreover, we also considered rare known variants affecting loci involved in vascular differentiation. In order to explain their possible involvement in bAVM pathogenesis, we analyzed molecular networks at Cytoscape platform. In this study we focus on some genetic point variations detected in a child affected by bAVM. Therefore, we suggest these novel affected loci as prioritized for further investigation on pathogenesis of bAVM lesions.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| | - Concetta Alafaci
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Francesca Granata
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Marcello Longo
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Science and of Morphological and Functional Images, University of Messina, Messina, Italy.,Department of Vanguard Medicine and Therapies, Biomolecular Strategies and Neuroscience, I.E.ME.S.T., Palermo, Italy
| |
Collapse
|
5
|
Yılmaz B, Toktaş ZO, Akakın A, Işık S, Bilguvar K, Kılıç T, Günel M. Familial occurrence of brain arteriovenous malformation: a novel ACVRL1 mutation detected by whole exome sequencing. J Neurosurg 2016; 126:1879-1883. [DOI: 10.3171/2016.6.jns16665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVEBrain arteriovenous malformations (AVMs) can occur in patients with hereditary hemorrhagic telangiectasia (HHT). However, brain AVM without HHT has also been reported. Using whole exome sequencing, the authors performed comprehensive genomic characterization of a 6-person Turkish family with 3 cases of brain AVM without HHT.METHODSThree siblings with brain AVM, one of whom also had spinal AVM, were evaluated. The parents and the fourth sibling had no AVM on cranial MRI. The authors performed a whole exome capture and Illumina sequencing on blood samples from 2 siblings with AVM.RESULTSAn ACVRL1 heterozygous mutation (p.Lys332Glu) was identified in 2 patients via whole exome sequencing. Variant segregation was confirmed using direct Sanger sequencing.CONCLUSIONSStudy results suggested that whole exome sequencing analysis is particularly useful in cases of locus heterogeneity and uncertain diagnostic classification schemes in patients with hereditary brain AVM.
Collapse
Affiliation(s)
- Baran Yılmaz
- 1Department of Neurosurgery, Bahçeşehir University Medical School, İstanbul, Turkey
| | - Zafer Orkun Toktaş
- 1Department of Neurosurgery, Bahçeşehir University Medical School, İstanbul, Turkey
| | - Akın Akakın
- 1Department of Neurosurgery, Bahçeşehir University Medical School, İstanbul, Turkey
| | - Semra Işık
- 2Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Türker Kılıç
- 1Department of Neurosurgery, Bahçeşehir University Medical School, İstanbul, Turkey
| | - Murat Günel
- 4Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
6
|
Surgical Management of Cranial and Spinal Arteriovenous Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Kim H, Pawlikowska L, Su H, Young WL. Genetics and Vascular Biology of Angiogenesis and Vascular Malformations. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00012-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Hogervorst JG, Godschalk RW, van den Brandt PA, Weijenberg MP, Verhage BA, Jonkers L, Goessens J, Simons CC, Vermeesch JR, van Schooten FJ, Schouten LJ. DNA from Nails for Genetic Analyses in Large-Scale Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev 2014; 23:2703-12. [DOI: 10.1158/1055-9965.epi-14-0552] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Takagi Y, Aoki T, Takahashi JC, Yoshida K, Ishii A, Arakawa Y, Kikuchi T, Funaki T, Miyamoto S. Differential gene expression in relation to the clinical characteristics of human brain arteriovenous malformations. Neurol Med Chir (Tokyo) 2013; 54:163-75. [PMID: 24162243 PMCID: PMC4533425 DOI: 10.2176/nmc.oa2012-0422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Arteriovenous malformations (AVMs) of the central nervous system are considered as congenital disorders. They are composed of abnormally developed dilated arteries and veins and are characterized microscopically by the absence of a capillary network. We previously reported DNA fragmentation and increased expression of apoptosis-related factors in AVM lesions. In this article, we used microarray analysis to examine differential gene expression in relation to clinical manifestations in 11 AVM samples from Japanese patients. We categorized the genes with altered expression into four groups: death-related, neuron-related, inflammation-related, and other. The death-related differentially expressed genes were MMP9, LIF, SOD2, BCL2A1, MMP12, and HSPA6. The neuron-related genes were NPY, S100A9, NeuroD2, S100Abeta, CAMK2A, SYNPR, CHRM2, and CAMKV. The inflammation-related genes were PTX3, IL8, IL6, CXCL10, GBP1, CHRM3, CXCL1, IL1R2, CCL18, and CCL13. In addition, we compared gene expression in those with or without clinical characteristics including deep drainer, embolization, and high-flow nidus. We identified a small number of genes. Using these microarray data we are able to generate and test new hypotheses to explore AVM pathophysiology. Microarray analysis is a useful technique to study clinical specimens from patients with brain vascular malformations.
Collapse
Affiliation(s)
- Yasushi Takagi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bendjilali N, Kim H, Weinsheimer S, Guo DE, Kwok PY, Zaroff JG, Sidney S, Lawton MT, McCulloch CE, Koeleman BPC, Klijn CJM, Young WL, Pawlikowska L. A genome-wide investigation of copy number variation in patients with sporadic brain arteriovenous malformation. PLoS One 2013; 8:e71434. [PMID: 24098321 PMCID: PMC3789669 DOI: 10.1371/journal.pone.0071434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/30/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Brain arteriovenous malformations (BAVM) are clusters of abnormal blood vessels, with shunting of blood from the arterial to venous circulation and a high risk of rupture and intracranial hemorrhage. Most BAVMs are sporadic, but also occur in patients with Hereditary Hemorrhagic Telangiectasia, a Mendelian disorder caused by mutations in genes in the transforming growth factor beta (TGFβ) signaling pathway. METHODS To investigate whether copy number variations (CNVs) contribute to risk of sporadic BAVM, we performed a genome-wide association study in 371 sporadic BAVM cases and 563 healthy controls, all Caucasian. Cases and controls were genotyped using the Affymetrix 6.0 array. CNVs were called using the PennCNV and Birdsuite algorithms and analyzed via segment-based and gene-based approaches. Common and rare CNVs were evaluated for association with BAVM. RESULTS A CNV region on 1p36.13, containing the neuroblastoma breakpoint family, member 1 gene (NBPF1), was significantly enriched with duplications in BAVM cases compared to controls (P = 2.2×10(-9)); NBPF1 was also significantly associated with BAVM in gene-based analysis using both PennCNV and Birdsuite. We experimentally validated the 1p36.13 duplication; however, the association did not replicate in an independent cohort of 184 sporadic BAVM cases and 182 controls (OR = 0.81, P = 0.8). Rare CNV analysis did not identify genes significantly associated with BAVM. CONCLUSION We did not identify common CNVs associated with sporadic BAVM that replicated in an independent cohort. Replication in larger cohorts is required to elucidate the possible role of common or rare CNVs in BAVM pathogenesis.
Collapse
Affiliation(s)
- Nasrine Bendjilali
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Shantel Weinsheimer
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Diana E. Guo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Jonathan G. Zaroff
- Kaiser Northern California Division of Research, San Francisco, California, United States of America
| | - Stephen Sidney
- Kaiser Northern California Division of Research, San Francisco, California, United States of America
| | - Michael T. Lawton
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Charles E. McCulloch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Bobby P. C. Koeleman
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | - Catharina J. M. Klijn
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center, Utrecht, The Netherlands
| | - William L. Young
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Ludmila Pawlikowska
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abd-El-Barr MM, Oliveria SF, Hoh BL, Mocco JD. Arteriovenous Malformations: Evidence-Based Medicine, Diagnosis, Treatment, and Complications. TEXTBOOK OF NEUROINTENSIVE CARE 2013:579-590. [DOI: 10.1007/978-1-4471-5226-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Sturiale CL, Puca A, Sebastiani P, Gatto I, Albanese A, Di Rocco C, Maira G, Pola R. Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: where do we stand? Brain 2012; 136:665-81. [DOI: 10.1093/brain/aws180] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
13
|
Klassen TL, von Rüden EL, Drabek J, Noebels JL, Goldman AM. Comparative analytical utility of DNA derived from alternative human specimens for molecular autopsy and diagnostics. J Mol Diagn 2012; 14:451-7. [PMID: 22796560 PMCID: PMC5803546 DOI: 10.1016/j.jmoldx.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 11/22/2022] Open
Abstract
Genetic testing and research have increased the demand for high-quality DNA that has traditionally been obtained by venipuncture. However, venous blood collection may prove difficult in special populations and when large-scale specimen collection or exchange is prerequisite for international collaborative investigations. Guthrie/FTA card-based blood spots, buccal scrapes, and finger nail clippings are DNA-containing specimens that are uniquely accessible and thus attractive as alternative tissue sources (ATS). The literature details a variety of protocols for extraction of nucleic acids from a singular ATS type, but their utility has not been systematically analyzed in comparison with conventional sources such as venous blood. Additionally, the efficacy of each protocol is often equated with the overall nucleic acid yield but not with the analytical performance of the DNA during mutation detection. Together with a critical in-depth literature review of published extraction methods, we developed and evaluated an all-inclusive approach for serial, systematic, and direct comparison of DNA utility from multiple biological samples. Our results point to the often underappreciated value of these alternative tissue sources and highlight ways to maximize the ATS-derived DNA for optimal quantity, quality, and utility as a function of extraction method. Our comparative analysis clarifies the value of ATS in genomic analysis projects for population-based screening, diagnostics, molecular autopsy, medico-legal investigations, or multi-organ surveys of suspected mosaicisms.
Collapse
Affiliation(s)
- Tara L. Klassen
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Eva-Lotta von Rüden
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Janice Drabek
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| | - Jeffrey L. Noebels
- Department of Neurology, Baylor College of Medicine, Houston, Texas
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Alica M. Goldman
- Department of Neurology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|